1
|
Manssuer L, Ding Q, Feng Y, Yang R, Liu W, Sun B, Zhan S, Voon V. Reward recalibrates rule representations in human amygdala and hippocampus intracranial recordings. Nat Commun 2024; 15:9518. [PMID: 39496589 PMCID: PMC11535001 DOI: 10.1038/s41467-024-53521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Adaptive behavior requires the ability to shift responding within (intra-dimensional) or between (extra-dimensional) stimulus dimensions when reward contingencies change. Studies of shifting in humans have focused mainly on the prefrontal cortex and/ or have been restricted to indirect measures of neural activity such as fMRI and lesions. Here, we demonstrate the importance of the amygdala and hippocampus by recording local field potentials directly from these regions intracranially in human epilepsy patients. Reward signals were coded in the high frequency gamma activity (HFG; 60-250 Hz) of both regions and synchronised via low frequency (3-5 Hz) phase-locking only after a shift when patients did not already know the rule and it signalled to stop shifting ("Win-Stay"). In contrast, HFG punishment signals were only seen in the amygdala when the rule then changed and it signalled to start shifting ("Lose-Shift"). During decision-making, hippocampal HFG was more inhibited on non-shift relative to shift trials, suggesting a role in preventing interference in rule representation and amygdala HFG was sensitive to stimulus novelty. The findings expand our understanding of human amygdala-hippocampal function and shifting processes, the disruption of which could contribute to shifting deficits in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Luis Manssuer
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Qiong Ding
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Yashu Feng
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ruoqi Yang
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Valerie Voon
- Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom.
- Neural and Intelligence Engineering Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Lee S, Rutishauser U, Gothard KM. Social status as a latent variable in the amygdala of observers of social interactions. Neuron 2024:S0896-6273(24)00658-5. [PMID: 39389051 DOI: 10.1016/j.neuron.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Successful integration into a hierarchical social group requires knowledge of the status of each individual and of the rules that govern social interactions within the group. In species that lack morphological indicators of status, social status can be inferred by observing the signals exchanged between individuals. We simulated social interactions between macaques by juxtaposing videos of aggressive and appeasing displays, where two individuals appeared in each other's line of sight and their displays were timed to suggest the reciprocation of dominant and subordinate signals. Viewers of these videos successfully inferred the social status of the interacting characters. Dominant individuals attracted more social attention from viewers even when they were not engaged in social displays. Neurons in the viewers' amygdala signaled the status of both the attended (fixated) and the unattended individuals, suggesting that in third-party observers of social interactions, the amygdala jointly signals the status of interacting parties.
Collapse
Affiliation(s)
- SeungHyun Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Computation and Neural Systems, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katalin M Gothard
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
3
|
Lim H, Zhang Y, Peters C, Straub T, Mayer JL, Klein R. Genetically- and spatially-defined basolateral amygdala neurons control food consumption and social interaction. Nat Commun 2024; 15:6868. [PMID: 39127719 PMCID: PMC11316773 DOI: 10.1038/s41467-024-50889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The basolateral amygdala (BLA) contains discrete neuronal circuits that integrate positive or negative emotional information and drive the appropriate innate and learned behaviors. Whether these circuits consist of genetically-identifiable and anatomically segregated neuron types, is poorly understood. Also, our understanding of the response patterns and behavioral spectra of genetically-identifiable BLA neurons is limited. Here, we classified 11 glutamatergic cell clusters in mouse BLA and found that several of them were anatomically segregated in lateral versus basal amygdala, and anterior versus posterior regions of the BLA. Two of these BLA subpopulations innately responded to valence-specific, whereas one responded to mixed - aversive and social - cues. Positive-valence BLA neurons promoted normal feeding, while mixed selectivity neurons promoted fear learning and social interactions. These findings enhance our understanding of cell type diversity and spatial organization of the BLA and the role of distinct BLA populations in representing valence-specific and mixed stimuli.
Collapse
Affiliation(s)
- Hansol Lim
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Yue Zhang
- Department Synapses - Circuits - Plasticity, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Christian Peters
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tobias Straub
- Biomedical Center Core Facility Bioinformatics, LMU, Munich, Germany
| | - Johanna Luise Mayer
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Rüdiger Klein
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
4
|
Courellis HS, Valiante TA, Mamelak AN, Adolphs R, Rutishauser U. Neural dynamics underlying minute-timescale persistent behavior in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603717. [PMID: 39071326 PMCID: PMC11275932 DOI: 10.1101/2024.07.16.603717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The ability to pursue long-term goals relies on a representations of task context that can both be maintained over long periods of time and switched flexibly when goals change. Little is known about the neural substrate for such minute-scale maintenance of task sets. Utilizing recordings in neurosurgical patients, we examined how groups of neurons in the human medial frontal cortex and hippocampus represent task contexts. When cued explicitly, task context was encoded in both brain areas and changed rapidly at task boundaries. Hippocampus exhibited a temporally dynamic code with fast decorrelation over time, preventing cross-temporal generalization. Medial frontal cortex exhibited a static code that decorrelated slowly, allowing generalization across minutes of time. When task context needed to be inferred as a latent variable, hippocampus encoded task context with a static code. These findings reveal two possible regimes for encoding minute-scale task-context representations that were engaged differently based on task demands.
Collapse
|
5
|
Lee S, Rutishauser U, Gothard KM. Social Status as a Latent Variable in the Amygdala of Observers of Social Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603487. [PMID: 39071330 PMCID: PMC11275939 DOI: 10.1101/2024.07.15.603487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Successful integration into a hierarchical social group requires knowledge of the status of each individual and of the rules that govern social interactions within the group. In species that lack morphological indicators of status, social status can be inferred by observing the signals exchanged between individuals. We simulated social interactions between macaques by juxtaposing videos of aggressive and appeasing displays where two individuals appeared in each other's line of sight and their displays were timed to suggest the reciprocation of dominant and subordinate signals. Viewers of these videos successfully inferred the social status of the interacting characters. Dominant individuals attracted more social attention from viewers even when they were not engaged in social displays. Neurons in the viewers' amygdala signaled the status of both the attended (fixated) and the unattended individuals suggesting that in third party observers of social interactions, the amygdala signals jointly the status of interacting parties. Highlights Monkeys infer the social status of conspecifics from videos of simulated dyadic interactionsDuring fixations neural populations signal the social status of the attended individualsNeurons in the amygdala jointly encode the status of interacting individuals. In brief Third party-viewers of pairwise dominant-subordinate interactions infer social status from the observed behaviors. Neurons in the amygdala are tuned to the inferred dominant/subordinate status of both individuals.
Collapse
|
6
|
Stoll FM, Rudebeck PH. Preferences reveal dissociable encoding across prefrontal-limbic circuits. Neuron 2024; 112:2241-2256.e8. [PMID: 38640933 PMCID: PMC11223984 DOI: 10.1016/j.neuron.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/04/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in the orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to guide choice behavior. Here, we report that instead of a single integrated valuation system in the OFC, another complementary one is centered in the ventrolateral prefrontal cortex (vlPFC) in macaques. Specifically, we found that the OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into value representations in these areas. In addition, the vlPFC, but not the OFC, represented the probability of receiving the available outcome flavors separately, with the difference between these representations reflecting the degree of preference for each flavor. Thus, both the vlPFC and OFC exhibit dissociable but complementary representations of subjective value, both of which are necessary for decision-making.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience, Lipschultz Center for Cognitive Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Ostojic S, Fusi S. Computational role of structure in neural activity and connectivity. Trends Cogn Sci 2024; 28:677-690. [PMID: 38553340 DOI: 10.1016/j.tics.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 07/05/2024]
Abstract
One major challenge of neuroscience is identifying structure in seemingly disorganized neural activity. Different types of structure have different computational implications that can help neuroscientists understand the functional role of a particular brain area. Here, we outline a unified approach to characterize structure by inspecting the representational geometry and the modularity properties of the recorded activity and show that a similar approach can also reveal structure in connectivity. We start by setting up a general framework for determining geometry and modularity in activity and connectivity and relating these properties with computations performed by the network. We then use this framework to review the types of structure found in recent studies of model networks performing three classes of computations.
Collapse
Affiliation(s)
- Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005 Paris, France.
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Aucoin A, Lin KK, Gothard KM. Detection of latent brain states from baseline neural activity in the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598974. [PMID: 38915563 PMCID: PMC11195171 DOI: 10.1101/2024.06.14.598974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The amygdala responds to a large variety of socially and emotionally salient environmental and interoceptive stimuli. The context in which these stimuli occur determines their social and emotional significance. In canonical neurophysiological studies, the fast-paced succession of stimuli and events induce phasic changes in neural activity. During inter-trial intervals neural activity is expected to return to a stable and relatively featureless baseline. Context, such as the presence of a social partner, or the similarity of trials in a blocked design, induces brain states that can transcend the fast-paced succession of stimuli and can be recovered from the baseline firing rate of neurons. Indeed, the baseline firing rates of neurons in the amygdala change between blocks of trials of gentle grooming touch, delivered by a trusted social partner, and non-social airflow stimuli, delivered by a computer-controlled air valve. In this experimental paradigm, the presence of the groomer alone was sufficient to induce small but significant changes in baseline firing rates. Here, we examine local field potentials (LFP) recorded during these baseline periods to determine whether context was encoded by network dynamics that emerge in the local field potentials from the activity of large ensembles of neurons. We found that machine learning techniques can reliably decode social vs. non-social context from spectrograms of baseline local field potentials. Notably, decoding accuracy improved significantly with access to broad-band information. No significant differences were detected between the nuclei of the amygdala that receive direct or indirect inputs from areas of the prefrontal cortex known to coordinate flexible, context-dependent behaviors. The lack of nuclear specificity suggests that context-related synaptic inputs arise from a shared source, possibly interoceptive inputs that signal the sympathetic- vs. parasympathetic-dominated states characterizing non-social and social blocks, respectively.
Collapse
Affiliation(s)
- Alexa Aucoin
- Program in Applied Mathematics, University of Arizona
| | - Kevin K Lin
- Program in Applied Mathematics, University of Arizona
- Department of Mathematics, University of Arizona
| | | |
Collapse
|
9
|
O'Neill PK, Posani L, Meszaros J, Warren P, Schoonover CE, Fink AJP, Fusi S, Salzman CD. The representational geometry of emotional states in basolateral amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.558668. [PMID: 37790470 PMCID: PMC10542536 DOI: 10.1101/2023.09.23.558668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Sensory stimuli associated with aversive outcomes cause multiple behavioral responses related to an animal's evolving emotional state, but neural mechanisms underlying these processes remain unclear. Here aversive stimuli were presented to mice, eliciting two responses reflecting fear and flight to safety: tremble and ingress into a virtual burrow. Inactivation of basolateral amygdala (BLA) eliminated differential responses to aversive and neutral stimuli without eliminating responses themselves, suggesting BLA signals valence, not motor commands. However, two-photon imaging revealed that neurons typically exhibited mixed selectivity for stimulus identity, valence, tremble and/or ingress. Despite heterogeneous selectivity, BLA representational geometry was lower-dimensional when encoding valence, tremble and safety, enabling generalization of emotions across conditions. Further, tremble and valence coding directions were orthogonal, allowing linear readouts to specialize. Thus BLA representational geometry confers two computational properties that identify specialized neural circuits encoding variables describing emotional states: generalization across conditions, and readouts lacking interference from other readouts.
Collapse
|
10
|
Bellet ME, Gay M, Bellet J, Jarraya B, Dehaene S, van Kerkoerle T, Panagiotaropoulos TI. Spontaneously emerging internal models of visual sequences combine abstract and event-specific information in the prefrontal cortex. Cell Rep 2024; 43:113952. [PMID: 38483904 DOI: 10.1016/j.celrep.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/06/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
When exposed to sensory sequences, do macaque monkeys spontaneously form abstract internal models that generalize to novel experiences? Here, we show that neuronal populations in macaque ventrolateral prefrontal cortex jointly encode visual sequences by separate codes for the specific pictures presented and for their abstract sequential structure. We recorded prefrontal neurons while macaque monkeys passively viewed visual sequences and sequence mismatches in the local-global paradigm. Even without any overt task or response requirements, prefrontal populations spontaneously form representations of sequence structure, serial order, and image identity within distinct but superimposed neuronal subspaces. Representations of sequence structure rapidly update following single exposure to a mismatch sequence, while distinct populations represent mismatches for sequences of different complexity. Finally, those representations generalize across sequences following the same repetition structure but comprising different images. These results suggest that prefrontal populations spontaneously encode rich internal models of visual sequences reflecting both content-specific and abstract information.
Collapse
Affiliation(s)
- Marie E Bellet
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.
| | - Marion Gay
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Joachim Bellet
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Université Paris-Saclay, UVSQ, Versailles, France; Neuromodulation Pole, Foch Hospital, Suresnes, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), Paris, France
| | - Timo van Kerkoerle
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Department of Neurophysics, Donders Center for Neuroscience, Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Center, Rijswijk, the Netherlands
| | | |
Collapse
|
11
|
Patel RR, Patarino M, Kim K, Pamintuan R, Taschbach FH, Li H, Lee CR, van Hoek A, Castro R, Cazares C, Miranda RL, Jia C, Delahanty J, Batra K, Keyes LR, Libster A, Wichmann R, Pereira TD, Benna MK, Tye KM. Social isolation recruits amygdala-cortical circuitry to escalate alcohol drinking. RESEARCH SQUARE 2024:rs.3.rs-4033115. [PMID: 38562728 PMCID: PMC10984017 DOI: 10.21203/rs.3.rs-4033115/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
How do social factors impact the brain and contribute to increased alcohol drinking? We found that social rank predicts alcohol drinking, where subordinates drink more than dominants. Furthermore, social isolation escalates alcohol drinking, particularly impacting subordinates who display a greater increase in alcohol drinking compared to dominants. Using cellular resolution calcium imaging, we show that the basolateral amygdala-medial prefrontal cortex (BLA-mPFC) circuit predicts alcohol drinking in a rank-dependent manner, unlike non-specific BLA activity. The BLA-mPFC circuit becomes hyperexcitable during social isolation, detecting social isolation states. Mimicking the observed increases in BLA-mPFC activity using optogenetics was sufficient to increase alcohol drinking, suggesting the BLA-mPFC circuit may be a neural substrate for the negative impact of social isolation. To test the hypothesis that the BLA-mPFC circuit conveys a signal induced by social isolation to motivate alcohol consumption, we first determined if this circuit detects social information. Leveraging optogenetics in combination with calcium imaging and computer vision pose tracking, we found that BLA-mPFC circuitry governs social behavior and neural representation of social contact. We further show that BLA-mPFC stimulation mimics social isolation-induced mPFC encoding of sucrose and alcohol, and inhibition of the BLA-mPFC circuit decreases alcohol drinking following social isolation. Collectively, these data suggest the amygdala-cortical circuit mirrors a neural encoding state similar to social isolation and underlies social isolation-associated alcohol drinking.
Collapse
Affiliation(s)
- Reesha R. Patel
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Psychiatric Neuroscience, Northwestern University, Chicago, IL, USA
| | | | - Kelly Kim
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes at Salk Institute, La Jolla, CA, USA
| | | | - Felix H. Taschbach
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Hao Li
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Psychiatric Neuroscience, Northwestern University, Chicago, IL, USA
| | - Christopher R. Lee
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Aniek van Hoek
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rogelio Castro
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | | | - Raymundo L. Miranda
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Caroline Jia
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | | | - Kanha Batra
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Laurel R. Keyes
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes at Salk Institute, La Jolla, CA, USA
| | - Avraham Libster
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
| | - Romy Wichmann
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA
- University of California San Diego, La Jolla, CA, USA
- Howard Hughes at Salk Institute, La Jolla, CA, USA
- Howard Hughes Investigator and Wylie Vale Professor at Salk Institute, La Jolla, CA, USA
- Kavli Institute for the Brain and Mind, La Jolla, CA, USA
| |
Collapse
|
12
|
Giacometti C, Autran-Clavagnier D, Dureux A, Viñales L, Lamberton F, Procyk E, Wilson CRE, Amiez C, Hadj-Bouziane F. Differential functional organization of amygdala-medial prefrontal cortex networks in macaque and human. Commun Biol 2024; 7:269. [PMID: 38443489 PMCID: PMC10914752 DOI: 10.1038/s42003-024-05918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Over the course of evolution, the amygdala (AMG) and medial frontal cortex (mPFC) network, involved in behavioral adaptation, underwent structural changes in the old-world monkey and human lineages. Yet, whether and how the functional organization of this network differs remains poorly understood. Using resting-state functional magnetic resonance imagery, we show that the functional connectivity (FC) between AMG nuclei and mPFC regions differs between humans and awake macaques. In humans, the AMG-mPFC FC displays U-shaped pattern along the corpus callosum: a positive FC with the ventromedial prefrontal (vmPFC) and anterior cingulate cortex (ACC), a negative FC with the anterior mid-cingulate cortex (MCC), and a positive FC with the posterior MCC. Conversely, in macaques, the negative FC shifted more ventrally at the junction between the vmPFC and the ACC. The functional organization divergence of AMG-mPFC network between humans and macaques might help understanding behavioral adaptation abilities differences in their respective socio-ecological niches.
Collapse
Affiliation(s)
- Camille Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Delphine Autran-Clavagnier
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
- Inovarion, 75005, Paris, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL); Université Lyon 1, 69500, Bron, France
| | - Laura Viñales
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Franck Lamberton
- La Structure Fédérative de Recherche Santé Lyon-Est, CNRS UAR 3453, INSERM US7, Lyon 1 University, 69008, Lyon, France
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), 69677, Bron, France
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL); Université Lyon 1, 69500, Bron, France.
| |
Collapse
|
13
|
Sharma KK, Diltz MA, Lincoln T, Albuquerque ER, Romanski LM. Neuronal Population Encoding of Identity in Primate Prefrontal Cortex. J Neurosci 2024; 44:e0703232023. [PMID: 37963766 PMCID: PMC10860606 DOI: 10.1523/jneurosci.0703-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
The ventrolateral prefrontal cortex (VLPFC) shows robust activation during the perception of faces and voices. However, little is known about what categorical features of social stimuli drive neural activity in this region. Since perception of identity and expression are critical social functions, we examined whether neural responses to naturalistic stimuli were driven by these two categorical features in the prefrontal cortex. We recorded single neurons in the VLPFC, while two male rhesus macaques (Macaca mulatta) viewed short audiovisual videos of unfamiliar conspecifics making expressions of aggressive, affiliative, and neutral valence. Of the 285 neurons responsive to the audiovisual stimuli, 111 neurons had a main effect (two-way ANOVA) of identity, expression, or their interaction in their stimulus-related firing rates; however, decoding of expression and identity using single-unit firing rates rendered poor accuracy. Interestingly, when decoding from pseudo-populations of recorded neurons, the accuracy for both expression and identity increased with population size, suggesting that the population transmitted information relevant to both variables. Principal components analysis of mean population activity across time revealed that population responses to the same identity followed similar trajectories in the response space, facilitating segregation from other identities. Our results suggest that identity is a critical feature of social stimuli that dictates the structure of population activity in the VLPFC, during the perception of vocalizations and their corresponding facial expressions. These findings enhance our understanding of the role of the VLPFC in social behavior.
Collapse
Affiliation(s)
- K K Sharma
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| | - M A Diltz
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| | - T Lincoln
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| | - E R Albuquerque
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| | - L M Romanski
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| |
Collapse
|
14
|
Barbosa J, Proville R, Rodgers CC, DeWeese MR, Ostojic S, Boubenec Y. Early selection of task-relevant features through population gating. Nat Commun 2023; 14:6837. [PMID: 37884507 PMCID: PMC10603060 DOI: 10.1038/s41467-023-42519-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is believed to rely on a progressive selection of task-relevant stimuli across the cortical hierarchy, but the specific across-area interactions enabling stimulus selection are still unclear. Here, we propose that population gating, occurring within primary auditory cortex (A1) but controlled by top-down inputs from prelimbic region of medial prefrontal cortex (mPFC), can support across-area stimulus selection. Examining single-unit activity recorded while rats performed an auditory context-dependent task, we found that A1 encoded relevant and irrelevant stimuli along a common dimension of its neural space. Yet, the relevant stimulus encoding was enhanced along an extra dimension. In turn, mPFC encoded only the stimulus relevant to the ongoing context. To identify candidate mechanisms for stimulus selection within A1, we reverse-engineered low-rank RNNs trained on a similar task. Our analyses predicted that two context-modulated neural populations gated their preferred stimulus in opposite contexts, which we confirmed in further analyses of A1. Finally, we show in a two-region RNN how population gating within A1 could be controlled by top-down inputs from PFC, enabling flexible across-area communication despite fixed inter-areal connectivity.
Collapse
Affiliation(s)
- Joao Barbosa
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France.
| | - Rémi Proville
- Tailored Data Solutions, 192 Cours Gambetta, 84300, Cavaillon, France
| | - Chris C Rodgers
- Department of Neurosurgery, Emory University, Atlanta, GA, 30033, USA
| | - Michael R DeWeese
- Department of Physics, Helen Wills Neuroscience Institute, and Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005, Paris, France
| | - Yves Boubenec
- Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure PSL Research University, CNRS, Paris, France
| |
Collapse
|
15
|
Giacometti C, Amiez C, Hadj-Bouziane F. Multiple routes of communication within the amygdala-mPFC network: A comparative approach in humans and macaques. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100103. [PMID: 37601951 PMCID: PMC10432920 DOI: 10.1016/j.crneur.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 08/22/2023] Open
Abstract
The network formed by the amygdala (AMG) and the medial Prefrontal Cortex (mPFC), at the interface between our internal and external environment, has been shown to support some important aspects of behavioral adaptation. Whether and how the anatomo-functional organization of this network evolved across primates remains unclear. Here, we compared AMG nuclei morphological characteristics and their functional connectivity with the mPFC in humans and macaques to identify potential homologies and differences between these species. Based on selected studies, we highlight two subsystems within the AMG-mPFC circuits, likely involved in distinct temporal dynamics of integration during behavioral adaptation. We also show that whereas the mPFC displays a large expansion but a preserved intrinsic anatomo-functional organization, the AMG displays a volume reduction and morphological changes related to specific nuclei. We discuss potential commonalities and differences in the dialogue between AMG nuclei and mPFC in humans and macaques based on available data.
Collapse
Affiliation(s)
- C. Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - C. Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - F. Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), University of Lyon 1, Lyon, France
| |
Collapse
|
16
|
Heald JB, Wolpert DM, Lengyel M. The Computational and Neural Bases of Context-Dependent Learning. Annu Rev Neurosci 2023; 46:233-258. [PMID: 36972611 PMCID: PMC10348919 DOI: 10.1146/annurev-neuro-092322-100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Flexible behavior requires the creation, updating, and expression of memories to depend on context. While the neural underpinnings of each of these processes have been intensively studied, recent advances in computational modeling revealed a key challenge in context-dependent learning that had been largely ignored previously: Under naturalistic conditions, context is typically uncertain, necessitating contextual inference. We review a theoretical approach to formalizing context-dependent learning in the face of contextual uncertainty and the core computations it requires. We show how this approach begins to organize a large body of disparate experimental observations, from multiple levels of brain organization (including circuits, systems, and behavior) and multiple brain regions (most prominently the prefrontal cortex, the hippocampus, and motor cortices), into a coherent framework. We argue that contextual inference may also be key to understanding continual learning in the brain. This theory-driven perspective places contextual inference as a core component of learning.
Collapse
Affiliation(s)
- James B Heald
- Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; ,
| | - Daniel M Wolpert
- Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; ,
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom;
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom;
- Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
17
|
Zhou S, Seay M, Taxidis J, Golshani P, Buonomano DV. Multiplexing working memory and time in the trajectories of neural networks. Nat Hum Behav 2023; 7:1170-1184. [PMID: 37081099 PMCID: PMC10913811 DOI: 10.1038/s41562-023-01592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Working memory (WM) and timing are generally considered distinct cognitive functions, but similar neural signatures have been implicated in both. To explore the hypothesis that WM and timing may rely on shared neural mechanisms, we used psychophysical tasks that contained either task-irrelevant timing or WM components. In both cases, the task-irrelevant component influenced performance. We then developed recurrent neural network (RNN) simulations that revealed that cue-specific neural sequences, which multiplexed WM and time, emerged as the dominant regime that captured the behavioural findings. During training, RNN dynamics transitioned from low-dimensional ramps to high-dimensional neural sequences, and depending on task requirements, steady-state or ramping activity was also observed. Analysis of RNN structure revealed that neural sequences relied primarily on inhibitory connections, and could survive the deletion of all excitatory-to-excitatory connections. Our results indicate that in some instances WM is encoded in time-varying neural activity because of the importance of predicting when WM will be used.
Collapse
Affiliation(s)
- Shanglin Zhou
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael Seay
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Jiannis Taxidis
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Semel Institute for Neuroscience and Behavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
- West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Dean V Buonomano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Stoll FM, Rudebeck PH. Preferences reveal separable valuation systems in prefrontal-limbic circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540239. [PMID: 37214895 PMCID: PMC10197711 DOI: 10.1101/2023.05.10.540239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to drive choice behavior. Here we report that instead of a single integrated valuation system in OFC, another separate one is centered in ventrolateral prefrontal cortex (vlPFC) in macaque monkeys. Specifically, we found that OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into these two aspects of subjective valuation. In addition, vlPFC, but not OFC, represented the outcome probability for the two options separately, with the difference between these representations reflecting the degree of preference. Thus, there are at least two separable valuation systems that work in concert to guide choices and that both are biased by preferences.
Collapse
Affiliation(s)
- Frederic M Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Peter H Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
19
|
Xiao C, Wei J, Zhang GW, Tao C, Huang JJ, Shen L, Wickersham IR, Tao HW, Zhang LI. Glutamatergic and GABAergic neurons in pontine central gray mediate opposing valence-specific behaviors through a global network. Neuron 2023; 111:1486-1503.e7. [PMID: 36893756 PMCID: PMC10164086 DOI: 10.1016/j.neuron.2023.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Extracting the valence of environmental cues is critical for animals' survival. How valence in sensory signals is encoded and transformed to produce distinct behavioral responses remains not well understood. Here, we report that the mouse pontine central gray (PCG) contributes to encoding both negative and positive valences. PCG glutamatergic neurons were activated selectively by aversive, but not reward, stimuli, whereas its GABAergic neurons were preferentially activated by reward signals. The optogenetic activation of these two populations resulted in avoidance and preference behavior, respectively, and was sufficient to induce conditioned place aversion/preference. Suppression of them reduced sensory-induced aversive and appetitive behaviors, respectively. These two functionally opponent populations, receiving a broad range of inputs from overlapping yet distinct sources, broadcast valence-specific information to a distributed brain network with distinguishable downstream effectors. Thus, PCG serves as a critical hub to process positive and negative valences of incoming sensory signals and drive valence-specific behaviors with distinct circuits.
Collapse
Affiliation(s)
- Cuiyu Xiao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinxing Wei
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Can Tao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biological and Biomedical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Shen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
20
|
Joyce MKP, Wang J, Barbas H. Subgenual and Hippocampal Pathways in Amygdala Are Set to Balance Affect and Context Processing. J Neurosci 2023; 43:3061-3080. [PMID: 36977583 PMCID: PMC10146557 DOI: 10.1523/jneurosci.2066-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The amygdala, hippocampus, and subgenual cortex area 25 (A25) are engaged in complex cognitive-emotional processes. Yet pathway interactions from hippocampus and A25 with postsynaptic sites in amygdala remain largely unknown. In rhesus monkeys of both sexes, we studied with neural tracers how pathways from A25 and hippocampus interface with excitatory and inhibitory microcircuits in amygdala at multiple scales. We found that both hippocampus and A25 innervate distinct as well as overlapping sites of the basolateral (BL) amygdalar nucleus. Unique hippocampal pathways heavily innervated the intrinsic paralaminar basolateral nucleus, which is associated with plasticity. In contrast, orbital A25 preferentially innervated another intrinsic network, the intercalated masses, an inhibitory reticulum that gates amygdalar autonomic output and inhibits fear-related behaviors. Finally, using high-resolution confocal and electron microscopy (EM), we found that among inhibitory postsynaptic targets in BL, both hippocampal and A25 pathways preferentially formed synapses with calretinin (CR) neurons, which are known for disinhibition and may enhance excitatory drive in the amygdala. Among other inhibitory postsynaptic sites, A25 pathways innervated the powerful parvalbumin (PV) neurons which may flexibly regulate the gain of neuronal assemblies in the BL that affect the internal state. In contrast, hippocampal pathways innervated calbindin (CB) inhibitory neurons, which modulate specific excitatory inputs for processing context and learning correct associations. Common and unique patterns of innervation in amygdala by hippocampus and A25 have implications for how complex cognitive and emotional processes may be selectively disrupted in psychiatric disorders.SIGNIFICANCE STATEMENT The hippocampus, subgenual A25, and amygdala are associated with learning, memory, and emotions. We found that A25 is poised to affect diverse amygdalar processes, from emotional expression to fear learning by innervating the basal complex and the intrinsic intercalated masses. Hippocampal pathways uniquely interacted with another intrinsic amygdalar nucleus which is associated with plasticity, suggesting flexible processing of signals in context for learning. In the basolateral (BL) amygdala, which has a role in fear learning, both hippocampal and A25 interacted preferentially with disinhibitory neurons, suggesting a boost in excitation. The two pathways diverged in innervating other classes of inhibitory neurons, suggesting circuit specificities that could become perturbed in psychiatric diseases.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 022152
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, Massachusetts 02118
| | - Jingyi Wang
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 022152
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 022152
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, Massachusetts 02118
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
21
|
Maeda K, Inoue KI, Takada M, Hikosaka O. Environmental context-dependent activation of dopamine neurons via putative amygdala-nigra pathway in macaques. Nat Commun 2023; 14:2282. [PMID: 37085491 PMCID: PMC10121604 DOI: 10.1038/s41467-023-37584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Seeking out good and avoiding bad objects is critical for survival. In practice, objects are rarely good every time or everywhere, but only at the right time or place. Whereas the basal ganglia (BG) are known to mediate goal-directed behavior, for example, saccades to rewarding objects, it remains unclear how such simple behaviors are rendered contingent on higher-order factors, including environmental context. Here we show that amygdala neurons are sensitive to environments and may regulate putative dopamine (DA) neurons via an inhibitory projection to the substantia nigra (SN). In male macaques, we combined optogenetics with multi-channel recording to demonstrate that rewarding environments induce tonic firing changes in DA neurons as well as phasic responses to rewarding events. These responses may be mediated by disinhibition via a GABAergic projection onto DA neurons, which in turn is suppressed by an inhibitory projection from the amygdala. Thus, the amygdala may provide an additional source of learning to BG circuits, namely contingencies imposed by the environment.
Collapse
Affiliation(s)
- Kazutaka Maeda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, and Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Fraser KM, Janak PH. Basolateral amygdala and orbitofrontal cortex, but not dorsal hippocampus, are necessary for the control of reward-seeking by occasion setters. Psychopharmacology (Berl) 2023; 240:623-635. [PMID: 36056949 PMCID: PMC9931670 DOI: 10.1007/s00213-022-06227-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Reward-seeking in the world is driven by cues that can have ambiguous predictive and motivational value. To produce adaptive, flexible reward-seeking, it is necessary to exploit occasion setters, other distinct features in the environment, to resolve the ambiguity of Pavlovian reward-paired cues. Despite this, very little research has investigated the neurobiological underpinnings of occasion setting, and as a result little is known about which brain regions are critical for occasion setting. To address this, we exploited a recently developed task that was amenable to neurobiological inquiry where a conditioned stimulus is only predictive of reward delivery if preceded in time by the non-overlapping presentation of a separate cue-an occasion setter. This task required male rats to maintain and link cue-triggered expectations across time to produce adaptive reward-seeking. We interrogated the contributions of the basolateral amygdala and orbitofrontal cortex to occasion setting as these regions are thought to be critical for the computation and exploitation of state value, respectively. Reversible inactivation of either structure prior to the occasion-setting task resulted in a profound inability of rats to use the occasion setter to guide reward-seeking. In contrast, inactivation of the dorsal hippocampus, a region fundamental for context-specific responding was without effect nor did inactivation of the basolateral amygdala or orbitofrontal cortex in a standard Pavlovian conditioning preparation affect conditioned responding. We conclude that neural activity within the orbitofrontal cortex and basolateral amygdala circuit is necessary to update and resolve ambiguity in the environment to promote cue-driven reward-seeking.
Collapse
Affiliation(s)
- Kurt M Fraser
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| | - Patricia H Janak
- Department of Psychological & Brain Sciences, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
23
|
Beiran M, Meirhaeghe N, Sohn H, Jazayeri M, Ostojic S. Parametric control of flexible timing through low-dimensional neural manifolds. Neuron 2023; 111:739-753.e8. [PMID: 36640766 PMCID: PMC9992137 DOI: 10.1016/j.neuron.2022.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023]
Abstract
Biological brains possess an unparalleled ability to adapt behavioral responses to changing stimuli and environments. How neural processes enable this capacity is a fundamental open question. Previous works have identified two candidate mechanisms: a low-dimensional organization of neural activity and a modulation by contextual inputs. We hypothesized that combining the two might facilitate generalization and adaptation in complex tasks. We tested this hypothesis in flexible timing tasks where dynamics play a key role. Examining trained recurrent neural networks, we found that confining the dynamics to a low-dimensional subspace allowed tonic inputs to parametrically control the overall input-output transform, enabling generalization to novel inputs and adaptation to changing conditions. Reverse-engineering and theoretical analyses demonstrated that this parametric control relies on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds while preserving their geometry. Comparisons with data from behaving monkeys confirmed the behavioral and neural signatures of this mechanism.
Collapse
Affiliation(s)
- Manuel Beiran
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL University, 75005 Paris, France; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, Marseille 13005, France
| | - Hansem Sohn
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL University, 75005 Paris, France.
| |
Collapse
|
24
|
Martin AB, Cardenas MA, Andersen RK, Bowman AI, Hillier EA, Bensmaia S, Fuglevand AJ, Gothard KM. A context-dependent switch from sensing to feeling in the primate amygdala. Cell Rep 2023; 42:112056. [PMID: 36724071 PMCID: PMC10430631 DOI: 10.1016/j.celrep.2023.112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/07/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
The skin transmits affective signals that integrate into our social vocabulary. As the socio-affective aspects of touch are likely processed in the amygdala, we compare neural responses to social grooming and gentle airflow recorded from the amygdala and the primary somatosensory cortex of non-human primates. Neurons in the somatosensory cortex respond to both types of tactile stimuli. In the amygdala, however, neurons do not respond to individual grooming sweeps even though grooming elicits autonomic states indicative of positive affect. Instead, many show changes in baseline firing rates that persist throughout the grooming bout. Such baseline fluctuations are attributed to social context because the presence of the groomer alone can account for the observed changes in baseline activity. It appears, therefore, that during grooming, the amygdala stops responding to external inputs on a short timescale but remains responsive to social context (or the associated affective states) on longer time scales.
Collapse
Affiliation(s)
- Anne B Martin
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Michael A Cardenas
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Rose K Andersen
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Archer I Bowman
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Elizabeth A Hillier
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, the University of Chicago, Chicago, IL, USA
| | - Andrew J Fuglevand
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA
| | - Katalin M Gothard
- Department of Physiology and Neuroscience, the University of Arizona, College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
25
|
Recurrent networks endowed with structural priors explain suboptimal animal behavior. Curr Biol 2023; 33:622-638.e7. [PMID: 36657448 DOI: 10.1016/j.cub.2022.12.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023]
Abstract
The strategies found by animals facing a new task are determined both by individual experience and by structural priors evolved to leverage the statistics of natural environments. Rats quickly learn to capitalize on the trial sequence correlations of two-alternative forced choice (2AFC) tasks after correct trials but consistently deviate from optimal behavior after error trials. To understand this outcome-dependent gating, we first show that recurrent neural networks (RNNs) trained in the same 2AFC task outperform rats as they can readily learn to use across-trial information both after correct and error trials. We hypothesize that, although RNNs can optimize their behavior in the 2AFC task without any a priori restrictions, rats' strategy is constrained by a structural prior adapted to a natural environment in which rewarded and non-rewarded actions provide largely asymmetric information. When pre-training RNNs in a more ecological task with more than two possible choices, networks develop a strategy by which they gate off the across-trial evidence after errors, mimicking rats' behavior. Population analyses show that the pre-trained networks form an accurate representation of the sequence statistics independently of the outcome in the previous trial. After error trials, gating is implemented by a change in the network dynamics that temporarily decouple the categorization of the stimulus from the across-trial accumulated evidence. Our results suggest that the rats' suboptimal behavior reflects the influence of a structural prior that reacts to errors by isolating the network decision dynamics from the context, ultimately constraining the performance in a 2AFC laboratory task.
Collapse
|
26
|
De Martino B, Cortese A. Goals, usefulness and abstraction in value-based choice. Trends Cogn Sci 2023; 27:65-80. [PMID: 36446707 DOI: 10.1016/j.tics.2022.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
Colombian drug lord Pablo Escobar, while on the run, purportedly burned two million dollars in banknotes to keep his daughter warm. A stark reminder that, in life, circumstances and goals can quickly change, forcing us to reassess and modify our values on-the-fly. Studies in decision-making and neuroeconomics have often implicitly equated value to reward, emphasising the hedonic and automatic aspect of the value computation, while overlooking its functional (concept-like) nature. Here we outline the computational and biological principles that enable the brain to compute the usefulness of an option or action by creating abstractions that flexibly adapt to changing goals. We present different algorithmic architectures, comparing ideas from artificial intelligence (AI) and cognitive neuroscience with psychological theories and, when possible, drawing parallels.
Collapse
Affiliation(s)
- Benedetto De Martino
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Computational Neuroscience Laboratories, ATR Institute International, 619-0288 Kyoto, Japan.
| | - Aurelio Cortese
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Computational Neuroscience Laboratories, ATR Institute International, 619-0288 Kyoto, Japan.
| |
Collapse
|
27
|
Lee JH, Leibo JZ, An SJ, Lee SW. Importance of prefrontal meta control in human-like reinforcement learning. Front Comput Neurosci 2022; 16:1060101. [PMID: 36618272 PMCID: PMC9811824 DOI: 10.3389/fncom.2022.1060101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Recent investigation on reinforcement learning (RL) has demonstrated considerable flexibility in dealing with various problems. However, such models often experience difficulty learning seemingly easy tasks for humans. To reconcile the discrepancy, our paper is focused on the computational benefits of the brain's RL. We examine the brain's ability to combine complementary learning strategies to resolve the trade-off between prediction performance, computational costs, and time constraints. The complex need for task performance created by a volatile and/or multi-agent environment motivates the brain to continually explore an ideal combination of multiple strategies, called meta-control. Understanding these functions would allow us to build human-aligned RL models.
Collapse
Affiliation(s)
- Jee Hang Lee
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul, South Korea
| | | | - Su Jin An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Center for Neuroscience-Inspired Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
28
|
Hart EE, Gardner MPH, Panayi MC, Kahnt T, Schoenbaum G. Calcium activity is a degraded estimate of spikes. Curr Biol 2022; 32:5364-5373.e4. [PMID: 36368324 PMCID: PMC9772124 DOI: 10.1016/j.cub.2022.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Recording action potentials extracellularly during behavior has led to fundamental discoveries regarding neural function-hippocampal neurons respond to locations in space,1 motor cortex neurons encode movement direction,2 and dopamine neurons signal reward prediction errors3-observations undergirding current theories of cognition,4 movement,5 and learning.6 Recently it has become possible to measure calcium flux, an internal cellular signal related to spiking. The ability to image calcium flux in anatomically7,8 or genetically9 identified neurons can extend our knowledge of neural circuit function by allowing activity to be monitored in specific cell types or projections, or in the same neurons across many days. However, while initial studies were grounded in prior unit recording work, it has become fashionable to assume that calcium is identical to spiking, even though the spike-to-fluorescence transformation is nonlinear, noisy, and unpredictable under real-world conditions.10 It remains an open question whether calcium provides a high-fidelity representation of single-unit activity in awake, behaving subjects. Here, we have addressed this question by recording both signals in the lateral orbitofrontal cortex (OFC) of rats during olfactory discrimination learning. Activity in the OFC during olfactory learning has been well-studied in humans,11,12,13,14 nonhuman primates,15,16 and rats,17,18,19,20,21 where it has been shown to signal information about both the sensory properties of odor cues and the rewards they predict. Our single-unit results replicated prior findings, whereas the calcium signal provided only a degraded estimate of the information available in the single-unit spiking, reflecting primarily reward value.
Collapse
Affiliation(s)
- Evan E Hart
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
- National Institute of General Medical Sciences, 45 Center Drive, Bethesda, MD 20892, USA
| | - Matthew PH Gardner
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
- Department of Psychology, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6, CA
| | - Marios C Panayi
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 110 S Paca Street, Baltimore, MD 21201, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, 251 Bayview Boulevard, Baltimore, MD 21224, USA
- Department of Psychiatry, University of Maryland School of Medicine, 110 S Paca Street, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Kaufman MT, Benna MK, Rigotti M, Stefanini F, Fusi S, Churchland AK. The implications of categorical and category-free mixed selectivity on representational geometries. Curr Opin Neurobiol 2022; 77:102644. [PMID: 36332415 DOI: 10.1016/j.conb.2022.102644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 01/10/2023]
Abstract
The firing rates of individual neurons displaying mixed selectivity are modulated by multiple task variables. When mixed selectivity is nonlinear, it confers an advantage by generating a high-dimensional neural representation that can be flexibly decoded by linear classifiers. Although the advantages of this coding scheme are well accepted, the means of designing an experiment and analyzing the data to test for and characterize mixed selectivity remain unclear. With the growing number of large datasets collected during complex tasks, the mixed selectivity is increasingly observed and is challenging to interpret correctly. We review recent approaches for analyzing and interpreting neural datasets and clarify the theoretical implications of mixed selectivity in the variety of forms that have been reported in the literature. We also aim to provide a practical guide for determining whether a neural population has linear or nonlinear mixed selectivity and whether this mixing leads to a categorical or category-free representation.
Collapse
Affiliation(s)
- Matthew T Kaufman
- Department of Organismal Biology and Anatomy, Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Marcus K Benna
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, CA, USA
| | | | - Fabio Stefanini
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Stefano Fusi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Anne K Churchland
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Cognitive flexibility assessment with a new Reversal learning task paradigm compared with the Wisconsin card sorting test exploring the moderating effect of gender and stress. PSYCHOLOGICAL RESEARCH 2022; 87:1439-1453. [DOI: 10.1007/s00426-022-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
|
31
|
Yasin S, Fierst A, Keenan H, Knapp A, Gallione K, Westlund T, Kirschner S, Vaidya S, Qiu C, Rougebec A, Morss E, Lebiedzinski J, Dejean M, Keenan JP. Self-Enhancement and the Medial Prefrontal Cortex: The Convergence of Clinical and Experimental Findings. Brain Sci 2022; 12:1103. [PMID: 36009167 PMCID: PMC9405933 DOI: 10.3390/brainsci12081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Self-enhancement (SE) is often overlooked as a fundamental cognitive ability mediated via the Prefrontal Cortex (PFC). Here, we present research that establishes the relationship between the PFC, SE, and the potential evolved beneficial mechanisms. Specifically, we believe there is now enough evidence to speculate that SE exists to provide significant benefits and should be considered a normal aspect of the self. Whatever the metabolic or social cost, the upside of SE is great enough that it is a core and fundamental psychological construct. Furthermore, though entirely theoretical, we suggest that a critical reason the PFC has evolved so significantly in Homo sapiens is to, in part, sustain SE. We, therefore, elaborate on its proximate and ultimate mechanisms.
Collapse
Affiliation(s)
- Saeed Yasin
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Anjel Fierst
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Harper Keenan
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Amelia Knapp
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Katrina Gallione
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Tessa Westlund
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Sydney Kirschner
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Sahana Vaidya
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Christina Qiu
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Audrey Rougebec
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Elodie Morss
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Jack Lebiedzinski
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Maya Dejean
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Julian Paul Keenan
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
- Cognitive Neuroimaging Laboratory, Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| |
Collapse
|
32
|
Vázquez D, Schneider KN, Roesch MR. Neural signals implicated in the processing of appetitive and aversive events in social and non-social contexts. Front Syst Neurosci 2022; 16:926388. [PMID: 35993086 PMCID: PMC9381696 DOI: 10.3389/fnsys.2022.926388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
In 2014, we participated in a special issue of Frontiers examining the neural processing of appetitive and aversive events. Specifically, we reviewed brain areas that contribute to the encoding of prediction errors and value versus salience, attention and motivation. Further, we described how we disambiguated these cognitive processes and their neural substrates by using paradigms that incorporate both appetitive and aversive stimuli. We described a circuit in which the orbitofrontal cortex (OFC) signals expected value and the basolateral amygdala (BLA) encodes the salience and valence of both appetitive and aversive events. This information is integrated by the nucleus accumbens (NAc) and dopaminergic (DA) signaling in order to generate prediction and prediction error signals, which guide decision-making and learning via the dorsal striatum (DS). Lastly, the anterior cingulate cortex (ACC) is monitoring actions and outcomes, and signals the need to engage attentional control in order to optimize behavioral output. Here, we expand upon this framework, and review our recent work in which within-task manipulations of both appetitive and aversive stimuli allow us to uncover the neural processes that contribute to the detection of outcomes delivered to a conspecific and behaviors in social contexts. Specifically, we discuss the involvement of single-unit firing in the ACC and DA signals in the NAc during the processing of appetitive and aversive events in both social and non-social contexts.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Kevin N. Schneider
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Matthew R. Roesch
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
33
|
Arlt C, Barroso-Luque R, Kira S, Bruno CA, Xia N, Chettih SN, Soares S, Pettit NL, Harvey CD. Cognitive experience alters cortical involvement in goal-directed navigation. eLife 2022; 11:76051. [PMID: 35735909 PMCID: PMC9259027 DOI: 10.7554/elife.76051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Neural activity in the mammalian cortex has been studied extensively during decision tasks, and recent work aims to identify under what conditions cortex is actually necessary for these tasks. We discovered that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical areas and neural activity patterns to solve the same navigation decision task, revealing past learning as a critical determinant of whether cortex is necessary for goal-directed navigation. We used optogenetics and calcium imaging to study the necessity and neural activity of multiple cortical areas in mice with different training histories. Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate performance of a simple navigation task. In contrast, these areas were essential for the same simple task when mice were previously trained on complex tasks with delay periods or association switches. Multiarea calcium imaging showed that, in mice with complex-task experience, single-neuron activity had higher selectivity and neuron–neuron correlations were weaker, leading to codes with higher task information. Therefore, past experience is a key factor in determining whether cortical areas have a causal role in goal-directed navigation.
Collapse
Affiliation(s)
- Charlotte Arlt
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Shinichiro Kira
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Carissa A Bruno
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Ningjing Xia
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Selmaan N Chettih
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sofia Soares
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Noah L Pettit
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
34
|
Gmaz JM, van der Meer MAA. Context coding in the mouse nucleus accumbens modulates motivationally relevant information. PLoS Biol 2022; 20:e3001338. [PMID: 35486662 PMCID: PMC9094556 DOI: 10.1371/journal.pbio.3001338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/11/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Neural activity in the nucleus accumbens (NAc) is thought to track fundamentally value-centric quantities linked to reward and effort. However, the NAc also contributes to flexible behavior in ways that are difficult to explain based on value signals alone, raising the question of if and how nonvalue signals are encoded in NAc. We recorded NAc neural ensembles while head-fixed mice performed an odor-based biconditional discrimination task where an initial discrete cue modulated the behavioral significance of a subsequently presented reward-predictive cue. We extracted single-unit and population-level correlates related to the cues and found value-independent coding for the initial, context-setting cue. This context signal occupied a population-level coding space orthogonal to outcome-related representations and was predictive of subsequent behaviorally relevant responses to the reward-predictive cues. Together, these findings support a gating model for how the NAc contributes to behavioral flexibility and provide a novel population-level perspective from which to view NAc computations.
Collapse
Affiliation(s)
- Jimmie M. Gmaz
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States of America
| | - Matthijs A. A. van der Meer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States of America
- * E-mail:
| |
Collapse
|
35
|
Flesch T, Juechems K, Dumbalska T, Saxe A, Summerfield C. Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron 2022; 110:1258-1270.e11. [PMID: 35085492 PMCID: PMC8992799 DOI: 10.1016/j.neuron.2022.01.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022]
Abstract
How do neural populations code for multiple, potentially conflicting tasks? Here we used computational simulations involving neural networks to define "lazy" and "rich" coding solutions to this context-dependent decision-making problem, which trade off learning speed for robustness. During lazy learning the input dimensionality is expanded by random projections to the network hidden layer, whereas in rich learning hidden units acquire structured representations that privilege relevant over irrelevant features. For context-dependent decision-making, one rich solution is to project task representations onto low-dimensional and orthogonal manifolds. Using behavioral testing and neuroimaging in humans and analysis of neural signals from macaque prefrontal cortex, we report evidence for neural coding patterns in biological brains whose dimensionality and neural geometry are consistent with the rich learning regime.
Collapse
Affiliation(s)
- Timo Flesch
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK,Corresponding author
| | - Keno Juechems
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK,St. John’s College, University of Oxford, Oxford OX1 3JP, UK
| | | | - Andrew Saxe
- Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre, University College London, London, UK,CIFAR Azrieli Global Scholars program, CIFAR, Toronto, ON, Canada,Corresponding author
| | - Christopher Summerfield
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK,Corresponding author
| |
Collapse
|
36
|
Stiso J, Lynn CW, Kahn AE, Rangarajan V, Szymula KP, Archer R, Revell A, Stein JM, Litt B, Davis KA, Lucas TH, Bassett DS. Neurophysiological Evidence for Cognitive Map Formation during Sequence Learning. eNeuro 2022; 9:ENEURO.0361-21.2022. [PMID: 35105662 PMCID: PMC8896554 DOI: 10.1523/eneuro.0361-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Humans deftly parse statistics from sequences. Some theories posit that humans learn these statistics by forming cognitive maps, or underlying representations of the latent space which links items in the sequence. Here, an item in the sequence is a node, and the probability of transitioning between two items is an edge. Sequences can then be generated from walks through the latent space, with different spaces giving rise to different sequence statistics. Individual or group differences in sequence learning can be modeled by changing the time scale over which estimates of transition probabilities are built, or in other words, by changing the amount of temporal discounting. Latent space models with temporal discounting bear a resemblance to models of navigation through Euclidean spaces. However, few explicit links have been made between predictions from Euclidean spatial navigation and neural activity during human sequence learning. Here, we use a combination of behavioral modeling and intracranial encephalography (iEEG) recordings to investigate how neural activity might support the formation of space-like cognitive maps through temporal discounting during sequence learning. Specifically, we acquire human reaction times from a sequential reaction time task, to which we fit a model that formulates the amount of temporal discounting as a single free parameter. From the parameter, we calculate each individual's estimate of the latent space. We find that neural activity reflects these estimates mostly in the temporal lobe, including areas involved in spatial navigation. Similar to spatial navigation, we find that low-dimensional representations of neural activity allow for easy separation of important features, such as modules, in the latent space. Lastly, we take advantage of the high temporal resolution of iEEG data to determine the time scale on which latent spaces are learned. We find that learning typically happens within the first 500 trials, and is modulated by the underlying latent space and the amount of temporal discounting characteristic of each participant. Ultimately, this work provides important links between behavioral models of sequence learning and neural activity during the same behavior, and contextualizes these results within a broader framework of domain general cognitive maps.
Collapse
Affiliation(s)
- Jennifer Stiso
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, NY 10016
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Vinitha Rangarajan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Karol P Szymula
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan Archer
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew Revell
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Brian Litt
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy H Lucas
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
- The Santa Fe Institute, Santa Fe, NM 87501
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
37
|
McHale AC, Cho YT, Fudge JL. Cortical Granularity Shapes the Organization of Afferent Paths to the Amygdala and Its Striatal Targets in Nonhuman Primate. J Neurosci 2022; 42:1436-1453. [PMID: 34965977 PMCID: PMC8883863 DOI: 10.1523/jneurosci.0970-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
The prefrontal cortex (PFC) and insula, amygdala, and striatum form interconnected networks that drive motivated behaviors. We previously found a connectional trend in which granularity of the ventromedial and orbital PFC/insula predicted connections to the amygdala, and also the breadth of amygdalo-striatal efferents, including projections beyond the "classic" ventral striatum. To further interrogate connectional relationships among the cortex, amygdala, and striatum, and to further define the "limbic" (amygdala-recipient) striatum, we conducted tract tracing studies in two cohorts of macaques (male n = 14, female n = 1). We focused on the cortico-amygdalo-striatal (indirect) and cortico-"limbic" striatal (direct) paths originating in the entire PFC and insula. Larger datasets and a quantitative approach revealed "cortical rules" in which cortical granularity predicts the complexity and location of projections to both the basal nucleus of the amygdala and striatum. Remarkably, projections from "cortical-like" basal nucleus to the striatum followed similar patterns. In both "direct" and "indirect" paths to the "limbic" striatum, agranular cortices formed a "foundational," broad projection, and were joined by inputs from progressively more differentiated cortices. In amygdalo-striatal paths, the ventral basal nucleus was the "foundational" input, with progressively more dorsal basal nucleus regions gradually adding inputs as the "limbic" striatum extended caudally. Together, the "indirect" and "direct" paths followed consistent principles in which cortical granularity dictated the strength and complexity of projections at their targets. Cluster analyses independently confirmed these connectional trends, and also highlighted connectional features that predicted termination in specific subregions of the basal nucleus and "limbic" striatum.SIGNIFICANCE STATEMENT The "limbic" system broadly refers to brain circuits that coordinate emotional responses. Here, we investigate circuits of the amygdala, which are involved in coding the emotional value of external cues, and their influence on the striatum. Regions of prefrontal cortex (PFC) and insula form gradients of overlapping inputs to the amygdala's basal nucleus, which feed forward to the striatum. Direct cortical inputs to these "amygdala-recipient" striatal areas are surprisingly organized according to similar principles but subtly shift from the "classic" ventral striatum to the caudal ventral striatum. Together, these distinct subsystems, cortico-amygdalo-striatal circuits and direct cortico-striatal circuits, provide substantial opportunity for different levels of internal, sensory, and external experiences to be integrated within the striatum, a major motor-behavioral interface.
Collapse
Affiliation(s)
- A C McHale
- Department of Neuroscience, University of Rochester, Rochester NY 14642
| | - Y T Cho
- Department of Psychiatry, University of Rochester, Rochester, NY 14642
| | - J L Fudge
- Department of Neuroscience, University of Rochester, Rochester NY 14642
- Child Study Center and Department of Psychiatry, Yale University, New Haven, Connecticut 06519
| |
Collapse
|
38
|
Lapate RC, Ballard IC, Heckner MK, D'Esposito M. Emotional Context Sculpts Action Goal Representations in the Lateral Frontal Pole. J Neurosci 2022; 42:1529-1541. [PMID: 34969868 PMCID: PMC8883870 DOI: 10.1523/jneurosci.1522-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Emotional states provide an ever-present source of contextual information that should inform behavioral goals. Despite the ubiquity of emotional signals in our environment, the neural mechanisms underlying their influence on goal-directed action remains unclear. Prior work suggests that the lateral frontal pole (FPl) is uniquely positioned to integrate affective information into cognitive control representations. We used pattern similarity analysis to examine the content of representations in FPl and interconnected mid-lateral prefrontal and amygdala circuitry. Healthy participants (n = 37; n = 21 females) were scanned while undergoing an event-related Affective Go/No-Go task, which requires goal-oriented action selection during emotional processing. We found that FPl contained conjunctive emotion-action goal representations that were related to successful cognitive control during emotional processing. These representations differed from conjunctive emotion-action goal representations found in the basolateral amygdala. While robust action goal representations were present in mid-lateral prefrontal cortex, they were not modulated by emotional valence. Finally, converging results from functional connectivity and multivoxel pattern analyses indicated that FPl emotional valence signals likely originated from interconnected subgenual anterior cingulate cortex (ACC) (BA25), which was in turn functionally coupled with the amygdala. Thus, our results identify a key pathway by which internal emotional states influence goal-directed behavior.SIGNIFICANCE STATEMENT Optimal functioning in everyday life requires behavioral regulation that flexibly adapts to dynamically changing emotional states. However, precisely how emotional states influence goal-directed action remains unclear. Unveiling the neural architecture that supports emotion-goal integration is critical for our understanding of disorders such as psychopathy, which is characterized by deficits in incorporating emotional cues into goals, as well as mood and anxiety disorders, which are characterized by impaired goal-based emotion regulation. Our study identifies a key circuit through which emotional states influence goal-directed behavior. This circuitry comprised the lateral frontal pole (FPl), which represented integrated emotion-goal information, as well as interconnected amygdala and subgenual ACC, which conveyed emotional signals to FPl.
Collapse
Affiliation(s)
- Regina C Lapate
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Ian C Ballard
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| | - Marisa K Heckner
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52428 Jülich, Germany
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
39
|
Bae H, Lee S, Lee CY, Kim CE. A Novel Framework for Understanding the Pattern Identification of Traditional Asian Medicine From the Machine Learning Perspective. Front Med (Lausanne) 2022; 8:763533. [PMID: 35186965 PMCID: PMC8853725 DOI: 10.3389/fmed.2021.763533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Pattern identification (PI), a unique diagnostic system of traditional Asian medicine, is the process of inferring the pathological nature or location of lesions based on observed symptoms. Despite its critical role in theory and practice, the information processing principles underlying PI systems are generally unclear. We present a novel framework for comprehending the PI system from a machine learning perspective. After a brief introduction to the dimensionality of the data, we propose that the PI system can be modeled as a dimensionality reduction process and discuss analytical issues that can be addressed using our framework. Our framework promotes a new approach in understanding the underlying mechanisms of the PI process with strong mathematical tools, thereby enriching the explanatory theories of traditional Asian medicine.
Collapse
Affiliation(s)
- Hyojin Bae
- Department of Physiology, Gachon University College of Korean Medicine, Seongnam, South Korea
| | - Sanghun Lee
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Department of Korean Convergence Medical Science, University of Science and Technology, Daejeon, South Korea
| | - Choong-Yeol Lee
- Department of Physiology, Gachon University College of Korean Medicine, Seongnam, South Korea
| | - Chang-Eop Kim
- Department of Physiology, Gachon University College of Korean Medicine, Seongnam, South Korea
| |
Collapse
|
40
|
Hart EE, Gardner MPH, Schoenbaum G. Anterior cingulate neurons signal neutral cue pairings during sensory preconditioning. Curr Biol 2022; 32:725-732.e3. [PMID: 34936884 PMCID: PMC8976914 DOI: 10.1016/j.cub.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 01/23/2023]
Abstract
Of all frontocortical subregions, the anterior cingulate cortex (ACC) has perhaps the most overlapping theories of function.1-3 Recording studies in rats, humans, and other primates have reported diverse neural responses that support many theories,4-12 yet nearly all these studies have in common tasks in which one event reliably predicts another. This leaves open the possibility that ACC represents associative pairing of events, independent of their overt biological significance. Sensory preconditioning13 provides an opportunity to test this. In the first phase, preconditioning, value-neutral sensory stimuli are paired (A→B). To test whether this was learned, subjects are given standard conditioning during which one of the previously neutral sensory cues is paired with a biologically meaningful outcome (B→outcome). During the final probe test, the neutral cue which was never paired with a biologically meaningful outcome is presented alone (A→) and will elicit a conditional response, suggesting that subjects had learned the associative structure during preconditioning and use that knowledge to infer presentation of the biologically relevant outcome (A→B→outcome). Inference-based responding demonstrates a fundamental property of model-based reasoning14,15 and requires learning of the associations between neutral stimuli before rewards are introduced.16-19 ACC neurons developed firing patterns that reflected the learning of sensory associations during preconditioning, even though no rewards were present. The strength of these correlates predicted rats' ability to later mobilize and use that associative information during the probe test. These results demonstrate that clear biological significance is not necessary to produce correlates of learning in ACC.
Collapse
Affiliation(s)
- Evan E Hart
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; National Institute of General Medical Sciences, 45 Center Drive, Bethesda, MD 20892, USA.
| | - Matthew P H Gardner
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Psychology, Concordia University, 7141 Sherbrooke West, Montreal, QC H4B 1R6, Canada
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 110 S Paca Street, Baltimore, MD 21201, USA; Department of Neuroscience, Johns Hopkins School of Medicine, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Psychiatry, University of Maryland School of Medicine, 110 S Paca Street, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Rudebeck PH, Izquierdo A. Foraging with the frontal cortex: A cross-species evaluation of reward-guided behavior. Neuropsychopharmacology 2022; 47:134-146. [PMID: 34408279 PMCID: PMC8617092 DOI: 10.1038/s41386-021-01140-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Efficient foraging is essential to survival and depends on frontal cortex in mammals. Because of its role in psychiatric disorders, frontal cortex and its contributions to reward procurement have been studied extensively in both rodents and non-human primates. How frontal cortex of these animal models compares is a source of intense debate. Here we argue that translating findings from rodents to non-human primates requires an appreciation of both the niche in which each animal forages as well as the similarities in frontal cortex anatomy and function. Consequently, we highlight similarities and differences in behavior and anatomy, before focusing on points of convergence in how parts of frontal cortex contribute to distinct aspects of foraging in rats and macaques, more specifically. In doing so, our aim is to emphasize where translation of frontal cortex function between species is clearer, where there is divergence, and where future work should focus. We finish by highlighting aspects of foraging for which have received less attention but we believe are critical to uncovering how frontal cortex promotes survival in each species.
Collapse
Affiliation(s)
| | - Alicia Izquierdo
- Department of Psychology, UCLA, Los Angeles, CA, USA.
- The Brain Research Institute, UCLA, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA.
- Integrative Center for Addictions, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Abstract
Sensory data about most natural task-relevant variables are entangled with task-irrelevant nuisance variables. The neurons that encode these relevant signals typically constitute a nonlinear population code. Here we present a theoretical framework for quantifying how the brain uses or decodes its nonlinear information. Our theory obeys fundamental mathematical limitations on information content inherited from the sensory periphery, describing redundant codes when there are many more cortical neurons than primary sensory neurons. The theory predicts that if the brain uses its nonlinear population codes optimally, then more informative patterns should be more correlated with choices. More specifically, the theory predicts a simple, easily computed quantitative relationship between fluctuating neural activity and behavioral choices that reveals the decoding efficiency. This relationship holds for optimal feedforward networks of modest complexity, when experiments are performed under natural nuisance variation. We analyze recordings from primary visual cortex of monkeys discriminating the distribution from which oriented stimuli were drawn, and find these data are consistent with the hypothesis of near-optimal nonlinear decoding.
Collapse
|
43
|
Bierbrauer A, Fellner MC, Heinen R, Wolf OT, Axmacher N. The memory trace of a stressful episode. Curr Biol 2021; 31:5204-5213.e8. [PMID: 34653359 DOI: 10.1016/j.cub.2021.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Stress influences episodic memory formation via noradrenaline and glucocorticoid effects on amygdala and hippocampus. A common finding is the improvement of memory for central aspects of a stressful episode. This is putatively related to changes in the neural representations of specific experiences, i.e., their memory traces. Here we show that the memory improvement for objects that were encountered in a stressful episode relates to differences in the neural representations of these objects in the amygdala. Using functional magnetic resonance imaging, we found that stress specifically altered the representations of central objects: compared to control objects, they became more similar to one another and more distinct from objects that were not part of this episode. Furthermore, higher similarity of central objects to the main stressor-the faces of the stress-inducing committee members-predicted better memory. This suggests that the central objects were closely integrated into a stressor-centered memory representation. Our findings provide mechanistic insights into how stress shapes the memory trace and have profound implications for neurocognitive models of stressful and emotional memory.
Collapse
Affiliation(s)
- Anne Bierbrauer
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Marie-Christin Fellner
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Rebekka Heinen
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China.
| |
Collapse
|
44
|
Ahmed N, Headley DB, Paré D. Optogenetic study of central medial and paraventricular thalamic projections to the basolateral amygdala. J Neurophysiol 2021; 126:1234-1247. [PMID: 34469705 PMCID: PMC8560422 DOI: 10.1152/jn.00253.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The central medial (CMT) and paraventricular (PVT) thalamic nuclei project strongly to the basolateral amygdala (BL). Similarities between the responsiveness of CMT, PVT, and BL neurons suggest that these nuclei strongly influence BL activity. Supporting this possibility, an electron microscopic study reported that, in contrast with other extrinsic afferents, CMT and PVT axon terminals form very few synapses with BL interneurons. However, since limited sampling is a concern in electron microscopic studies, the present investigation was undertaken to compare the impact of CMT and PVT thalamic inputs on principal and local-circuit BL neurons with optogenetic methods and whole cell recordings in vitro. Optogenetic stimulation of CMT and PVT axons elicited glutamatergic excitatory postsynaptic potentials (EPSPs) or excitatory postsynaptic currents (EPSCs) in principal cells and interneurons, but they generally had a longer latency in interneurons. Moreover, after blockade of polysynaptic interactions with tetrodotoxin (TTX), a lower proportion of interneurons (50%) than principal cells (90%) remained responsive to CMT and PVT inputs. Although the presence of TTX-resistant responses in some interneurons indicates that CMT and PVT inputs directly contact some local-circuit cells, their lower incidence and amplitude after TTX suggest that CMT and PVT inputs form fewer synapses with them than with principal BL cells. Together, these results indicate that CMT and PVT inputs mainly contact principal BL neurons such that when CMT or PVT neurons fire, limited feedforward inhibition counters their excitatory influence over principal BL cells. However, CMT and PVT axons can also recruit interneurons indirectly, via the activation of principal cells, thereby generating feedback inhibition.NEW & NOTEWORTHY Midline thalamic (MTh) nuclei contribute major projections to the basolateral amygdala (BL). Similarities between the responsiveness of MTh and BL neurons suggest that MTh neurons exert a significant influence over BL activity. Using optogenetic techniques, we show that MTh inputs mainly contact principal BL neurons such that when MTh neurons fire, little feedforward inhibition counters their excitatory influence over principal cells. Thus, MTh inputs may be major determinants of BL activity.
Collapse
Affiliation(s)
- Nowrin Ahmed
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
45
|
Abstract
Here we argue that the assignment of subjective value to potential outcomes at the time of decision-making is an active process, in which individual features of a potential outcome of varying degrees of abstraction are represented hierarchically and integrated in a weighted fashion to produce an overall value judgment. We implicate the lateral orbital and medial prefrontal cortex in this function, situating these areas more broadly within a hierarchical integration process that takes place throughout the cortex for the ultimate purpose of valuing options to guide decisions.
Collapse
Affiliation(s)
- John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kiyohito Iigaya
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
46
|
Over-representation of fundamental decision variables in the prefrontal cortex underlies decision bias. Neurosci Res 2021; 173:1-13. [PMID: 34274406 DOI: 10.1016/j.neures.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
The brain is organized into anatomically distinct structures consisting of a variety of projection neurons. While such evolutionarily conserved neural circuit organization underlies the innate ability of animals to swiftly adapt to environments, they can cause biased cognition and behavior. Although recent studies have begun to address the causal importance of projection-neuron types as distinct computational units, it remains unclear how projection types are functionally organized in encoding variables during cognitive tasks. This review focuses on the neural computation of decision making in the prefrontal cortex and discusses what decision variables are encoded by single neurons, neuronal populations, and projection type, alongside how specific projection types constrain decision making. We focus particularly on "over-representations" of distinct decision variables in the prefrontal cortex that reflect the biological and subjective significance of the variables for the decision makers. We suggest that task-specific over-representation in the prefrontal cortex involves the refinement of the given decision making, while generalized over-representation of fundamental decision variables is associated with suboptimal decision biases, including pathological ones such as those in patients with psychiatric disorders. Such over-representation of the fundamental decision variables in the prefrontal cortex appear to be tightly constrained by afferent and efferent connections that can be optogenetically intervened on. These ideas may provide critical insights into potential therapeutic targets for psychiatric disorders, including addiction and depression.
Collapse
|
47
|
Grabenhorst F, Schultz W. Functions of primate amygdala neurons in economic decisions and social decision simulation. Behav Brain Res 2021; 409:113318. [PMID: 33901436 PMCID: PMC8164162 DOI: 10.1016/j.bbr.2021.113318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/15/2023]
Abstract
Long implicated in aversive processing, the amygdala is now recognized as a key component of the brain systems that process rewards. Beyond reward valuation, recent findings from single-neuron recordings in monkeys indicate that primate amygdala neurons also play an important role in decision-making. The reward value signals encoded by amygdala neurons constitute suitable inputs to economic decision processes by being sensitive to reward contingency, relative reward quantity and temporal reward structure. During reward-based decisions, individual amygdala neurons encode both the value inputs and corresponding choice outputs of economic decision processes. The presence of such value-to-choice transitions in single amygdala neurons, together with other well-defined signatures of decision computation, indicate that a decision mechanism may be implemented locally within the primate amygdala. During social observation, specific amygdala neurons spontaneously encode these decision signatures to predict the choices of social partners, suggesting neural simulation of the partner's decision-making. The activity of these 'simulation neurons' could arise naturally from convergence between value neurons and social, self-other discriminating neurons. These findings identify single-neuron building blocks and computational architectures for decision-making and social behavior in the primate amygdala. An emerging understanding of the decision function of primate amygdala neurons can help identify potential vulnerabilities for amygdala dysfunction in human conditions afflicting social cognition and mental health.
Collapse
Affiliation(s)
- Fabian Grabenhorst
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
| | - Wolfram Schultz
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
| |
Collapse
|
48
|
Dynamical prefrontal population coding during defensive behaviours. Nature 2021; 595:690-694. [PMID: 34262175 DOI: 10.1038/s41586-021-03726-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Coping with threatening situations requires both identifying stimuli that predict danger and selecting adaptive behavioural responses to survive1. The dorsomedial prefrontal cortex (dmPFC) is a critical structure that is involved in the regulation of threat-related behaviour2-4. However, it is unclear how threat-predicting stimuli and defensive behaviours are associated within prefrontal networks to successfully drive adaptive responses. Here we used a combination of extracellular recordings, neuronal decoding approaches, pharmacological and optogenetic manipulations to show that, in mice, threat representations and the initiation of avoidance behaviour are dynamically encoded in the overall population activity of dmPFC neurons. Our data indicate that although dmPFC population activity at stimulus onset encodes sustained threat representations driven by the amygdala, it does not predict action outcome. By contrast, transient dmPFC population activity before the initiation of action reliably predicts avoided from non-avoided trials. Accordingly, optogenetic inhibition of prefrontal activity constrained the selection of adaptive defensive responses in a time-dependent manner. These results reveal that the adaptive selection of defensive responses relies on a dynamic process of information linking threats with defensive actions, unfolding within prefrontal networks.
Collapse
|
49
|
Vaidya AR, Jones HM, Castillo J, Badre D. Neural representation of abstract task structure during generalization. eLife 2021; 10:e63226. [PMID: 33729156 PMCID: PMC8016482 DOI: 10.7554/elife.63226] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Cognitive models in psychology and neuroscience widely assume that the human brain maintains an abstract representation of tasks. This assumption is fundamental to theories explaining how we learn quickly, think creatively, and act flexibly. However, neural evidence for a verifiably generative abstract task representation has been lacking. Here, we report an experimental paradigm that requires forming such a representation to act adaptively in novel conditions without feedback. Using functional magnetic resonance imaging, we observed that abstract task structure was represented within left mid-lateral prefrontal cortex, bilateral precuneus, and inferior parietal cortex. These results provide support for the neural instantiation of the long-supposed abstract task representation in a setting where we can verify its influence. Such a representation can afford massive expansions of behavioral flexibility without additional experience, a vital characteristic of human cognition.
Collapse
Affiliation(s)
- Avinash R Vaidya
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown UniversityProvidenceUnited States
| | - Henry M Jones
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown UniversityProvidenceUnited States
- Department of Psychology, Stanford University, StanfordStanfordUnited States
| | - Johanny Castillo
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown UniversityProvidenceUnited States
- Department of Psychology and Brain Sciences, University of Massachusetts AmherstAmherstUnited States
| | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| |
Collapse
|
50
|
Orbitofrontal State Representations Are Related to Choice Adaptations and Reward Predictions. J Neurosci 2021; 41:1941-1951. [PMID: 33446521 DOI: 10.1523/jneurosci.0753-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 11/21/2022] Open
Abstract
Animals can categorize the environment into "states," defined by unique sets of available action-outcome contingencies in different contexts. Doing so helps them choose appropriate actions and make accurate outcome predictions when in each given state. State maps have been hypothesized to be held in the orbitofrontal cortex (OFC), an area implicated in decision-making and encoding information about outcome predictions. Here we recorded neural activity in OFC in 6 male rats to test state representations. Rats were trained on an odor-guided choice task consisting of five trial blocks containing distinct sets of action-outcome contingencies, constituting states, with unsignaled transitions between them. OFC neural ensembles were analyzed using decoding algorithms. Results indicate that the vast majority of OFC neurons contributed to representations of the current state at any point in time, independent of odor cues and reward delivery, even at the level of individual neurons. Across state transitions, these representations gradually integrated evidence for the new state; the rate at which this integration happened in the prechoice part of the trial was related to how quickly the rats' choices adapted to the new state. Finally, OFC representations of outcome predictions, often thought to be the primary function of OFC, were dependent on the accuracy of OFC state representations.SIGNIFICANCE STATEMENT A prominent hypothesis proposes that orbitofrontal cortex (OFC) tracks current location in a "cognitive map" of state space. Here we tested this idea in detail by analyzing neural activity recorded in OFC of rats performing a task consisting of a series of states, each defined by a set of available action-outcome contingencies. Results show that most OFC neurons contribute to state representations and that these representations are related to the rats' decision-making and OFC reward predictions. These findings suggest new interpretations of emotional dysregulation in pathologies, such as addiction, which have long been known to be related to OFC dysfunction.
Collapse
|