1
|
Erhardt V, Hartig E, Lorenzo K, Megathlin HR, Tarchini B, Hosur V. Systematic optimization and prediction of cre recombinase for precise genome editing in mice. Genome Biol 2025; 26:85. [PMID: 40186303 PMCID: PMC11971878 DOI: 10.1186/s13059-025-03560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The Cre-Lox system is a powerful tool in mouse genetics, enabling precise spatiotemporal control of gene expression and conditional knockout models. Since its development, it has transformed genome editing by facilitating targeted deletions, translocations, inversions, and complex modifications-double-floxed inverse orientation. Its utility extends beyond mice to rats, pigs, and zebrafish. However, challenges such as high costs, lengthy timelines, and unpredictable recombination remain, highlighting the need for ongoing improvements to enhance efficiency, reliability, and applicability across genetic models. RESULTS In this study, we perform a systematic analysis of Cre-mediated recombination in mice, creating 11 new strains with conditional alleles at the Rosa26 locus, using the C57BL/6J background. Factors influencing recombination efficiency include inter-loxP distance, mutant loxP sites, zygosity, chromosomal location, and breeder age. Our results demonstrate that the choice of Cre-driver strain plays a significant role in recombination efficiency. Optimal recombination is achieved when loxP sites are spaced by less than 4 kb and mutant loxP sites by 3 kb. Complete recombination fails with wildtype loxP sites spaced ≥ 15 kb or mutant lox71/66 sites spaced ≥ 7 kb. The best recombination efficiency is observed in breeders aged 8-20 weeks and when using heterozygous floxed alleles. CONCLUSION The Cre-Lox system remains indispensable for genetic engineering, offering flexibility beyond standalone applications by integrating with CRISPR-based methods to expand its utility. Despite challenges, our findings provide a framework for optimizing Cre-mediated recombination. By refining Cre-Lox strategies, this knowledge enhances experimental precision, improves reproducibility, and ultimately reduces the time and cost of genome modification.
Collapse
Affiliation(s)
- Valerie Erhardt
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Elli Hartig
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Kristian Lorenzo
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- The Roux Institute at Northeastern University, Portland, ME, USA
| | - Hannah R Megathlin
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, UMaine, Orono, ME, USA
| | - Basile Tarchini
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA.
| |
Collapse
|
2
|
Deng LH, Li MZ, Huang XJ, Zhao XY. Single-cell lineage tracing techniques in hematology: unraveling the cellular narrative. J Transl Med 2025; 23:270. [PMID: 40038725 DOI: 10.1186/s12967-025-06318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Lineage tracing is a valuable technique that has greatly facilitated the exploration of cell origins and behavior. With the continuous development of single-cell sequencing technology, lineage tracing technology based on the single-cell level has become an important method to study biological development. Single-cell Lineage tracing technology plays an important role in the hematological system. It can help to answer many important questions, such as the heterogeneity of hematopoietic stem cell function and structure, and the heterogeneity of malignant tumor cells in the hematological system. Many studies have been conducted to explore the field of hematology by applying this technology. This review focuses on the superiority of the emerging single-cell lineage tracing technologies of Integration barcodes, CRISPR barcoding, and base editors, and summarizes their applications in the hematology system. These studies have suggested the vast potential in unraveling complex cellular behaviors and lineage dynamics in both normal and pathological contexts.
Collapse
Affiliation(s)
- Lu-Han Deng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Mu-Zi Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
3
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Engel-Pizcueta C, Hevia CF, Voltes A, Livet J, Pujades C. Her9 controls the stemness properties of hindbrain boundary cells. Development 2025; 152:dev203164. [PMID: 39628452 PMCID: PMC11829766 DOI: 10.1242/dev.203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The different spatiotemporal distribution of progenitor and neurogenic capacities permits that brain regions engage asynchronously in neurogenesis. In the hindbrain, rhombomere progenitor cells contribute to neurons during the first neurogenic phase, whereas boundary cells participate later. To analyze what maintains boundary cells as non-neurogenic progenitors, we addressed the role of Her9, a zebrafish Hes1-related protein. her9 expression is temporarily sustained in boundary cells independently of Notch at early embryonic stages, while they are non-neurogenic progenitors. Complementary functional approaches show that Her9 inhibits the onset of Notch signaling and the neurogenic program, keeping boundary cells as progenitors. Multicolor clonal analysis combined with genetic perturbations reveal that Her9 expands boundary progenitors by promoting symmetric proliferative and preventing neurogenic cell divisions. Her9 also regulates the proliferation of boundary cells by inhibiting the cell cycle arrest gene cdkn1ca and interplaying with Cyclin D1. Moreover, her9 is enriched in hindbrain radial glial cells at late embryonic stages independently of Notch. Together these data demonstrate that Her9 maintains the stemness properties of hindbrain boundary progenitors and late radial glial cells, ensuring the different temporal distribution of neurogenic capacities within the hindbrain.
Collapse
Affiliation(s)
- Carolyn Engel-Pizcueta
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Covadonga F. Hevia
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Adrià Voltes
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Cristina Pujades
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
5
|
Nickl P, Jenickova I, Elias J, Kasparek P, Barinka C, Kopkanova J, Sedlacek R. Multistep allelic conversion in mouse pre-implantation embryos by AAV vectors. Sci Rep 2024; 14:20160. [PMID: 39215103 PMCID: PMC11364770 DOI: 10.1038/s41598-024-70853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Site-specific recombinases (SSRs) are critical for achieving precise spatiotemporal control of engineered alleles. These enzymes play a key role in facilitating the deletion or inversion of loci flanked by recombination sites, resulting in the activation or repression of endogenous genes, selection markers or reporter elements. However, multiple recombination in complex alleles can be laborious. To address this, a new and efficient method using AAV vectors has been developed to simplify the conversion of systems based on Cre, FLP, Dre and Vika recombinases. In this study, we present an effective method for ex vivo allele conversion using Cre, FLP (flippase), Dre, and Vika recombinases, employing adeno-associated viruses (AAV) as delivery vectors. AAVs enable efficient allele conversion with minimal toxicity in a reporter mouse line. Moreover, AAVs facilitate sequential allele conversion, essential for fully converting alleles with multiple recombination sites, typically found in conditional knockout mouse models. While simple allele conversions show a 100% efficiency rate, complex multiple conversions consistently achieve an 80% conversion rate. Overall, this strategy markedly reduces the need for animals and significantly speeds up the process of allele conversion, representing a significant improvement in genome engineering techniques.
Collapse
Affiliation(s)
- Petr Nickl
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic.
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Irena Jenickova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jan Elias
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jana Kopkanova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic.
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
6
|
Kumar U, Fang CY, Roan HY, Hsu SC, Wang CH, Chen CH. Whole-body replacement of larval myofibers generates permanent adult myofibers in zebrafish. EMBO J 2024; 43:3090-3115. [PMID: 38839992 PMCID: PMC11294464 DOI: 10.1038/s44318-024-00136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Drastic increases in myofiber number and size are essential to support vertebrate post-embryonic growth. However, the collective cellular behaviors that enable these increases have remained elusive. Here, we created the palmuscle myofiber tagging and tracking system for in toto monitoring of the growth and fates of ~5000 fast myofibers in developing zebrafish larvae. Through live tracking of individual myofibers within the same individuals over extended periods, we found that many larval myofibers readily dissolved during development, enabling the on-site addition of new and more myofibers. Remarkably, whole-body surveillance of multicolor-barcoded myofibers further unveiled a gradual yet extensive elimination of larval myofiber populations, resulting in near-total replacement by late juvenile stages. The subsequently emerging adult myofibers are not only long-lasting, but also morphologically and functionally distinct from the larval populations. Furthermore, we determined that the elimination-replacement process is dependent on and driven by the autophagy pathway. Altogether, we propose that the whole-body replacement of larval myofibers is an inherent yet previously unnoticed process driving organismic muscle growth during vertebrate post-embryonic development.
Collapse
Affiliation(s)
- Uday Kumar
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-Yi Fang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Han Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
7
|
Anoud M, Delagoutte E, Helleu Q, Brion A, Duvernois-Berthet E, As M, Marques X, Lamribet K, Senamaud-Beaufort C, Jourdren L, Adrait A, Heinrich S, Toutirais G, Hamlaoui S, Gropplero G, Giovannini I, Ponger L, Geze M, Blugeon C, Couté Y, Guidetti R, Rebecchi L, Giovannangeli C, De Cian A, Concordet JP. Comparative transcriptomics reveal a novel tardigrade-specific DNA-binding protein induced in response to ionizing radiation. eLife 2024; 13:RP92621. [PMID: 38980300 PMCID: PMC11233135 DOI: 10.7554/elife.92621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.
Collapse
Affiliation(s)
- Marwan Anoud
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- Université Paris-SaclayOrsayFrance
| | | | - Quentin Helleu
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Alice Brion
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | | - Marie As
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Xavier Marques
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | | | - Catherine Senamaud-Beaufort
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Laurent Jourdren
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Sophie Heinrich
- Institut Curie, Inserm U1021-CNRS UMR 3347, Université Paris-Saclay, Université PSLOrsay CedexFrance
- Plateforme RADEXP, Institut CurieOrsayFrance
| | | | | | | | - Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Loic Ponger
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Marc Geze
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | - Corinne Blugeon
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | | | - Anne De Cian
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | |
Collapse
|
8
|
Hosur V, Erhardt V, Hartig E, Lorenzo K, Megathlin H, Tarchini B. Large-Scale Genome-Wide Optimization and Prediction of the Cre Recombinase System for Precise Genome Manipulation in Mice. RESEARCH SQUARE 2024:rs.3.rs-4595968. [PMID: 39011108 PMCID: PMC11247941 DOI: 10.21203/rs.3.rs-4595968/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The Cre-Lox recombination system is a powerful tool in mouse genetics, offering spatial-temporal control over gene expression and facilitating the large-scale generation of conditional knockout mice. Its versatility also extends to other research models, such as rats, pigs, and zebrafish. However, the Cre-Lox technology presents a set of challenges that includes high costs, a time-intensive process, and the occurrence of unpredictable recombination events, which can lead to unexpected phenotypic outcomes. To better understand factors affecting recombination, we embarked on a systematic and genome-wide analysis of Cre-mediated recombination in mice. To ensure uniformity and reproducibility, we generated 11 novel strains with conditional alleles at the ROSA26 locus, utilizing a single inbred mouse strain background, C57BL/6J. We examined several factors influencing Cre-recombination, including the inter-loxP distance, mutant loxP sites, the zygosity of the conditional alleles, chromosomal location, and the age of the breeders. We discovered that the selection of the Cre-driver strain profoundly impacts recombination efficiency. We also found that successful and complete recombination is best achieved when loxP sites are spaced between 1 to 4 kb apart, with mutant loxP sites facilitating recombination at distances of 1 to 3 kb. Furthermore, we demonstrate that complete recombination does not occur at an inter-loxP distance of ≥ 15 kb with wildtype loxP sites, nor at a distance of ≥ 7 kb with mutant lox71/66 sites. Interestingly, the age of the Cre-driver mouse at the time of breeding emerged as a critical factor in recombination efficiency, with best results observed between 8 and 20 weeks old. Moreover, crossing heterozygous floxed alleles with the Cre-driver strain resulted in more efficient recombination than using homozygous floxed alleles. Lastly, maintaining an inter-loxP distance of 4 kb or less ensures efficient recombination of the conditional allele, regardless of the chromosomal location. While CRISPR/Cas has revolutionized genome editing in mice, Cre-Lox technology remains a cornerstone for the generation of sophisticated alleles and for precise control of gene expression in mice. The knowledge gained here will enable investigators to select a Cre-Lox approach that is most efficient for their desired outcome in the generation of both germline and non-germline mouse models of human disease, thereby reducing time and cost of Cre-Lox technology-mediated genome modification.
Collapse
Affiliation(s)
| | | | - Elli Hartig
- The Jackson Laboratory for Mammalian Genetics
| | | | | | | |
Collapse
|
9
|
Oh JDH, Freem L, Saunders DDZ, McTeir L, Gilhooley H, Jackson M, Glover JD, Smith J, Schoenebeck JJ, Lettice LA, Sang HM, Davey MG. Insights into digit evolution from a fate map study of the forearm using Chameleon, a new transgenic chicken line. Development 2024; 151:dev202340. [PMID: 38828852 PMCID: PMC11234372 DOI: 10.1242/dev.202340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.
Collapse
Affiliation(s)
- Julia Dong Hwa Oh
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Lu Freem
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Dillan D. Z. Saunders
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Lynn McTeir
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Hazel Gilhooley
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Melany Jackson
- Genetics and Genomics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - James D. Glover
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Jonathan Smith
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jeffrey J. Schoenebeck
- Genetics and Genomics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Laura A. Lettice
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Helen M. Sang
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Megan G. Davey
- Functional Genetics, The Roslin Institute R(D)SVS, CMVM, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
10
|
Guillot C, Djeffal Y, Serra M, Pourquié O. Control of epiblast cell fate by mechanical cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600402. [PMID: 38979228 PMCID: PMC11230242 DOI: 10.1101/2024.06.24.600402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In amniotes, embryonic tissues originate from multipotent epiblast cells, arranged in a mosaic of presumptive territories. How these domains fated to specific lineages become segregated during body formation remains poorly understood. Using single cell RNA sequencing analysis and lineage tracing in the chicken embryo, we identify epiblast cells contributing descendants to the neural tube, somites and lateral plate after completion of gastrulation. We show that intercalation after cell division generates important movements of epiblast cells which lead to their relocation to different presumptive territories, explaining this broad spectrum of fates. This tissue remodeling phase is transient, being soon followed by the establishment of boundaries restricting cell movements therefore defining the presumptive territories of the epiblast. Finally, we find that the epiblast faces distinct mechanical constraints along the antero-posterior axis, leading to cell fate alterations when challenged. Together, we demonstrate the critical role of mechanical cues in epiblast fate determination.
Collapse
|
11
|
Holmberg JC, Riley VA, Sokolov AM, Mukherjee S, Feliciano DM. Protocol for electroporating and isolating murine (sub)ventricular zone cells for single-nuclei omics. STAR Protoc 2024; 5:103095. [PMID: 38823010 PMCID: PMC11179414 DOI: 10.1016/j.xpro.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
In vivo genetic modification of neural stem cells is necessary to model the origins and pathogenesis of neurological disorders. Electroporation is a technique that applies a transient electrical field to direct charged molecules into living cells to genetically modify the mouse brain. Here, we provide a protocol to electroporate the neural stem cells surrounding the neonatal ventricles. We describe subsequent steps to isolate and prepare nuclei from the cells and their cellular progeny for single-nuclei omics. For complete details on the use and execution of this protocol, please refer to Riley et al.1.
Collapse
Affiliation(s)
- Jennie C Holmberg
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA.
| | - Victoria A Riley
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Aidan M Sokolov
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - Sulagna Mukherjee
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, USA; Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
12
|
Erhardt V, Hartig E, Lorenzo K, Megathlin HR, Tarchini B, Hosur V. Large-Scale Genome-Wide Optimization and Prediction of the Cre Recombinase System for Precise Genome Manipulation in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599022. [PMID: 38948742 PMCID: PMC11212873 DOI: 10.1101/2024.06.14.599022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Cre-Lox recombination system is a powerful tool in mouse genetics, offering spatial-temporal control over gene expression and facilitating the large-scale generation of conditional knockout mice. Its versatility also extends to other research models, such as rats, pigs, and zebrafish. However, the Cre-Lox technology presents a set of challenges that includes high costs, a time-intensive process, and the occurrence of unpredictable recombination events, which can lead to unexpected phenotypic outcomes. To better understand factors affecting recombination, we embarked on a systematic and genome-wide analysis of Cre-mediated recombination in mice. To ensure uniformity and reproducibility, we generated 11 novel strains with conditional alleles at the ROSA26 locus, utilizing a single inbred mouse strain background, C57BL/6J. We examined several factors influencing Cre-recombination, including the inter-loxP distance, mutant loxP sites, the zygosity of the conditional alleles, chromosomal location, and the age of the breeders. We discovered that the selection of the Cre-driver strain profoundly impacts recombination efficiency. We also found that successful and complete recombination is best achieved when loxP sites are spaced between 1 to 4 kb apart, with mutant loxP sites facilitating recombination at distances of 1 to 3 kb. Furthermore, we demonstrate that complete recombination does not occur at an inter-loxP distance of ≥ 15 kb with wildtype loxP sites, nor at a distance of ≥ 7 kb with mutant lox71/66 sites. Interestingly, the age of the Cre-driver mouse at the time of breeding emerged as a critical factor in recombination efficiency, with best results observed between 8 and 20 weeks old. Moreover, crossing heterozygous floxed alleles with the Cre-driver strain resulted in more efficient recombination than using homozygous floxed alleles. Lastly, maintaining an inter-loxP distance of 4 kb or less ensures efficient recombination of the conditional allele, regardless of the chromosomal location. While CRISPR/Cas has revolutionized genome editing in mice, Cre-Lox technology remains a cornerstone for the generation of sophisticated alleles and for precise control of gene expression in mice. The knowledge gained here will enable investigators to select a Cre-Lox approach that is most efficient for their desired outcome in the generation of both germline and non-germline mouse models of human disease, thereby reducing time and cost of Cre-Lox technology-mediated genome modification.
Collapse
Affiliation(s)
- Valerie Erhardt
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| | - Elli Hartig
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Tufts University School of Medicine, Boston, MA
| | - Kristian Lorenzo
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- The Roux Institute at Northeastern University, Portland, ME
| | - Hannah R Megathlin
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Graduate School of Biomedical Sciences and Engineering, UMaine, Orono, ME
| | - Basile Tarchini
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Tufts University School of Medicine, Boston, MA
| | - Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| |
Collapse
|
13
|
Hu J, Yang F, Liu C, Wang N, Xiao Y, Zhai Y, Wang X, Zhang R, Gao L, Xu M, Wang J, Liu Z, Huang S, Liu W, Hu Y, Liu F, Guo Y, Wang L, Yuan J, Zhang Z, Chu J. UFObow: A single-wavelength excitable Brainbow for simultaneous multicolor ex-vivo and in-vivo imaging of mammalian cells. Commun Biol 2024; 7:394. [PMID: 38561421 PMCID: PMC10984974 DOI: 10.1038/s42003-024-06062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Brainbow is a genetic cell-labeling technique that allows random colorization of multiple cells and real-time visualization of cell fate within a tissue, providing valuable insights into understanding complex biological processes. However, fluorescent proteins (FPs) in Brainbow have distinct excitation spectra with peak difference greater than 35 nm, which requires sequential imaging under multiple excitations and thus leads to long acquisition times. In addition, they are not easily used together with other fluorophores due to severe spectral bleed-through. Here, we report the development of a single-wavelength excitable Brainbow, UFObow, incorporating three newly developed blue-excitable FPs. We have demonstrated that UFObow enables not only tracking the growth dynamics of tumor cells in vivo but also mapping spatial distribution of immune cells within a sub-cubic centimeter tissue, revealing cell heterogeneity. This provides a powerful means to explore complex biology in a simultaneous imaging manner at a single-cell resolution in organs or in vivo.
Collapse
Affiliation(s)
- Jiahong Hu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fangfang Yang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chong Liu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Nengzhi Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yinghan Xiao
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yujie Zhai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinru Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ren Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Lulu Gao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mengli Xu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Jialu Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng Liu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Songlin Huang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Wenfeng Liu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yajing Hu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Feng Liu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuqi Guo
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Yuan
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China.
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Farhat B, Bordeu I, Jagla B, Ibrahim S, Stefanovic S, Blanc H, Loulier K, Simons BD, Beaurepaire E, Livet J, Pucéat M. Understanding the cell fate and behavior of progenitors at the origin of the mouse cardiac mitral valve. Dev Cell 2024; 59:339-350.e4. [PMID: 38198889 DOI: 10.1016/j.devcel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart malformations include mitral valve defects, which remain largely unexplained. During embryogenesis, a restricted population of endocardial cells within the atrioventricular canal undergoes an endothelial-to-mesenchymal transition to give rise to mitral valvular cells. However, the identity and fate decisions of these progenitors as well as the behavior and distribution of their derivatives in valve leaflets remain unknown. We used single-cell RNA sequencing (scRNA-seq) of genetically labeled endocardial cells and microdissected mouse embryonic and postnatal mitral valves to characterize the developmental road. We defined the metabolic processes underlying the specification of the progenitors and their contributions to subtypes of valvular cells. Using retrospective multicolor clonal analysis, we describe specific modes of growth and behavior of endocardial cell-derived clones, which build up, in a proper manner, functional valve leaflets. Our data identify how both genetic and metabolic mechanisms specifically drive the fate of a subset of endocardial cells toward their distinct clonal contribution to the formation of the valve.
Collapse
Affiliation(s)
- Batoul Farhat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France
| | - Ignacio Bordeu
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 9160000, Chile
| | - Bernd Jagla
- Pasteur Institute UtechS CB & Hub de Bioinformatique et Biostatistiques, C3BI, Paris, France
| | - Stéphanie Ibrahim
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Sonia Stefanovic
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Hugo Blanc
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 A0W, UK
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Michel Pucéat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France.
| |
Collapse
|
15
|
Lin A, Brittan M, Baker AH, Dimmeler S, Fisher EA, Sluimer JC, Misra A. Clonal Expansion in Cardiovascular Pathology. JACC Basic Transl Sci 2024; 9:120-144. [PMID: 38362345 PMCID: PMC10864919 DOI: 10.1016/j.jacbts.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 02/17/2024]
Abstract
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H. Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Edward A. Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, New York, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Judith C. Sluimer
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Kondoh H. Gastrulation: Its Principles and Variations. Results Probl Cell Differ 2024; 72:27-60. [PMID: 38509251 DOI: 10.1007/978-3-031-39027-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
As epiblast cells initiate development into various somatic cells, they undergo a large-scale reorganization, called gastrulation. The gastrulation of the epiblast cells produces three groups of cells: the endoderm layer, the collection of miscellaneous mesodermal tissues, and the ectodermal layer, which includes the neural, epidermal, and associated tissues. Most studies of gastrulation have focused on the formation of the tissues that provide the primary route for cell reorganization, that is, the primitive streak, in the chicken and mouse. In contrast, how gastrulation alters epiblast-derived cells has remained underinvestigated. This chapter highlights the regulation of cell and tissue fate via the gastrulation process. The roles and regulatory functions of neuromesodermal progenitors (NMPs) in the gastrulation process, elucidated in the last decade, are discussed in depth to resolve points of confusion. Chicken and mouse embryos, which form a primitive streak as the site of mesoderm precursor ingression, have been investigated extensively. However, primitive streak formation is an exception, even among amniotes. The roles of gastrulation processes in generating various somatic tissues will be discussed broadly.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
17
|
Kim IS. DNA Barcoding Technology for Lineage Recording and Tracing to Resolve Cell Fate Determination. Cells 2023; 13:27. [PMID: 38201231 PMCID: PMC10778210 DOI: 10.3390/cells13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In various biological contexts, cells receive signals and stimuli that prompt them to change their current state, leading to transitions into a future state. This change underlies the processes of development, tissue maintenance, immune response, and the pathogenesis of various diseases. Following the path of cells from their initial identity to their current state reveals how cells adapt to their surroundings and undergo transformations to attain adjusted cellular states. DNA-based molecular barcoding technology enables the documentation of a phylogenetic tree and the deterministic events of cell lineages, providing the mechanisms and timing of cell lineage commitment that can either promote homeostasis or lead to cellular dysregulation. This review comprehensively presents recently emerging molecular recording technologies that utilize CRISPR/Cas systems, base editing, recombination, and innate variable sequences in the genome. Detailing their underlying principles, applications, and constraints paves the way for the lineage tracing of every cell within complex biological systems, encompassing the hidden steps and intermediate states of organism development and disease progression.
Collapse
Affiliation(s)
- Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| |
Collapse
|
18
|
Yang C, Shitamukai A, Yang S, Kawaguchi A. Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders. Int J Mol Sci 2023; 24:14128. [PMID: 37762431 PMCID: PMC10531473 DOI: 10.3390/ijms241814128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
Collapse
Affiliation(s)
- Chen Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsunori Shitamukai
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shucai Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Ayano Kawaguchi
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
19
|
Linesch PW, Akhtar AA, Breunig JJ. Tetracycline-Inducible and Reversible Stable Gene Expression in Human iPSC-Derived Neural Progenitors and in the Postnatal Mouse Brain. Curr Protoc 2023; 3:e792. [PMID: 37283517 PMCID: PMC10264152 DOI: 10.1002/cpz1.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our group has developed several approaches for stable, non-viral integration of inducible transgenic elements into the genome of mammalian cells. Specifically, a piggyBac tetracycline-inducible genetic element of interest (pB-tet-GOI) plasmid system allows for stable piggyBac transposition-mediated integration into cells, identification of cells that have been transfected using a fluorescent nuclear reporter, and robust transgene activation or suppression upon the addition of doxycycline (dox) to the cell culture or the diet of the animal. Furthermore, the addition of luciferase downstream of the target gene allows for quantitative assessment of gene activity in a non-invasive manner. More recently, we have developed a transgenic system as an alternative to piggyBac called mosaic analysis by dual recombinase-mediated cassette exchange (MADR), as well as additional in vitro transfection techniques and in vivo dox chow applications. The protocols herein provide instructions for the use of this system in cell lines and in the neonatal mouse brain. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Cloning of respective genetic element of interest (GOI) into response plasmid Basic Protocol 2: In vitro nucleofection of iPSC-derived human/mouse neural progenitor cells and subsequent derivation of stable inducible cell lines Alternate Protocol: In vitro electroporation of iPSC-derived human/mouse neural progenitor cells Support Protocol: Recovery stage after in vitro transfection Basic Protocol 3: Adding doxycycline to cells to induce/reverse GOI Basic Protocol 4: Assessing gene expression in vitro by non-invasive bioluminescence imaging of luciferase activity.
Collapse
Affiliation(s)
- Paul W. Linesch
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aslam Abbasi Akhtar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
20
|
Markey KM, Saunders JC, Smuts J, von Reyn CR, Garcia ADR. Astrocyte development—More questions than answers. Front Cell Dev Biol 2023; 11:1063843. [PMID: 37051466 PMCID: PMC10083403 DOI: 10.3389/fcell.2023.1063843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
The past 15–20 years has seen a remarkable shift in our understanding of astrocyte contributions to central nervous system (CNS) function. Astrocytes have emerged from the shadows of neuroscience and are now recognized as key elements in a broad array of CNS functions. Astrocytes comprise a substantial fraction of cells in the human CNS. Nevertheless, fundamental questions surrounding their basic biology remain poorly understood. While recent studies have revealed a diversity of essential roles in CNS function, from synapse formation and function to blood brain barrier maintenance, fundamental mechanisms of astrocyte development, including their expansion, migration, and maturation, remain to be elucidated. The coincident development of astrocytes and synapses highlights the need to better understand astrocyte development and will facilitate novel strategies for addressing neurodevelopmental and neurological dysfunction. In this review, we provide an overview of the current understanding of astrocyte development, focusing primarily on mammalian astrocytes and highlight outstanding questions that remain to be addressed. We also include an overview of Drosophila glial development, emphasizing astrocyte-like glia given their close anatomical and functional association with synapses. Drosophila offer an array of sophisticated molecular genetic tools and they remain a powerful model for elucidating fundamental cellular and molecular mechanisms governing astrocyte development. Understanding the parallels and distinctions between astrocyte development in Drosophila and vertebrates will enable investigators to leverage the strengths of each model system to gain new insights into astrocyte function.
Collapse
Affiliation(s)
- Kathryn M. Markey
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | | | - Jana Smuts
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| | - Catherine R. von Reyn
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - A. Denise R. Garcia
- Department of Biology, Drexel University, Philadelphia, PA, United States
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- *Correspondence: A. Denise R. Garcia,
| |
Collapse
|
21
|
Chen Z, Huang J, Huang X, Gao X, Zhou Y, Fu L. Two-photon fluorescence imaging using a tunable spectral window based on fiber supercontinuum. OPTICS LETTERS 2023; 48:1518-1521. [PMID: 36946967 DOI: 10.1364/ol.485028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Two-photon excitation fluorescence (TPEF) microscopy has evolved into a versatile tool in biological research. However, the multiplexing capability of TPEF microscopy is limited by the narrow spectral bandwidth of the light source. In this study, we apply a photonic crystal fiber in TPEF microscopy to broaden the excitation source bandwidth. We tuned the spectral window using a spatial light modulator as a programmable diffraction grating that was placed behind a prism pair. In addition, we combined a grating pair to compensate for dispersion to improve the two-photon excitation efficiency. The combination of a broad spectrum and a programmable grating enabled fast spectral window tuning rate on a time scale of tens of milliseconds. We demonstrate the performance of our method by imaging live B16 cells labeled with four emission spectrum overlapped fluorescent proteins.
Collapse
|
22
|
Kaucka M, Joven Araus A, Tesarova M, Currie JD, Boström J, Kavkova M, Petersen J, Yao Z, Bouchnita A, Hellander A, Zikmund T, Elewa A, Newton PT, Fei JF, Chagin AS, Fried K, Tanaka EM, Kaiser J, Simon A, Adameyko I. Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration. Nat Commun 2022; 13:6949. [PMID: 36376278 PMCID: PMC9663504 DOI: 10.1038/s41467-022-34266-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Joshua D Currie
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Johan Boström
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Julian Petersen
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Zeyu Yao
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Anass Bouchnita
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79902, USA
| | - Andreas Hellander
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - Ji-Feng Fei
- The Research Institute of Molecular Pathology (IMP), Vienna, 1030, Austria
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Göteborg, 41346, Sweden
| | - Kaj Fried
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Elly M Tanaka
- The Research Institute of Molecular Pathology (IMP), Vienna, 1030, Austria
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - András Simon
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden.
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|
23
|
Procyk CA, Rodgers J, Zindy E, Lucas RJ, Milosavljevic N. Quantitative characterisation of ipRGCs in retinal degeneration using a computation platform for extracting and reconstructing single neurons in 3D from a multi-colour labeled population. Front Cell Neurosci 2022; 16:1009321. [PMID: 36385954 PMCID: PMC9664085 DOI: 10.3389/fncel.2022.1009321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Light has a profound impact on mammalian physiology and behavior. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, rendering them sensitive to light, and are involved in both image-forming vision and non-image forming responses to light such as circadian photo-entrainment and the pupillary light reflex. Following outer photoreceptor degeneration, the death of rod and cone photoreceptors results in global re-modeling of the remnant neural retina. Although ipRGCs can continue signaling light information to the brain even in advanced stages of degeneration, it is unknown if all six morphologically distinct subtypes survive, or how their dendritic architecture may be affected. To answer these questions, we generated a computational platform-BRIAN (Brainbow Analysis of individual Neurons) to analyze Brainbow labeled tissues by allowing objective identification of voxels clusters in Principal Component Space, and their subsequent extraction to produce 3D images of single neurons suitable for analysis with existing tracing technology. We show that BRIAN can efficiently recreate single neurons or individual axonal projections from densely labeled tissue with sufficient anatomical resolution for subtype quantitative classification. We apply this tool to generate quantitative morphological information about ipRGCs in the degenerate retina including soma size, dendritic field size, dendritic complexity, and stratification. Using this information, we were able to identify cells whose characteristics match those reported for all six defined subtypes of ipRGC in the wildtype mouse retina (M1-M6), including the rare and complex M3 and M6 subtypes. This indicates that ipRGCs survive outer retinal degeneration with broadly normal morphology. We additionally describe one cell in the degenerate retina which matches the description of the Gigantic M1 cell in Humans which has not been previously identified in rodent.
Collapse
Affiliation(s)
- Christopher A. Procyk
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Jessica Rodgers
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Egor Zindy
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert J. Lucas
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Nina Milosavljevic
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
25
|
Clavreul S, Dumas L, Loulier K. Astrocyte development in the cerebral cortex: Complexity of their origin, genesis, and maturation. Front Neurosci 2022; 16:916055. [PMID: 36177355 PMCID: PMC9513187 DOI: 10.3389/fnins.2022.916055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
In the mammalian brain, astrocytes form a heterogeneous population at the morphological, molecular, functional, intra-, and inter-region levels. In the past, a few types of astrocytes have been first described based on their morphology and, thereafter, according to limited key molecular markers. With the advent of bulk and single-cell transcriptomics, the diversity of astrocytes is now progressively deciphered and its extent better appreciated. However, the origin of this diversity remains unresolved, even though many recent studies unraveled the specificities of astroglial development at both population and individual cell levels, particularly in the cerebral cortex. Despite the lack of specific markers for each astrocyte subtype, a better understanding of the cellular and molecular events underlying cortical astrocyte diversity is nevertheless within our reach thanks to the development of intersectional lineage tracing, microdissection, spatial mapping, and single-cell transcriptomic tools. Here we present a brief overview describing recent findings on the genesis and maturation of astrocytes and their key regulators during cerebral cortex development. All these studies have considerably advanced our knowledge of cortical astrogliogenesis, which relies on a more complex mode of development than their neuronal counterparts, that undeniably impact astrocyte diversity in the cerebral cortex.
Collapse
|
26
|
Kim W, Park E, Yoo HS, Park J, Jung YM, Park JH. Recent Advances in Monitoring Stem Cell Status and Differentiation Using Nano-Biosensing Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2934. [PMID: 36079970 PMCID: PMC9457759 DOI: 10.3390/nano12172934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/14/2023]
Abstract
In regenerative medicine, cell therapies using various stem cells have received attention as an alternative to overcome the limitations of existing therapeutic methods. Clinical applications of stem cells require the identification of characteristics at the single-cell level and continuous monitoring during expansion and differentiation. In this review, we recapitulate the application of various stem cells used in regenerative medicine and the latest technological advances in monitoring the differentiation process of stem cells. Single-cell RNA sequencing capable of profiling the expression of many genes at the single-cell level provides a new opportunity to analyze stem cell heterogeneity and to specify molecular markers related to the branching of differentiation lineages. However, this method is destructive and distorted. In addition, the differentiation process of a particular cell cannot be continuously tracked. Therefore, several spectroscopic methods have been developed to overcome these limitations. In particular, the application of Raman spectroscopy to measure the intrinsic vibration spectrum of molecules has been proposed as a powerful method that enables continuous monitoring of biochemical changes in the process of the differentiation of stem cells. This review provides a comprehensive overview of current analytical methods employed for stem cell engineering and future perspectives of nano-biosensing technologies as a platform for the in situ monitoring of stem cell status and differentiation.
Collapse
Affiliation(s)
- Wijin Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Eungyeong Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea
| |
Collapse
|
27
|
Eroglu E, Yen CYT, Tsoi YL, Witman N, Elewa A, Joven Araus A, Wang H, Szattler T, Umeano CH, Sohlmér J, Goedel A, Simon A, Chien KR. Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nat Cell Biol 2022; 24:645-658. [PMID: 35550612 PMCID: PMC9106584 DOI: 10.1038/s41556-022-00902-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
Collapse
Affiliation(s)
- Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher Y T Yen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yat-Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tamara Szattler
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chimezie H Umeano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Gene Therapy, Lunds Universitet, Lund, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Kolluri K, Nazarian T, Ardehali R. Clonal Tracing of Heart Regeneration. J Cardiovasc Dev Dis 2022; 9:141. [PMID: 35621852 PMCID: PMC9145832 DOI: 10.3390/jcdd9050141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiomyocytes in the adult mammalian heart have a low turnover during homeostasis. After myocardial injury, there is irreversible loss of cardiomyocytes, which results in subsequent scar formation and cardiac remodeling. In order to better understand and characterize the proliferative capacity of cardiomyocytes, in vivo methods have been developed to track their fate during normal development and after injury. Lineage tracing models are of particular interest due to their ability to record cell proliferation events over a long period of time, either during development or in response to a pathological event. This paper reviews two well-studied lineage-tracing, transgenic mouse models-mosaic analysis with double markers and rainbow reporter system.
Collapse
Affiliation(s)
- Kamal Kolluri
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.K.); (T.N.)
| | - Taline Nazarian
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.K.); (T.N.)
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.K.); (T.N.)
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Chan KY, Yan CCS, Roan HY, Hsu SC, Tseng TL, Hsiao CD, Hsu CP, Chen CH. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature 2022; 605:119-125. [PMID: 35477758 DOI: 10.1038/s41586-022-04641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
As an animal's surface area expands during development, skin cell populations must quickly respond to maintain sufficient epithelial coverage. Despite much progress in understanding of skin cell behaviours in vivo1,2, it remains unclear how cells collectively act to satisfy coverage demands at an organismic level. Here we created a multicolour cell membrane tagging system, palmskin, to monitor the entire population of superficial epithelial cells (SECs) in developing zebrafish larvae. Using time-lapse imaging, we found that many SECs readily divide on the animal body surface; during a specific developmental window, a single SEC can produce a maximum of four progeny cells over its lifetime on the surface of the animal. Remarkably, EdU assays, DNA staining and hydroxyurea treatment showed that these terminally differentiated skin cells continue splitting despite an absence of DNA replication, causing up to 50% of SECs to exhibit reduced genome size. On the basis of a simple mathematical model and quantitative analyses of cell volumes and apical surface areas, we propose that 'asynthetic fission' is used as an efficient mechanism for expanding epithelial coverage during rapid growth. Furthermore, global or local manipulation of body surface growth affects the extent and mode of SEC division, presumably through tension-mediated activation of stretch-activated ion channels. We speculate that this frugal yet flexible mode of cell proliferation might also occur in contexts other than zebrafish skin expansion.
Collapse
Affiliation(s)
- Keat Ying Chan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | | | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Lun Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Division of Physics, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
30
|
Kumamoto T, Ohtaka-Maruyama C. Visualizing Cortical Development and Evolution: A Toolkit Update. Front Neurosci 2022; 16:876406. [PMID: 35495046 PMCID: PMC9039325 DOI: 10.3389/fnins.2022.876406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Visualizing the process of neural circuit formation during neurogenesis, using genetically modified animals or somatic transgenesis of exogenous plasmids, has become a key to decipher cortical development and evolution. In contrast to the establishment of transgenic animals, the designing and preparation of genes of interest into plasmids are simple and easy, dispensing with time-consuming germline modifications. These advantages have led to neuron labeling based on somatic transgenesis. In particular, mammalian expression plasmid, CRISPR-Cas9, and DNA transposon systems, have become widely used for neuronal visualization and functional analysis related to lineage labeling during cortical development. In this review, we discuss the advantages and limitations of these recently developed techniques.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|
31
|
Papp T, Ferenczi Z, Szilagyi B, Petro M, Varga A, Kókai E, Berenyi E, Olah G, Halmos G, Szucs P, Meszar Z. Ultrasound Used for Diagnostic Imaging Facilitates Dendritic Branching of Developing Neurons in the Mouse Cortex. Front Neurosci 2022; 16:803356. [PMID: 35368285 PMCID: PMC8968872 DOI: 10.3389/fnins.2022.803356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal differentiation and synaptogenesis are regulated by precise orchestration of intrinsic and extrinsic chemical and mechanical factors throughout all developmental steps critical for the assembly of neurons into functional circuits. While ultrasound is known to alter neuronal migration and activity acutely, its chronic effect on neuronal behavior or morphology is not well characterized. Furthermore, higher-frequency (3–5 MHz) ultrasound (HFU) is extensively used in gynecological practice for imaging, and while it has not been shown harmful for the developing brain, it might be associated with mild alterations that may have functional consequences. To shed light on the neurobiological effects of HFU on the developing brain, we examined cortical pyramidal cell morphology in a transgenic mouse model, following a single and short dose of high-frequency ultrasound. Layer V neurons in the retrosplenial cortex of mouse embryos were labeled with green and red fluorescent proteins by in utero electroporation at the time of their appearance (E14.5). At the time of their presumptive arrival to layer V (E18.5), HFU stimulation was performed with parameters matched to those used in human prenatal examinations. On the third postnatal day (P3), basic morphometric analyses were performed on labeled neurons reconstructed with Neurolucida. Low-intensity HFU-treated cells showed significantly increased dendritic branching compared to control (non-stimulated) neurons and showed elevated c-fos immunoreactivity. Labeled neurons were immunopositive for the mechanosensitive receptor TRPC4 at E18.5, suggesting the role of this receptor and the associated signaling pathways in the effects of HFU stimulation.
Collapse
Affiliation(s)
- Tamas Papp
- Department of Medical Imaging, University of Debrecen, Debrecen, Hungary
- *Correspondence: Tamas Papp,
| | - Zsuzsanna Ferenczi
- Department of Medical Imaging, University of Debrecen, Debrecen, Hungary
| | | | - Matyas Petro
- Department of Medical Imaging, University of Debrecen, Debrecen, Hungary
| | - Angelika Varga
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Eva Kókai
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Ervin Berenyi
- Department of Medical Imaging, University of Debrecen, Debrecen, Hungary
| | - Gabor Olah
- Department of Biopharmacy, University of Debrecen, Debrecen, Hungary
| | - Gabor Halmos
- Department of Biopharmacy, University of Debrecen, Debrecen, Hungary
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
- MTA-Debreceni Egyetem, Neuroscience Research Group, Debrecen, Hungary
| | - Zoltan Meszar
- Department of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
- MTA-Debreceni Egyetem, Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
32
|
Rah JC, Choi JH. Finding Needles in a Haystack with Light: Resolving the Microcircuitry of the Brain with Fluorescence Microscopy. Mol Cells 2022; 45:84-92. [PMID: 35236783 PMCID: PMC8907002 DOI: 10.14348/molcells.2022.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.
Collapse
Affiliation(s)
- Jong-Cheol Rah
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41062, Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea
| | - Joon Ho Choi
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41062, Korea
| |
Collapse
|
33
|
Multicolor strategies for investigating clonal expansion and tissue plasticity. Cell Mol Life Sci 2022; 79:141. [PMID: 35187598 PMCID: PMC8858928 DOI: 10.1007/s00018-021-04077-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
Understanding the generation of complexity in living organisms requires the use of lineage tracing tools at a multicellular scale. In this review, we describe the different multicolor strategies focusing on mouse models expressing several fluorescent reporter proteins, generated by classical (MADM, Brainbow and its multiple derivatives) or acute (StarTrack, CLoNe, MAGIC Markers, iOn, viral vectors) transgenesis. After detailing the multi-reporter genetic strategies that serve as a basis for the establishment of these multicolor mouse models, we briefly mention other animal and cellular models (zebrafish, chicken, drosophila, iPSC) that also rely on these constructs. Then, we highlight practical applications of multicolor mouse models to better understand organogenesis at single progenitor scale (clonal analyses) in the brain and briefly in several other tissues (intestine, skin, vascular, hematopoietic and immune systems). In addition, we detail the critical contribution of multicolor fate mapping strategies in apprehending the fine cellular choreography underlying tissue morphogenesis in several models with a particular focus on brain cytoarchitecture in health and diseases. Finally, we present the latest technological advances in multichannel and in-depth imaging, and automated analyses that enable to better exploit the large amount of data generated from multicolored tissues.
Collapse
|
34
|
Bohl B, Jabali A, Ladewig J, Koch P. Asymmetric Notch activity by differential inheritance of lysosomes in human neural stem cells. SCIENCE ADVANCES 2022; 8:eabl5792. [PMID: 35148180 PMCID: PMC8836802 DOI: 10.1126/sciadv.abl5792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Symmetric and asymmetric cell divisions are conserved strategies for stem cell expansion and the generation of more committed progeny, respectively. Here, we demonstrate that in human neural stem cells (NSCs), lysosomes are asymmetrically inherited during mitosis. We show that lysosomes contain Notch receptors and that Notch activation occurs the acidic lysosome environment. The lysosome asymmetry correlates with the expression of the Notch target gene HES1 and the activity of Notch signaling in the daughter cells. Furthermore, an asymmetry of lysosomes and Notch receptors was also observed in a human organoid model of brain development with mitotic figures showing preferential inheritance of lysosomes and Notch receptor in that daughter cell remaining attached to the apical membrane. Thus, this study suggests a previously unknown function of lysosomes as a signaling hub to establish a bias in Notch signaling activity between daughter cells after an asymmetric cell division of human NSCs.
Collapse
Affiliation(s)
- Bettina Bohl
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ammar Jabali
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Julia Ladewig
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Philipp Koch
- Department of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ) , Heidelberg, Germany
| |
Collapse
|
35
|
Belmonte-Mateos C, Pujades C. From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Front Neurosci 2022; 15:781160. [PMID: 35046768 PMCID: PMC8761814 DOI: 10.3389/fnins.2021.781160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) exhibits an extraordinary diversity of neurons, with the right cell types and proportions at the appropriate sites. Thus, to produce brains with specific size and cell composition, the rates of proliferation and differentiation must be tightly coordinated and balanced during development. Early on, proliferation dominates; later on, the growth rate almost ceases as more cells differentiate and exit the cell cycle. Generation of cell diversity and morphogenesis takes place concomitantly. In the vertebrate brain, this results in dramatic changes in the position of progenitor cells and their neuronal derivatives, whereas in the spinal cord morphogenetic changes are not so important because the structure mainly grows by increasing its volume. Morphogenesis is under control of specific genetic programs that coordinately unfold over time; however, little is known about how they operate and impact in the pools of progenitor cells in the CNS. Thus, the spatiotemporal coordination of these processes is fundamental for generating functional neuronal networks. Some key aims in developmental neurobiology are to determine how cell diversity arises from pluripotent progenitor cells, and how the progenitor potential changes upon time. In this review, we will share our view on how the advance of new technologies provides novel data that challenge some of the current hypothesis. We will cover some of the latest studies on cell lineage tracing and clonal analyses addressing the role of distinct progenitor cell division modes in balancing the rate of proliferation and differentiation during brain morphogenesis. We will discuss different hypothesis proposed to explain how progenitor cell diversity is generated and how they challenged prevailing concepts and raised new questions.
Collapse
Affiliation(s)
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
36
|
Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022; 27:422-435. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.
Collapse
|
37
|
Ho S, Lajaunie R, Lerat M, Le M, Crépel V, Loulier K, Livet J, Kessler JP, Marcaggi P. A stable proportion of Purkinje cell inputs from parallel fibers are silent during cerebellar maturation. Proc Natl Acad Sci U S A 2021; 118:e2024890118. [PMID: 34740966 PMCID: PMC8609448 DOI: 10.1073/pnas.2024890118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Cerebellar Purkinje neurons integrate information transmitted at excitatory synapses formed by granule cells. Although these synapses are considered essential sites for learning, most of them appear not to transmit any detectable electrical information and have been defined as silent. It has been proposed that silent synapses are required to maximize information storage capacity and ensure its reliability, and hence to optimize cerebellar operation. Such optimization is expected to occur once the cerebellar circuitry is in place, during its maturation and the natural and steady improvement of animal agility. We therefore investigated whether the proportion of silent synapses varies over this period, from the third to the sixth postnatal week in mice. Selective expression of a calcium indicator in granule cells enabled quantitative mapping of presynaptic activity, while postsynaptic responses were recorded by patch clamp in acute slices. Through this approach and the assessment of two anatomical features (the distance that separates adjacent planar Purkinje dendritic trees and the synapse density), we determined the average excitatory postsynaptic potential per synapse. Its value was four to eight times smaller than responses from paired recorded detectable connections, consistent with over 70% of synapses being silent. These figures remained remarkably stable across maturation stages. According to the proposed role for silent synapses, our results suggest that information storage capacity and reliability are optimized early during cerebellar maturation. Alternatively, silent synapses may have roles other than adjusting the information storage capacity and reliability.
Collapse
Affiliation(s)
- Shu Ho
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France
| | - Rebecca Lajaunie
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Marion Lerat
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Mickaël Le
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Crépel
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Jean-Pierre Kessler
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille 13288, France
| | - Païkan Marcaggi
- Aix-Marseille Université, INSERM, INMED, Marseille 13009, France;
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
- Unité de Neurobiologie des Canaux Ioniques et de la Synapse, UMR 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| |
Collapse
|
38
|
Li Y, Walker LA, Zhao Y, Edwards EM, Michki NS, Cheng HPJ, Ghazzi M, Chen TY, Chen M, Roossien DH, Cai D. Bitbow Enables Highly Efficient Neuronal Lineage Tracing and Morphology Reconstruction in Single Drosophila Brains. Front Neural Circuits 2021; 15:732183. [PMID: 34744636 PMCID: PMC8564373 DOI: 10.3389/fncir.2021.732183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the cellular origins and mapping the dendritic and axonal arbors of neurons have been century old quests to understand the heterogeneity among these brain cells. Current Brainbow based transgenic animals take the advantage of multispectral labeling to differentiate neighboring cells or lineages, however, their applications are limited by the color capacity. To improve the analysis throughput, we designed Bitbow, a digital format of Brainbow which exponentially expands the color palette to provide tens of thousands of spectrally resolved unique labels. We generated transgenic Bitbow Drosophila lines, established statistical tools, and streamlined sample preparation, image processing, and data analysis pipelines to conveniently mapping neural lineages, studying neuronal morphology and revealing neural network patterns with unprecedented speed, scale, and resolution.
Collapse
Affiliation(s)
- Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Logan A Walker
- Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States
| | - Yimeng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Erica M Edwards
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Nigel S Michki
- Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States
| | - Hon Pong Jimmy Cheng
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Marya Ghazzi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Tiffany Y Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Maggie Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Douglas H Roossien
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
39
|
Endo M, Maruoka H, Okabe S. Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Front Neuroanat 2021; 15:757499. [PMID: 34803616 PMCID: PMC8595196 DOI: 10.3389/fnana.2021.757499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The neural network in the brain can be viewed as an integrated system assembled from a large number of local neural circuits specialized for particular brain functions. Activities of neurons in local neural circuits are thought to be organized both spatially and temporally under the rules optimized for their roles in information processing. It is well perceived that different areas of the mammalian neocortex have specific cognitive functions and distinct computational properties. However, the organizational principles of the local neural circuits in different cortical regions have not yet been clarified. Therefore, new research principles and related neuro-technologies that enable efficient and precise recording of large-scale neuronal activities and synaptic connections are necessary. Innovative technologies for structural analysis, including tissue clearing and expansion microscopy, have enabled super resolution imaging of the neural circuits containing thousands of neurons at a single synapse resolution. The imaging resolution and volume achieved by new technologies are beyond the limits of conventional light or electron microscopic methods. Progress in genome editing and related technologies has made it possible to label and manipulate specific cell types and discriminate activities of multiple cell types. These technologies will provide a breakthrough for multiscale analysis of the structure and function of local neural circuits. This review summarizes the basic concepts and practical applications of the emerging technologies and new insight into local neural circuits obtained by these technologies.
Collapse
Affiliation(s)
| | | | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Schwarz MK, Kubitscheck U. Expansion light sheet fluorescence microscopy of extended biological samples: Applications and perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 168:33-36. [PMID: 34626664 DOI: 10.1016/j.pbiomolbio.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/25/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Martin K Schwarz
- Institute Experimental Epileptology and Cognition Research (EECR), University of Bonn Medical School, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| |
Collapse
|
41
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
42
|
Guillot C, Djeffal Y, Michaut A, Rabe B, Pourquié O. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. eLife 2021; 10:64819. [PMID: 34227938 PMCID: PMC8260230 DOI: 10.7554/elife.64819] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
In classical descriptions of vertebrate development, the segregation of the three embryonic germ layers completes by the end of gastrulation. Body formation then proceeds in a head to tail fashion by progressive deposition of lineage-committed progenitors during regression of the primitive streak (PS) and tail bud (TB). The identification by retrospective clonal analysis of a population of neuromesodermal progenitors (NMPs) contributing to both musculoskeletal precursors (paraxial mesoderm) and spinal cord during axis formation challenged these notions. However, classical fate mapping studies of the PS region in amniotes have so far failed to provide direct evidence for such bipotential cells at the single-cell level. Here, using lineage tracing and single-cell RNA sequencing in the chicken embryo, we identify a resident cell population of the anterior PS epiblast, which contributes to neural and mesodermal lineages in trunk and tail. These cells initially behave as monopotent progenitors as classically described and only acquire a bipotential fate later, in more posterior regions. We show that NMPs exhibit a conserved transcriptomic signature during axis elongation but lose their epithelial characteristicsin the TB. Posterior to anterior gradients of convergence speed and ingression along the PS lead to asymmetric exhaustion of PS mesodermal precursor territories. Through limited ingression and increased proliferation, NMPs are maintained and amplified as a cell population which constitute the main progenitors in the TB. Together, our studies provide a novel understanding of the PS and TB contribution through the NMPs to the formation of the body of amniote embryos.
Collapse
Affiliation(s)
- Charlene Guillot
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Yannis Djeffal
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Arthur Michaut
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| | - Brian Rabe
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Harvard Stem Cell Institute, Boston, United States
| |
Collapse
|
43
|
Chadney OMT, Blankvoort S, Grimstvedt JS, Utz A, Kentros CG. Multiplexing viral approaches to the study of the neuronal circuits. J Neurosci Methods 2021; 357:109142. [PMID: 33753126 DOI: 10.1016/j.jneumeth.2021.109142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Neural circuits are composed of multitudes of elaborately interconnected cell types. Understanding neural circuit function requires not only cell-specific knowledge of connectivity, but the ability to record and manipulate distinct cell types independently. Recent advances in viral vectors promise the requisite specificity to perform true "circuit-breaking" experiments. However, such new avenues of multiplexed, cell-specific investigation raise new technical issues: one must ensure that both the viral vectors and their transgene payloads do not overlap with each other in both an anatomical and a functional sense. This review describes benefits and issues regarding the use of viral vectors to analyse the function of neural circuits and provides a resource for the design and implementation of such multiplexing experiments.
Collapse
Affiliation(s)
- Oscar M T Chadney
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway.
| | - Stefan Blankvoort
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Joachim S Grimstvedt
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Annika Utz
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| | - Clifford G Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway.
| |
Collapse
|
44
|
Figueres-Oñate M, Sánchez-González R, López-Mascaraque L. Deciphering neural heterogeneity through cell lineage tracing. Cell Mol Life Sci 2021; 78:1971-1982. [PMID: 33151389 PMCID: PMC7966193 DOI: 10.1007/s00018-020-03689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Understanding how an adult brain reaches an appropriate size and cell composition from a pool of progenitors that proliferates and differentiates is a key question in Developmental Neurobiology. Not only the control of final size but also, the proper arrangement of cells of different embryonic origins is fundamental in this process. Each neural progenitor has to produce a precise number of sibling cells that establish clones, and all these clones will come together to form the functional adult nervous system. Lineage cell tracing is a complex and challenging process that aims to reconstruct the offspring that arise from a single progenitor cell. This tracing can be achieved through strategies based on genetically modified organisms, using either genetic tracers, transfected viral vectors or DNA constructs, and even single-cell sequencing. Combining different reporter proteins and the use of transgenic mice revolutionized clonal analysis more than a decade ago and now, the availability of novel genome editing tools and single-cell sequencing techniques has vastly improved the capacity of lineage tracing to decipher progenitor potential. This review brings together the strategies used to study cell lineages in the brain and the role they have played in our understanding of the functional clonal relationships among neural cells. In addition, future perspectives regarding the study of cell heterogeneity and the ontogeny of different cell lineages will also be addressed.
Collapse
Affiliation(s)
- María Figueres-Oñate
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
- Max Planck Research Unit for Neurogenetics, 60438, Frankfurt am Main, Germany
| | - Rebeca Sánchez-González
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain.
| |
Collapse
|
45
|
Poulin JF, Luppi MP, Hofer C, Caronia G, Hsu PK, Chan CS, Awatramani R. PRISM: A Progenitor-Restricted Intersectional Fate Mapping Approach Redefines Forebrain Lineages. Dev Cell 2021; 53:740-753.e3. [PMID: 32574593 DOI: 10.1016/j.devcel.2020.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/24/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Lineage tracing aims to identify the progeny of a defined population of dividing progenitor cells, a daunting task in the developing central nervous system where thousands of cell types are generated. In mice, lineage analysis has been accomplished using Cre recombinase to indelibly label a defined progenitor population and its progeny. However, the interpretation of historical recombination events is hampered by the fact that driver genes are often expressed in both progenitors and postmitotic cells. Genetically inducible approaches provide temporal specificity but are afflicted by mosaicism and toxicity. Here, we present PRISM, a progenitor-restricted intersectional fate mapping approach in which Flp recombinase expression is both dependent on Cre and restricted to neural progenitors, thus circumventing the aforementioned confounds. This tool can be used in conjunction with existing Cre lines making it broadly applicable. We applied PRISM to resolve two developmentally important, but contentious, lineages-Shh and Cux2.
Collapse
Affiliation(s)
- Jean-François Poulin
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University Montreal, Quebec H3A 0G4, Canada
| | - Milagros Pereira Luppi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Caitlyn Hofer
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Giuliana Caronia
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Pei-Ken Hsu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
46
|
Liang Y, Walczak P. Long term intravital single cell tracking under multiphoton microscopy. J Neurosci Methods 2020; 349:109042. [PMID: 33340557 DOI: 10.1016/j.jneumeth.2020.109042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Visualizing and tracking cells over time in a living organism has been a much-coveted dream before the invention of intravital microscopy. The opaque nature of tissue was a major hurdle that was remedied by the multiphoton microscopy. With the advancement of optical imaging and fluorescent labeling tools, intravital high resolution imaging has become increasingly accessible over the past few years. Long-term intravital tracking of single cells (LIST) under multiphoton microscopy provides a unique opportunity to gain insight into the longitudinal changes in the morphology, migration, or function of cells or subcellular structures. It is particularly suitable for studying slow-evolving cellular and molecular events during normal development or disease progression, without losing the opportunity of catching fast events such as calcium signals. Here, we review the application of LIST under 2-photon microscopy in various fields of neurobiology and discuss challenges and new directions in labeling and imaging methods for LIST. Overall, this review provides an overview of current applications of LIST in mammals, which is an emerging field that will contribute to a better understanding of essential molecular and cellular events in health and disease.
Collapse
Affiliation(s)
- Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
47
|
Fischer E, Morin X. Fate restrictions in embryonic neural progenitors. Curr Opin Neurobiol 2020; 66:178-185. [PMID: 33259983 DOI: 10.1016/j.conb.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The vertebrate central nervous system (CNS) is a fantastically complex organ composed of dozens of cell types within the neural and glial lineages. Its organization is laid down during development, through the localized and sequential production of subsets of neurons with specific identities. The principles and mechanisms that underlie the timely production of adequate classes of cells are only partially understood. Recent advances in molecular profiling describe the developmental trajectories leading to this amazing cellular diversity and provide us with cell atlases of an unprecedented level of precision. Yet, some long-standing questions pertaining to lineage relationships between neural progenitor cells and their differentiated progeny remain unanswered. Here, we discuss questions related to proliferation potential, timing of fate choices and restriction of neuronal output potential of individual CNS progenitors through the lens of lineage relationship. Unlocking methodological barriers will be essential to accurately describe CNS development at a cellular resolution.
Collapse
Affiliation(s)
- Evelyne Fischer
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
48
|
The art of lineage tracing: From worm to human. Prog Neurobiol 2020; 199:101966. [PMID: 33249090 DOI: 10.1016/j.pneurobio.2020.101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Reconstructing the genealogy of every cell that makes up an organism remains a long-standing challenge in developmental biology. Besides its relevance for understanding the mechanisms underlying normal and pathological development, resolving the lineage origin of cell types will be crucial to create these types on-demand. Multiple strategies have been deployed towards the problem of lineage tracing, ranging from direct observation to sophisticated genetic approaches. Here we discuss the achievements and limitations of past and current technology. Finally, we speculate about the future of lineage tracing and how to reach the next milestones in the field.
Collapse
|
49
|
Bares AJ, Mejooli MA, Pender MA, Leddon SA, Tilley S, Lin K, Dong J, Kim M, Fowell DJ, Nishimura N, Schaffer CB. Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally overlapped fluorescent labels. OPTICA 2020; 7:1587-1601. [PMID: 33928182 PMCID: PMC8081374 DOI: 10.1364/optica.389982] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/30/2020] [Indexed: 05/17/2023]
Abstract
The insensitivity of multiphoton microscopy to optical scattering enables high-resolution, high-contrast imaging deep into tissue, including in live animals. Scattering does, however, severely limit the use of spectral dispersion techniques to improve spectral resolution. In practice, this limited spectral resolution together with the need for multiple excitation wavelengths to excite different fluorophores limits multiphoton microscopy to imaging a few, spectrally-distinct fluorescent labels at a time, restricting the complexity of biological processes that can be studied. Here, we demonstrate a hyperspectral multiphoton microscope that utilizes three different wavelength excitation sources together with multiplexed fluorescence emission detection using angle-tuned bandpass filters. This microscope maintains scattering insensitivity, while providing high enough spectral resolution on the emitted fluorescence and capitalizing on the wavelength-dependent nonlinear excitation of fluorescent dyes to enable clean separation of multiple, spectrally overlapping labels, in vivo. We demonstrated the utility of this instrument for spectral separation of closely-overlapped fluorophores in samples containing ten different colors of fluorescent beads, live cells expressing up to seven different fluorescent protein fusion constructs, and in multiple in vivo preparations in mouse cortex and inflamed skin with up to eight different cell types or tissue structures distinguished.
Collapse
Affiliation(s)
- Amanda J. Bares
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Menansili A. Mejooli
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell A. Pender
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Scott A. Leddon
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven Tilley
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Karen Lin
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jingyuan Dong
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minsoo Kim
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J. Fowell
- Center for Vaccine Biology and Immunology, Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nozomi Nishimura
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris B. Schaffer
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
50
|
de Roo JJ, Staal FJ. Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells. Cells 2020; 9:E2264. [PMID: 33050292 PMCID: PMC7599984 DOI: 10.3390/cells9102264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cells (HSCs) develop at several anatomical locations and are thought to undergo different niche regulatory cues originating from highly conserved cell signaling pathways, such as Wnt, Notch, TGF-β family, and Hedgehog signaling. Most insight into these pathways has been obtained by reporter models and loss- or gain of function experiments, yet results differ in many cases according to the approach. In this review, we discuss existing murine reporter models regarding these pathways, considering the genetic constructs and reporter proteins in the context of HSC studies; yet these models are relevant for all other stem cell systems. Lastly, we describe a multi-reporter model to properly study and understand the cross-pathway interaction and how reporter models are highly valuable tools to understand complex signaling dynamics in stem cells.
Collapse
Affiliation(s)
| | - Frank. J.T. Staal
- Department of Immunology, L3-Q, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|