1
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
2
|
Xiao D, Vanni MP, Mitelut CC, Chan AW, LeDue JM, Xie Y, Chen AC, Swindale NV, Murphy TH. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons. eLife 2017; 6. [PMID: 28160463 PMCID: PMC5328594 DOI: 10.7554/elife.19976] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI:http://dx.doi.org/10.7554/eLife.19976.001
Collapse
Affiliation(s)
- Dongsheng Xiao
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Matthieu P Vanni
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catalin C Mitelut
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Allen W Chan
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Yicheng Xie
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Andrew Cn Chen
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Nicholas V Swindale
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|