1
|
Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021; 125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/16/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
Although significant progress has been made in understanding the behavioral and brain mechanisms for motivational systems, much less is known about competition between motivational states or motivational conflict (e.g., approach - avoidance conflict). Despite being produced under diverse conditions, behavior during motivational competition has two signatures: bistability and metastability. These signatures reveal the operation of positive feedback mechanisms in behavioral selection. Different neuronal architectures can instantiate this selection to achieve bistability and metastability in behavior, but each relies on circuit-level inhibition to achieve rapid and stable selection between competing tendencies. Paraventricular thalamus (PVT) is identified as critical to this circuit level inhibition, resolving motivational competition via its extensive projections to local inhibitory networks in the ventral striatum and extended amygdala, enabling adaptive responding under motivational conflict.
Collapse
|
2
|
RETRACTED: Exploring the mechanism by which accumbal deep brain stimulation attenuates morphine-induced reinstatement through manganese-enhanced MRI and pharmacological intervention. Exp Neurol 2017; 290:29-40. [PMID: 28038985 DOI: 10.1016/j.expneurol.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors.
The authors have requested to retract this paper as the corresponding author had not sought the prior agreement of his co-authors to submit the paper for publication.
Collapse
|
3
|
Stenner MP, Litvak V, Rutledge RB, Zaehle T, Schmitt FC, Voges J, Heinze HJ, Dolan RJ. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection. J Neurophysiol 2015; 114:29-39. [PMID: 25878159 PMCID: PMC4518721 DOI: 10.1152/jn.00988.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/09/2015] [Indexed: 11/24/2022] Open
Abstract
The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181–190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection.
Collapse
Affiliation(s)
- Max-Philipp Stenner
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany;
| | - Vladimir Litvak
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Robb B Rutledge
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Friedhelm C Schmitt
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; and
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; and
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| |
Collapse
|