1
|
Le N, Chand A, Okafor O, Kim K. The Impact of Cadmium Selenide Zinc Sulfide Quantum Dots on the Proteomic Profile of Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:16332. [PMID: 38003523 PMCID: PMC10671624 DOI: 10.3390/ijms242216332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Quantum dots (QDs) have been highly sought after in the past few decades for their potential to be used in many biomedical applications. However, QDs' cytotoxicity is still a major concern that limits the incorporation of QDs into cutting-edge technologies. Thus, it is important to study and understand the mechanism by which QDs exert their toxicity. Although many studies have explored the cytotoxicity of quantum dots through the transcriptomic level and reactive species generation, the impact of quantum dots on the expression of cellular protein remains unclear. Using Saccharomyces cerevisiae as a model organism, we studied the effect of cadmium selenide zinc sulfide quantum dots (CdSe/ZnS QDs) on the proteomic profile of budding yeast cells. We found a total of 280 differentially expressed proteins after 6 h of CdSe/ZnS QDs treatment. Among these, 187 proteins were upregulated, and 93 proteins were downregulated. The majority of upregulated proteins were found to be associated with transcription/RNA processing, intracellular trafficking, and ribosome biogenesis. On the other hand, many of the downregulated proteins are associated with cellular metabolic pathways and mitochondrial components. Through this study, the cytotoxicity of CdSe/ZnS QDs on the proteomic level was revealed, providing a more well-rounded knowledge of QDs' toxicity.
Collapse
Affiliation(s)
| | | | | | - Kyoungtae Kim
- Department of Biology, Missouri State University, Springfield, MO 65897, USA; (N.L.); (A.C.); (O.O.)
| |
Collapse
|
2
|
Lange J, Wood-Kaczmar A, Ali A, Farag S, Ghosh R, Parker J, Casey C, Uno Y, Kunugi A, Ferretti P, Andre R, Tabrizi SJ. Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington's Disease PSC-Derived Striatal Neurons. Front Cell Neurosci 2021; 15:742763. [PMID: 34658796 PMCID: PMC8519404 DOI: 10.3389/fncel.2021.742763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). Disease progression is characterized by the loss of vulnerable neuronal populations within the striatum. A consistent phenotype across HD models is disruption of nucleocytoplasmic transport and nuclear pore complex (NPC) function. Here we demonstrate that high content imaging is a suitable method for detecting mislocalization of lamin-B1, RAN and RANGAP1 in striatal neuronal cultures thus allowing a robust, unbiased, highly powered approach to assay nuclear pore deficits. Furthermore, nuclear pore deficits extended to the selectively vulnerable DARPP32 + subpopulation neurons, but not to astrocytes. Striatal neuron cultures are further affected by changes in gene and protein expression of RAN, RANGAP1 and lamin-B1. Lowering total HTT using HTT-targeted anti-sense oligonucleotides partially restored gene expression, as well as subtly reducing mislocalization of proteins involved in nucleocytoplasmic transport. This suggests that mislocalization of RAN, RANGAP1 and lamin-B1 cannot be normalized by simply reducing expression of CAG-expanded HTT in the absence of healthy HTT protein.
Collapse
Affiliation(s)
- Jenny Lange
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alison Wood-Kaczmar
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Aneesa Ali
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sahar Farag
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rhia Ghosh
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer Parker
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Casey
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yumiko Uno
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Akiyoshi Kunugi
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ralph Andre
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
| |
Collapse
|
3
|
All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells 2021; 10:cells10092438. [PMID: 34572087 PMCID: PMC8468417 DOI: 10.3390/cells10092438] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple neurodegenerative diseases (NDDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are being suggested to have common cellular and molecular pathological mechanisms, characterized mainly by protein misfolding and aggregation. These large inclusions, most likely, represent an end stage of a molecular cascade; however, the soluble misfolded proteins, which take part in earlier steps of this cascade, are the more toxic players. These pathological proteins, which characterize each specific disease, lead to the selective vulnerability of different neurons, likely resulting from a combination of different intracellular mechanisms, including mitochondrial dysfunction, ER stress, proteasome inhibition, excitotoxicity, oxidative damage, defects in nucleocytoplasmic transport, defective axonal transport and neuroinflammation. Damage within these neurons is enhanced by damage from the nonneuronal cells, via inflammatory processes that accelerate the progression of these diseases. In this review, while acknowledging the hallmark proteins which characterize the most common NDDs; we place specific focus on the common overlapping mechanisms leading to disease pathology despite these different molecular players and discuss how this convergence may occur, with the ultimate hope that therapies effective in one disease may successfully translate to another.
Collapse
|
4
|
Martin APJ, Camonis JH. The hippo kinase STK38 ensures functionality of XPO1. Cell Cycle 2020; 19:2982-2995. [PMID: 33017560 PMCID: PMC7714482 DOI: 10.1080/15384101.2020.1826619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022] Open
Abstract
The proper segregation of basic elements such as the compartmentalization of the genome and the shuttling of macromolecules between the nucleus and the cytoplasm is a crucial mechanism for homeostasis maintenance in eukaryotic cells. XPO1 (Exportin 1) is the major nuclear export receptor and is required for the export of proteins and RNAs out of the nucleus. STK38 (also known as NDR1) is a Hippo pathway serine/threonine kinase with multifarious functions in normal and cancer cells. In this review, we summarize the history of the discovery of the nucleo/cytoplasmic shuttling of proteins and focus on the major actor of nuclear export: XPO1. After describing the molecular events required for XPO1-mediated nuclear export of proteins, we introduce the Hippo pathway STK38 kinase, synthetize its regulation mechanisms as well as its biological functions in both normal and cancer cells, and finally its intersection with XPO1 biology. We discuss the recently identified mechanism of XPO1 activation by phosphorylation of XPO1_S1055 by STK38 and contextualize this finding according to the biological functions previously reported for both XPO1 and STK38, including the second identity of STK38 as an autophagy regulator. Finally, we phrase this newly identified activation mechanism into the general nuclear export machinery and examine the possible outcomes of nuclear export inhibition in cancer treatment.
Collapse
Affiliation(s)
- Alexandre PJ Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Jacques H Camonis
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
5
|
Diez L, Wegmann S. Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Front Neurol 2020; 11:1056. [PMID: 33101165 PMCID: PMC7546323 DOI: 10.3389/fneur.2020.01056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Tau is a cytosolic microtubule binding protein that is highly abundant in the axons of the central nervous system. However, alternative functions of tau also in other cellular compartments are suggested, for example, in the nucleus, where interactions of tau with specific nuclear entities such as DNA, the nucleolus, and the nuclear envelope have been reported. We would like to review the current knowledge about tau-nucleus interactions and lay out possible neurotoxic mechanisms that are based on the (pathological) interactions of tau with the nucleus.
Collapse
Affiliation(s)
- Lisa Diez
- German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Berlin, Germany
| |
Collapse
|
6
|
Benarroch EE. Nucleocytoplasmic transport: Mechanisms and involvement in neurodegenerative disease. Neurology 2019; 92:757-764. [PMID: 30894450 DOI: 10.1212/wnl.0000000000007305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
7
|
Belardinelli MO, Huenefeldt T, Maffi S, Squitieri F, Migliore S. Effects of stimulus-related variables on mental states recognition in Huntington's disease. Int J Neurosci 2018; 129:563-572. [PMID: 30481084 DOI: 10.1080/00207454.2018.1552691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive abnormalities in Huntington's Disease (HD) can involve the specific impairment of the social perspective taking as well as difficulties in recognizing others' mental state many years before the onset of motor symptoms. AIMS At the scope of assessing how the difficulties in mental state recognition might be an HD early sign before motor symptoms appear, our study was aimed to investigate how the recognition of others' mental states in HD subjects is moderated by different stimulus related features (gender, difficulty (low, medium, high), and valence (positive, negative, neutral) of the mental states that are to be recognized). METHODS Subjects with premanifest (n = 20) and manifest (n = 40) HD performed the revised 'Reading the Mind in the Eyes Test' and were compared with age-matched healthy controls (HC, 40 subjects per cohort). RESULTS Our results highlight an early impairment in mental state recognition preceding manifest HD symptoms and a deterioration of these abilities with HD progression. Moreover, we found in HD premanifest subjects an impairment concerning the recognition of negative and neutral mental states, as well as of mental states with moderate recognition difficulty. Finally, we found that participant gender did not influence the performance in recognizing others' mental states, while all participants recognized mental states displayed by females more accurately than those displayed by males. CONCLUSIONS We conclude that difficulties in the recognition of complex mental states can be considered as an early sign of HD, before evident behavioral manifestations, and peculiar features of the stimulus influence it.
Collapse
Affiliation(s)
- Marta Olivetti Belardinelli
- a ECONA Interuniversity Centre for Research on Cognitive Processing in Natural and Artificial Systems , Sapienza University , Rome , Italy
| | - Thomas Huenefeldt
- a ECONA Interuniversity Centre for Research on Cognitive Processing in Natural and Artificial Systems , Sapienza University , Rome , Italy
| | - Sabrina Maffi
- b Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo , Italy
| | - Ferdinando Squitieri
- b Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo , Italy
| | - Simone Migliore
- b Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo , Italy
| |
Collapse
|
8
|
Fahrenkrog B, Harel A. Perturbations in Traffic: Aberrant Nucleocytoplasmic Transport at the Heart of Neurodegeneration. Cells 2018; 7:cells7120232. [PMID: 30486313 PMCID: PMC6316434 DOI: 10.3390/cells7120232] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Huntington’s disease (HD), are characterized by intracellular aggregation of proteins. In the case of ALS and FTD, these protein aggregates are found in the cytoplasm of affected neurons and contain certain RNA-binding proteins (RBPs), namely the TAR DNA-binding protein of 43 kDa (TDP-43) and the fused in sarcoma (FUS) gene product. TDP-43 and FUS are nuclear proteins and their displacement to the cytoplasm is thought to be adverse in at least two ways: loss-of-function in the nucleus and gain-of-toxicity in the cytoplasm. In the case of HD, expansion of a polyglutamine (polyQ) stretch within the N-terminal domain of the Huntingtin (HTT) protein leads to nuclear accumulation of polyQ HTT (or mHTT) and a toxic gain-of-function phenotype resulting in neurodegeneration. Numerous studies in recent years have provided evidence that defects in nucleocytoplasmic transport critically contribute to the pathology of these neurodegenerative diseases. A new mechanistic view is emerging, implicating three types of perturbations in normal cellular pathways that rely on nucleocytoplasmic transport: displacement of nuclear transport receptors and nucleoporins from nuclear pore complexes (NPCs), mislocalization and aggregation of RNA-binding proteins, and weakening of the chaperone activity of nuclear import receptors.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|