1
|
Dai W, Liu Z, Yan M, Nian X, Hong F, Zhou Z, Wang C, Fu X, Li X, Jiang M, Zhu Y, Huang Q, Lu X, Hou L, Yan N, Wang Q, Hu J, Mo W, Zhang X, Zhang L. Nucleoporin Seh1 controls murine neocortical development via transcriptional repression of p21 in neural stem cells. Dev Cell 2024; 59:482-495.e6. [PMID: 38272027 DOI: 10.1016/j.devcel.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/21/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.
Collapse
Affiliation(s)
- Wenxiu Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhixiong Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China
| | - Minbiao Yan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Ximing Nian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Fan Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhihao Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Chaomeng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xuewen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Mengyun Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yanqin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiuying Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaoyun Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Lichao Hou
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Ning Yan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jin Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Wei Mo
- Sir Run Run Shaw Hospital, Department of Immunology, School of Basic Medical Science, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Hangzhou 311121, China
| | - Xueqin Zhang
- Department of Gynaecology and Obstetrics, Women and Children's Hospital Affiliated to Xiamen University, Xiamen University, Xiamen 361102, Fujian, China
| | - Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Neuroscience, the First Affiliated Hospital, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Gynaecology and Obstetrics, Women and Children's Hospital Affiliated to Xiamen University, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
2
|
Ravindran E, Lesca G, Januel L, Goldgruber L, Dickmanns A, Margot H, Kaindl AM. Case report: Compound heterozygous NUP85 variants cause autosomal recessive primary microcephaly. Front Neurol 2023; 14:1124886. [PMID: 36846113 PMCID: PMC9947397 DOI: 10.3389/fneur.2023.1124886] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Nucleoporin (NUP) 85 is a member of the Y-complex of nuclear pore complex (NPC) that is key for nucleocytoplasmic transport function, regulation of mitosis, transcription, and chromatin organization. Mutations in various nucleoporin genes have been linked to several human diseases. Among them, NUP85 was linked to childhood-onset steroid-resistant nephrotic syndrome (SRNS) in four affected individuals with intellectual disability but no microcephaly. Recently, we broaden the phenotype spectrum of NUP85-associated disease by reporting NUP85 variants in two unrelated individuals with primary autosomal recessive microcephaly (MCPH) and Seckel syndrome (SCKS) spectrum disorders (MCPH-SCKS) without SRNS. In this study, we report compound heterozygous NUP85 variants in an index patient with only MCPH phenotype, but neither Seckel syndrome nor SRNS was reported. We showed that the identified missense variants cause reduced cell viability of patient-derived fibroblasts. Structural simulation analysis of double variants is predicted to alter the structure of NUP85 and its interactions with neighboring NUPs. Our study thereby further expands the phenotypic spectrum of NUP85-associated human disorder and emphasizes the crucial role of NUP85 in the brain development and function.
Collapse
Affiliation(s)
- Ethiraj Ravindran
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Department of Pediatric Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gaetan Lesca
- Department of Genetics, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France,Institut NeuroMyoGene PNMG, CNRS UMR5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Louis Januel
- Department of Genetics, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
| | - Linus Goldgruber
- Department of Biomedical Engineering, Veterinärmedizinische Universität (Vetmeduni), Vienna, Austria
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Henri Margot
- Department of Medical Genetics, University of Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Bordeaux, France,*Correspondence: Henri Margot ✉
| | - Angela M. Kaindl
- Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Department of Pediatric Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany,Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité – Universitätsmedizin Berlin, Berlin, Germany,Angela M. Kaindl ✉
| |
Collapse
|
3
|
Zhu L, Yang F, Li X, Li Q, Zhong C. Glycolysis Changes the Microenvironment and Therapeutic Response Under the Driver of Gene Mutation in Esophageal Adenocarcinoma. Front Genet 2021; 12:743133. [PMID: 34956314 PMCID: PMC8693172 DOI: 10.3389/fgene.2021.743133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Esophageal cancer is one of the most leading and lethal malignancies. Glycolysis and the tumor microenvironment (TME) are responsible for cancer progressions. We aimed to study the relationships between glycolysis, TME, and therapeutic response in esophageal adenocarcinoma (EAC). Materials and Methods: We used the ESTIMATE algorithm to divide EAC patients into ESTIMATE high and ESTIMATE low groups based on the gene expression data downloaded from TCGA. Weighted gene co-expression network analysis (WGCNA) and Gene Set Enrichment Analysis (GSEA) were performed to identify different glycolytic genes in the TME between the two groups. The prognostic gene signature for overall survival (OS) was established through Cox regression analysis. Impacts of glycolytic genes on immune cells were assessed and validated. Next, we conducted the glycolytic gene mutation analysis and drug therapeutic response analysis between the two groups. Finally, the GEO database was employed to validate the impact of glycolysis on TME in patients with EAC. Results: A total of 78 EAC patients with gene expression profiles and clinical information were included for analysis. Functional enrichment results showed that the genes between ESTIMATE high and ESTIMATE low groups (N = 39, respectively) were strongly related with glycolytic and ATP/ADP metabolic pathways. Patients in the low-risk group had probabilities to survive longer than those in the high-risk group (p < 0.001). Glycolytic genes had significant impacts on the components of immune cells in TME, especially on the T-cells and dendritic cells. In the high-risk group, the most common mutant genes were TP53 and TTN, and the most frequent mutation type was missense mutation. Glycolysis significantly influenced drug sensitivity, and high tumor mutation burden (TMB) was associated with better immunotherapeutic response. GEO results confirmed that glycolysis had significant impacts on immune cell contents in TME. Conclusion: We performed a comprehensive study of glycolysis and TME and demonstrated that glycolysis could influence the microenvironment and drug therapeutic response in EAC. Evaluation of the glycolysis pattern could help identify the individualized therapeutic regime.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fugui Yang
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinchuan Li
- Department of Thoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|