1
|
Qi Y, Gong H, Shen Z, Wu L, Xu Z, Shi N, Lin K, Tian M, Xu Z, Li X, Zhao Q. TRPM8 and TRPA1 ideal targets for treating cold-induced pain. Eur J Med Chem 2025; 282:117043. [PMID: 39571458 DOI: 10.1016/j.ejmech.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
TRP channels are essential for detecting variations in external temperature and are ubiquitously expressed in both the peripheral and central nervous systems as integral channel proteins. They primarily mediate a range of sensory responses, including thermal sensations, nociception, mechanosensation, vision, and gustation, thus playing a critical role in regulating various physiological functions. In colder climates, individuals often experience pain associated with low temperatures, leading to significant discomfort. Within the TRP channel family, TRPM8 and TRPA1 ion channels serve as the primary sensors for cold temperature fluctuations and are integral to both cold nociception and neuropathic pain pathways. Recent advancements in the biosynthesis of inhibitors targeting TRPM8 and TRPA1 have prompted the need for a comprehensive review of their structural characteristics, biological activities, biosynthetic pathways, and chemical synthesis. This paper aims to delineate the distinct roles of TRPM8 and TRPA1 in pain perception, elucidate their respective protein structures, and compile various combinations of TRPM8 and TRPA1 antagonists and agonists. The discussion encompasses their chemical structures, structure-activity relationships (SARs), biological activities, selectivity, and therapeutic potential, with a particular focus on the conformational relationships between antagonists and the channels. This review seeks to provide in-depth insights into pharmacological strategies for managing pain associated with TRPM8 and TRPA1 activation and will pave the way for future investigations into pharmacotherapeutic approaches for alleviating cold-induced pain.
Collapse
Affiliation(s)
- Yiming Qi
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hao Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zixian Shen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Limeng Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zonghe Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Nuo Shi
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Kexin Lin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Meng Tian
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Zihua Xu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| |
Collapse
|
2
|
Binkle-Ladisch L, Pironet A, Zaliani A, Alcouffe C, Mensching D, Haferkamp U, Willing A, Woo MS, Erdmann A, Jessen T, Hess SD, Gribbon P, Pless O, Vennekens R, Friese MA. Identification and development of TRPM4 antagonists to counteract neuronal excitotoxicity. iScience 2024; 27:111425. [PMID: 39687019 PMCID: PMC11648915 DOI: 10.1016/j.isci.2024.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/21/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration in central nervous system disorders is linked to dysregulated neuronal calcium. Direct inhibition of glutamate-induced neuronal calcium influx, particularly via N-methyl-D-aspartate receptors (NMDAR), has led to adverse effects and clinical trial failures. A more feasible approach is to modulate NMDAR activity or calcium signaling indirectly. In this respect, the calcium-activated non-selective cation channel transient receptor potential melastatin 4 (TRPM4) has been identified as a promising target. However, high affinity and specific antagonists are lacking. Here, we conducted high-throughput screening of a compound library to identify high affinity TRPM4 antagonists. This yielded five lead compound series with nanomolar half-maximal inhibitory concentration values. Through medicinal chemistry optimization of two series, we established detailed structure-activity relationships and inhibition of excitotoxicity in neurons. Moreover, we identified their potential binding site supported by electrophysiological measurements. These potent TRPM4 antagonists are promising drugs for treating neurodegenerative disorders and TRPM4-related pathologies, potentially overcoming previous therapeutic challenges.
Collapse
Affiliation(s)
- Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andy Pironet
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, Herestraat 49-Bus 802, 3000 Leuven, Belgium
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Chantal Alcouffe
- Department of Chemistry, Evotec SE, 195 Route D'Espagne, 31036 Toulouse, France
| | - Daniel Mensching
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Anne Willing
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Alexandre Erdmann
- Department of Chemistry, Evotec SE, 195 Route D'Espagne, 31036 Toulouse, France
| | | | - Stephen D. Hess
- Evotec Asia Pte Ltd, 79 Science Park Drive, #04-05 Cintech IV, Singapore 118264, Singapore
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, Herestraat 49-Bus 802, 3000 Leuven, Belgium
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
3
|
Sanders JH, Taiwo KM, Adekanye GA, Bali A, Zhang Y, Paulsen CE. Calmodulin binding is required for calcium mediated TRPA1 desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627969. [PMID: 39713425 PMCID: PMC11661184 DOI: 10.1101/2024.12.11.627969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Calcium (Ca2+) ions affect nearly all aspects of biology. Excessive Ca2+ entry is cytotoxic and Ca2+-mobilizing receptors have evolved diverse mechanisms for tight regulation that often include Calmodulin (CaM). TRPA1, an essential Ca2+-permeable ion channel involved in pain signaling and inflammation, exhibits complex Ca2+ regulation with initial channel potentiation followed by rapid desensitization. The molecular mechanisms of TRPA1 Ca2+ regulation and whether CaM plays a role remain elusive. We find that TRPA1 binds CaM best at basal Ca2+ concentration, that they co-localize in resting cells, and that CaM suppresses TRPA1 activity. Combining biochemical, biophysical, modeling, NMR spectroscopy, and functional approaches, we identify an evolutionarily conserved, high-affinity CaM binding element in the distal TRPA1 C-terminus (DCTCaMBE). Genetic or biochemical perturbation of Ca2+/CaM binding to the TRPA1 DCTCaMBE yields hyperactive channels that exhibit drastic slowing of desensitization with no effect on potentiation. Ca2+/CaM TRPA1 regulation does not require the N-lobe, raising the possibility that CaM is not the Ca2+ sensor, per se. Higher extracellular Ca2+ can partially rescue slowed desensitization suggesting Ca2+/CaM binding to the TRPA1 DCTCaMBE primes an intrinsic TRPA1 Ca2+ binding site that, upon binding Ca2+, triggers rapid desensitization. Collectively, our results identify a critical regulatory element in an unstructured TRPA1 region highlighting the importance of these domains, they reveal Ca2+/CaM is an essential TRPA1 auxiliary subunit required for rapid desensitization that establishes proper channel function with implications for all future TRPA1 work, and they uncover a mechanism for receptor regulation by Ca2+/CaM that expands the scope of CaM biology.
Collapse
Affiliation(s)
- Justin H. Sanders
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kehinde M. Taiwo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Glory A. Adekanye
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Avnika Bali
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yuekang Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Candice E. Paulsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Abdel-Dayem SIA, Otify AM, Iannotti FA, Saber FR, Moriello AS, Giovannuzzi S, Świątek Ł, Bonardi A, Gratteri P, Skalicka-Woźniak K, Supuran CT. Damsin and neoambrosin: Two sesquiterpene lactones with affinity and different activity for PPAR and TRPA1 receptors. Bioorg Chem 2024; 154:108032. [PMID: 39672074 DOI: 10.1016/j.bioorg.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Ambrosia maritima L. (family Asteraceae) is an annual herb widely distributed throughout the Mediterranean region and Africa. The herb is employed in folk medicine for the treatment of many ailments. Herein, we report a comprehensive investigation of the diverse biological potential of two sesquiterpene lactones, damsin and neoambrosin, isolated from Ambrosia maritima. 1D and 2D NMR and HR-ESI-MS/MS were employed to characterize the chemical structures of both compounds. In order to identify biological targets of both compounds we investigated their potential affinity for peroxisome proliferator-activated receptors (PPARs) and transient receptor potential (TRP) channels, which are pleiotropic classes of receptors implicated in essential functions of the body. This was investigated using a luciferase assay and a calcium fluorometric assay. A carbonic anhydrase inhibition assay was also performed using stopped flow CO2 hydrase spectrophotometric assay. Our analysis revealed that unlike damsin, neoambrosin showed a selective partial agonist effect on PPARγ receptors and TRPA1 channels. Its binding mode was investigated through in silico analysis. Both compounds showed no affinity for the tested carbonic anhydrases. Overall, our study details the chemical properties of neoambrosin and damsin and highlights neoambrosin as novel, cost-effective partial agonist of PPARɣ and TRPA1 receptors despite additional in vivo studies are needed to elucidate its biological and pharmacological properties.
Collapse
Affiliation(s)
- Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
5
|
Kvetkina AN, Oreshkov SD, Mironov PA, Zaigraev MM, Klimovich AA, Deriavko YV, Menshov AS, Kulbatskii DS, Logashina YA, Andreev YA, Chugunov AO, Kirpichnikov MP, Lyukmanova EN, Leychenko EV, Shenkarev ZO. Sea Anemone Kunitz Peptide HCIQ2c1: Structure, Modulation of TRPA1 Channel, and Suppression of Nociceptive Reaction In Vivo. Mar Drugs 2024; 22:542. [PMID: 39728117 DOI: 10.3390/md22120542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone Heteractis magnifica that inhibits serine proteases. Here, we showed that HCIQ2c1 significantly reduces AITC- and capsaicin-induced pain and inflammation in mice. Electrophysiology recordings in Xenopus oocytes expressing rat TRPA1 channel revealed that HCIQ2c1 binds to open TRPA1 and prevents its transition to closed and inhibitor-insensitive 'hyperactivated' states. NMR study of the 15N-labeled recombinant HCIQ2c1 analog described a classical Kunitz-type structure and revealed two dynamic hot-spots (loops responsible for protease binding and regions near the N- and C-termini) that exhibit simultaneous mobility on two timescales (ps-ns and μs-ms). In modelled HCIQ2c1/TRPA1 complex, the peptide interacts simultaneously with one voltage-sensing-like domain and two pore domain fragments from different channel's subunits, and with lipid molecules. The model explains stabilization of the channel in the open conformation and the restriction of 'hyperactivation', which are probably responsible for the observed analgetic activity. HCIQ2c1 is the third peptide ligand of TRPA1 from sea anemones and the first Kunitz-type ligand of this channel. HCIQ2c1 is a prototype of efficient analgesic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Aleksandra N Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Sergey D Oreshkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Pavel A Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maxim M Zaigraev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Anna A Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Yulia V Deriavko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Aleksandr S Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Yulia A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Anton O Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Elena V Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| |
Collapse
|
6
|
Amawi T, Nmarneh A, Noy G, Ghantous M, Niv MY, Di Pizio A, Priel A. Identification of the TRPA1 cannabinoid-binding site. Pharmacol Res 2024; 209:107444. [PMID: 39368566 DOI: 10.1016/j.phrs.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Chronic pain accounts for nearly two-thirds of conditions eligible for medical cannabis licenses, yet the mechanisms underlying cannabis-induced analgesia remain poorly understood. The principal phytocannabinoids, the psychoactive Δ9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD), exhibit comparable efficacy in pain management. Notably, THC functions as an agonist of cannabinoid receptor 1 (CB1), whereas CBD shows minimal activity on CB1 and CB2 receptors. Elucidating the molecular targets through which phytocannabinoids modulate the pain system is required for advancing our understanding of the pain pathway and optimizing medical cannabis therapies. Transient receptor potential ankyrin 1 (TRPA1), a pivotal chemosensor in the pain pathway, has been identified as a phytocannabinoid target. Unlike most TRPA1 activators, phytocannabinoid activation is not mediated through the electrophilic binding site, suggesting an alternative mechanism. Here, we identified the human TRPA1 channel cannabinoid-binding site (CBS) and demonstrated that mutations at residue Y840 abolished responses to both THC and CBD at saturating concentrations, indicating a shared primary binding site. Molecular modeling revealed distinct interactions of THC and CBD with the Y840 residue within the CBS. Additionally, CBD binds to the adjacent general anesthetic binding site at oversaturating concentrations. Our findings define the CBS of TRPA1 as overlapping with and adjacent to binding sites for other allosteric activators, suggesting that TRPA1 possesses a highly adaptable domain for binding non-electrophilic activators. This underscores its unique role as a chemosensor in the pain pathway. Furthermore, our results provide new insights into the molecular mechanisms of cannabinoid-induced analgesia and identify novel targets for pain management therapies.
Collapse
Affiliation(s)
- Tala Amawi
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Alaa Nmarneh
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Gilad Noy
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Mariana Ghantous
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising 85354, Germany; Proferssorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
7
|
Yu H, Gao D, Yang Y, Liu L, Zhao X, Na R. The Interaction Mechanism Between C14-Polyacetylene Compounds and the Rat TRPA1 Receptor: An In Silico Study. Int J Mol Sci 2024; 25:11290. [PMID: 39457072 PMCID: PMC11508972 DOI: 10.3390/ijms252011290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Polyacetylene (PA) compounds, as natural products, exhibit remarkable properties and distinctive chemical activities. Three structurally similar C14-PA compounds-Echinophorin D, Echinophorin B, and Echinophorin A-extracted from plants demonstrate varying biological activities on the Transient Receptor Potential Channel A1 (TRPA1) protein, which belongs to the TRP (Transient Receptor Potential) family. In the current study, we investigated the binding modes of these three PA compounds with TRPA1 using molecular dynamics (MD), molecular docking, binding free energy calculations, and quantum mechanics/molecular mechanics (QM/MM) methods. Initially, a putative binding site (site-II) in TRPA1 was identified for these compounds; Echinophorin B was found to stabilize the upward A-loop of TRPA1, which is critical for its activation. Furthermore, the binding affinity calculations of PA compounds through molecular fragment decomposition indicate that the arrangement of two triple bonds and one double bond in C14-PA compounds is vital for regulating TRPA1 bioactivity. Additionally, the lipophilic and electronic properties of the three molecules were analyzed in relation to binding affinity, establishing a correlation between TRPA1 activity and these molecular properties.
Collapse
Affiliation(s)
- Hui Yu
- College of Science, Beihua University, Jilin 132013, China;
| | - Denghui Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China;
| | - Ying Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.Y.); (R.N.)
| | - Lu Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130000, China;
| | - Xi Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130000, China;
| | - Risong Na
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.Y.); (R.N.)
| |
Collapse
|
8
|
Sallomy C, Awolade P, Rahnasto-Rilla M, Hämäläinen M, Nousiainen LP, Johansson NG, Hiltunen S, Turhanen P, Moilanen E, Lahtela-Kakkonen M, Timonen JM. TRPA1 Inhibition Effects by 3-Phenylcoumarin Derivatives. ACS Med Chem Lett 2024; 15:1221-1226. [PMID: 39140042 PMCID: PMC11318103 DOI: 10.1021/acsmedchemlett.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 08/15/2024] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) protein plays an important role in the inflammatory response, and it has been associated with different pain conditions and pain-related diseases, making TRPA1 a valid target for painkillers. In this study, we identified potential TRPA1 inhibitors and located their binding sites utilizing computer-aided drug design (CADD) techniques. The designed 3-phenylcoumarin-based TRPA1 inhibitors were successfully synthesized using a microwave assisted synthetic strategy. 3-(3-Bromophenyl)-7-acetoxycoumarin (5), 7-hydroxy-3-(3-hydroxyphenyl)coumarin (12) and 3-(3-hydroxyphenyl)coumarin (23) all showed inhibitory activity toward TRPA1 in vitro. Compound 5 also decreased the size and formation of breast cancer cells. Hence, targeting TRPA1 may represent a promising alternative for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Carita Sallomy
- School
of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Paul Awolade
- School
of Chemistry and Physics, University of
KwaZulu-Natal, P/Bag X54001, Westville, Durban 4041, South Africa
| | | | - Mari Hämäläinen
- Faculty
of Medicine and Health Technology, Tampere
University and Tampere University Hospital, Tampere 33520, Finland
| | - Liisa P. Nousiainen
- Institute
of Biomedicine, Faculty of Health Sciences,
University of Eastern Finland, Kuopio 70211, Finland
| | - Niklas G. Johansson
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Sanna Hiltunen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Petri Turhanen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Eeva Moilanen
- Faculty
of Medicine and Health Technology, Tampere
University and Tampere University Hospital, Tampere 33520, Finland
| | | | - Juri M. Timonen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
9
|
Đukanović Đ, Suručić R, Bojić MG, Trailović SM, Škrbić R, Gagić Ž. Design of Novel TRPA1 Agonists Based on Structure of Natural Vasodilator Carvacrol-In Vitro and In Silico Studies. Pharmaceutics 2024; 16:951. [PMID: 39065648 PMCID: PMC11280049 DOI: 10.3390/pharmaceutics16070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Considering the escalating global prevalence and the huge therapeutic demand for the treatment of hypertension, there is a persistent need to identify novel target sites for vasodilator action. This study aimed to investigate the role of TRPA1 channels in carvacrol-induced vasodilation and to design novel compounds based on carvacrol structure with improved activities. In an isolated tissue bath experiment, it was shown that 1 µM of the selective TRPA1 antagonist A967079 significantly (p < 0.001) reduced vasodilation induced by 3 mM of carvacrol. A reliable 3D-QSAR model with good statistical parameters was created (R2 = 0.83; Q2 = 0.59 and Rpred2 = 0.84) using 29 TRPA1 agonists. Obtained results from this model were used for the design of novel TRPA1 activators, and to predict their activity against TRPA1. Predicted pEC50 activities of these molecules range between 4.996 to 5.235 compared to experimental pEC50 of 4.77 for carvacrol. Molecular docking studies showed that designed molecules interact with similar amino acid residues of the TRPA1 channel as carvacrol, with eight compounds showing lower binding energies. In conclusion, carvacrol-induced vasodilation is partly mediated by the activation of TRPA1 channels. Combining different in silico approaches pointed out that the molecule D27 (2-[2-(hydroxymethyl)-4-methylphenyl]acetamide) is the best candidate for further synthesis and experimental evaluation in in vitro conditions.
Collapse
Affiliation(s)
- Đorđe Đukanović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (M.G.B.); (R.Š.)
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (Ž.G.)
| | - Relja Suručić
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (Ž.G.)
| | - Milica Gajić Bojić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (M.G.B.); (R.Š.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Saša M. Trailović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (M.G.B.); (R.Š.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Žarko Gagić
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (Ž.G.)
| |
Collapse
|
10
|
Vitale RM, de Petrocellis L, Amodeo P. An updated patent review of TRPA1 antagonists (2020 - present). Expert Opin Ther Pat 2024; 34:315-332. [PMID: 38847054 DOI: 10.1080/13543776.2024.2364798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION TRPA1 is a nonselective calcium channel, a member of the transient receptor potential (TRP) superfamily, also referred to as the 'irritant' receptor, being activated by pungent and noxious exogenous chemicals as well as by endogenous algogenic stimuli, to elicit pain, itching, and inflammatory conditions. For this reason, it is considered an attractive therapeutic target to treat a wide range of diseases including acute and chronic pain, itching, and inflammatory airway diseases. AREAS COVERED The present review covers patents on TRPA1 antagonists disclosed from 2020 to present, falling in the following main classes: i) novel therapeutic applications for known or already disclosed antagonists, ii) identification and characterization of TRPA1 antagonists from natural sources, and iii) synthesis and evaluation of novel compounds. EXPERT OPINION Despite the limited number of TRPA1 antagonists in clinical trials, there is an ever-growing interest on this receptor-channel as therapeutic target, mainly due to the relevant outcomes from basic research, which unveiled novel physio-pathological mechanisms where TRPA1 is believed to play a pivotal role, for example the Alzheimer's disease or ocular diseases, expanding the panel of potential therapeutic applications for TRPA1 modulators.
Collapse
Affiliation(s)
| | - Luciano de Petrocellis
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Pozzuoli (NA), Italy
| | | |
Collapse
|
11
|
Nadezhdin KD, Correia L, Shalygin A, Aktolun M, Neuberger A, Gudermann T, Kurnikova MG, Chubanov V, Sobolevsky AI. Structural basis of selective TRPM7 inhibition by the anticancer agent CCT128930. Cell Rep 2024; 43:114108. [PMID: 38615321 PMCID: PMC11096667 DOI: 10.1016/j.celrep.2024.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
TRP channels are implicated in various diseases, but high structural similarity between them makes selective pharmacological modulation challenging. Here, we study the molecular mechanism underlying specific inhibition of the TRPM7 channel, which is essential for cancer cell proliferation, by the anticancer agent CCT128930 (CCT). Using cryo-EM, functional analysis, and MD simulations, we show that CCT binds to a vanilloid-like (VL) site, stabilizing TRPM7 in the closed non-conducting state. Similar to other allosteric inhibitors of TRPM7, NS8593 and VER155008, binding of CCT is accompanied by displacement of a lipid that resides in the VL site in the apo condition. Moreover, we demonstrate the principal role of several residues in the VL site enabling CCT to inhibit TRPM7 without impacting the homologous TRPM6 channel. Hence, our results uncover the central role of the VL site for the selective interaction of TRPM7 with small molecules that can be explored in future drug design.
Collapse
Affiliation(s)
- Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Leonor Correia
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Alexey Shalygin
- Comprehensive Pneumology Center, a Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Muhammed Aktolun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany; Comprehensive Pneumology Center, a Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Maria G Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Huang J, Korsunsky A, Yazdani M, Chen J. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Front Mol Neurosci 2024; 16:1334370. [PMID: 38273937 PMCID: PMC10808746 DOI: 10.3389/fnmol.2023.1334370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of transmembrane ion channels that are widely expressed, have important physiological roles, and are associated with many human diseases. These proteins are actively pursued as promising drug targets, benefitting greatly from advances in structural and mechanistic studies of TRP channels. At the same time, the complex, polymodal activation and regulation of TRP channels have presented formidable challenges. In this short review, we summarize recent progresses toward understanding the structural basis of TRP channel function, as well as potential ligand binding sites that could be targeted for therapeutics. A particular focus is on the current understanding of the molecular mechanisms of TRP channel activation and regulation, where many fundamental questions remain unanswered. We believe that a deeper understanding of the functional mechanisms of TRP channels will be critical and likely transformative toward developing successful therapeutic strategies targeting these exciting proteins. This endeavor will require concerted efforts from computation, structural biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and clinical studies.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Aron Korsunsky
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Mahdieh Yazdani
- Modeling and Informatics, Merck & Co., Inc., West Point, PA, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
13
|
Vlachova V, Barvik I, Zimova L. Human Transient Receptor Potential Ankyrin 1 Channel: Structure, Function, and Physiology. Subcell Biochem 2024; 104:207-244. [PMID: 38963489 DOI: 10.1007/978-3-031-58843-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.
Collapse
Affiliation(s)
- Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
14
|
Koldsø H, Jensen MØ, Jogini V, Shaw DE. Functional dynamics and allosteric modulation of TRPA1. Structure 2023; 31:1556-1566.e3. [PMID: 37729917 DOI: 10.1016/j.str.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/29/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The cation channel TRPA1 is a potentially important drug target, and characterization of TRPA1 functional dynamics might help guide structure-based drug design. Here, we present results from long-timescale molecular dynamics simulations of TRPA1 with an allosteric activator, allyl isothiocyanate (AITC), in which we observed spontaneous transitions from a closed, non-conducting channel conformation into an open, conducting conformation. Based on these transitions, we propose a gating mechanism in which movement of a regulatory TRP-like domain allosterically translates into pore opening in a manner reminiscent of pore opening in voltage-gated ion channels. In subsequent experiments, we found that mutations that disrupt packing of the S4-S5 linker-TRP-like domain and the S5 and S6 helices also affected channel activity. In simulations, we also observed A-967079, a known allosteric inhibitor, binding between helices S5 and S6, suggesting that A-967079 may suppress activity by stabilizing a non-conducting pore conformation-a finding consistent with our proposed gating mechanism.
Collapse
Affiliation(s)
| | | | | | - David E Shaw
- D. E. Shaw Research, New York, NY 10036, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Zhang Q, Weng W, Gu X, Xiang J, Yang Y, Zhu MX, Gu W, He Z, Li Y. hnRNPA1 SUMOylation promotes cold hypersensitivity in chronic inflammatory pain by stabilizing TRPA1 mRNA. Cell Rep 2023; 42:113401. [PMID: 37943660 DOI: 10.1016/j.celrep.2023.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
TRPA1 is pivotal in cold hypersensitivity, but its regulatory mechanisms in inflammatory cold hyperalgesia remain poorly understood. We show here that the upregulation of SUMO1-conjugated protein levels in a complete Freund's adjuvant (CFA)-induced inflammatory pain model enhances TRPA1 mRNA stability, ultimately leading to increased expression levels. We further demonstrate that hnRNPA1 binds to TRPA1 mRNA, and its SUMOylation, upregulated in CFA-induced inflammatory pain, contributes to stabilizing TRPA1 mRNA by accumulating hnRNPA1 in the cytoplasm. Moreover, we find that wild-type hnRNPA1 viral infection in dorsal root ganglia neurons, and not infection with the SUMOylation-deficient hnRNPA1 mutant, can rescue the reduced ability of hnRNPA1-knockdown mice to develop inflammatory cold pain hypersensitivity. These results suggest that hnRNPA1 is a regulator of TRPA1 mRNA stability, the capability of which is enhanced upon SUMO1 conjugation at lysine 3 in response to peripheral inflammation, and the increased expression of TRPA1 in turn underlies the development of chronic inflammatory cold pain hypersensitivity.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiji Weng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaokun Gu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinhua Xiang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhenzhou He
- Department of Anesthesiology, Minhang Hospital Affiliated to Fudan University, Shanghai 201199, China.
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
16
|
Rasmussen RH, Christensen SL, Calloe K, Nielsen BS, Rehfeld A, Taylor-Clark TE, Haanes KA, Taboureau O, Audouze K, Klaerke DA, Olesen J, Kristensen DM. Xenobiotic Exposure and Migraine-Associated Signaling: A Multimethod Experimental Study Exploring Cellular Assays in Combination with Ex Vivo and In Vivo Mouse Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117003. [PMID: 37909725 PMCID: PMC10619430 DOI: 10.1289/ehp12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100 μ M . None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (N total = 144 ). DISCUSSION Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.
Collapse
Affiliation(s)
- Rikke H. Rasmussen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - Sarah L. Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Brian Skriver Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Anders Rehfeld
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Thomas E. Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Kristian A. Haanes
- Department of Clinical Experimental Research, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Olivier Taboureau
- Unité de Biologie Fonctionnelle, Université Paris Cité, Centre national de la recherche scientifique (CNRS, French National Centre for Scientific Research), Institut national de la santé et de la recherche médicale (Inserm, National Institute of Health & Medical Research), Paris, France
| | | | - Dan A. Klaerke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - David M. Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Institut de recherche en santé, environnement et travail (Irset) – UMR_S 1085, Université de Rennes, Inserm, École des hautes études en santé publique (EHESP), Rennes, France
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
17
|
Cole BA, Becker EBE. Modulation and Regulation of Canonical Transient Receptor Potential 3 (TRPC3) Channels. Cells 2023; 12:2215. [PMID: 37759438 PMCID: PMC10526463 DOI: 10.3390/cells12182215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Canonical transient receptor potential 3 (TRPC3) channel is a non-selective cation permeable channel that plays an essential role in calcium signalling. TRPC3 is highly expressed in the brain and also found in endocrine tissues and smooth muscle cells. The channel is activated directly by binding of diacylglycerol downstream of G-protein coupled receptor activation. In addition, TRPC3 is regulated by endogenous factors including Ca2+ ions, other endogenous lipids, and interacting proteins. The molecular and structural mechanisms underlying activation and regulation of TRPC3 are incompletely understood. Recently, several high-resolution cryogenic electron microscopy structures of TRPC3 and the closely related channel TRPC6 have been resolved in different functional states and in the presence of modulators, coupled with mutagenesis studies and electrophysiological characterisation. Here, we review the recent literature which has advanced our understanding of the complex mechanisms underlying modulation of TRPC3 by both endogenous and exogenous factors. TRPC3 plays an important role in Ca2+ homeostasis and entry into cells throughout the body, and both pathological variants and downstream dysregulation of TRPC3 channels have been associated with a number of diseases. As such, TRPC3 may be a valuable therapeutic target, and understanding its regulatory mechanisms will aid future development of pharmacological modulators of the channel.
Collapse
Affiliation(s)
- Bethan A. Cole
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Esther B. E. Becker
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
18
|
Ferreira MKA, Freitas WPO, Barbosa IM, da Rocha MN, da Silva AW, de Lima Rebouças E, da Silva Mendes FR, Alves CR, Nunes PIG, Marinho MM, Furtado RF, Santos FA, Marinho ES, de Menezes JESA, dos Santos HS. Heterocyclic chalcone ( E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(thiophen-2-yl) prop-2-en-1-one derived from a natural product with antinociceptive, anti-inflammatory, and hypoglycemic effect in adult zebrafish. 3 Biotech 2023; 13:276. [PMID: 37457871 PMCID: PMC10349009 DOI: 10.1007/s13205-023-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetes is a disease linked to pathologies, such as chronic inflammation, neuropathy, and pain. The synthesis by the Claisen-Schmidt condensation reaction aims to obtain medium to high yield chalconic derivatives. Studies for the synthesis of new chalcone molecules aim at the structural manipulation of aromatic rings, as well as the replacement of rings by heterocycles, and combination through chemical reactions of synthesized structures with other molecules, in order to enhance biological activity. A chalcone was synthesized and evaluated for its antinociceptive, anti-inflammatory and hypoglycemic effect in adult zebrafish. In addition to reducing nociceptive behavior, chalcone (40 mg/kg) reversed post-treatment-induced acute and chronic hyperglycemia and reduced carrageenan-induced abdominal edema in zebrafish. It also showed an inhibitory effect on NO production in J774A.1 cells. When compared with the control groups, the oxidative stress generated after chronic hyperglycemia and after induction of abdominal edema was significantly reduced by chalcone. Molecular docking simulations of chalcone with Cox -1, Cox-2, and TRPA1 channel enzymes were performed and indicated that chalcone has a higher affinity for the COX-1 enzyme and 4 interactions with the TRPA1 channel. Chalcone also showed good pharmacokinetic properties as assessed by ADMET. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03696-8.
Collapse
Affiliation(s)
- Maria Kueirislene Amancio Ferreira
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Wendy Pascoal Oliveira Freitas
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Italo Moura Barbosa
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Matheus Nunes da Rocha
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Antônio Wlisses da Silva
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | - Emanuela de Lima Rebouças
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | | | - Carlucio Roberto Alves
- Laboratório de Sistemas de Nanotecnologia e BiomateriaisPrograma de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | | | | | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | - Emmanuel Silva Marinho
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Helcio Silva dos Santos
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
- Departamento de Química, Universidade Estadual Vale do Acaraú, Sobral, CE Brazil
| |
Collapse
|
19
|
Fushimi T, Hirahata C, Hiroki K, Fujii Y, Calabrese V, Suhara Y, Osakabe N. Activation of transient receptor potential channels is involved in reactive oxygen species (ROS)-dependent regulation of blood flow by (-)-epicatechin tetramer cinnamtannin A2. Biochem Pharmacol 2023:115682. [PMID: 37429424 DOI: 10.1016/j.bcp.2023.115682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Intervention trials confirmed that blood flow-mediated dilatation increases significantly after intake of astringent (-)-epicatechin (EC) oligomers (procyanidins)-rich foods, but the mechanism remains unclear. We have previously found that procyanidins can activate the sympathetic nervous and subsequently increase blood flow. Here, we examined whether procyanidin-derived reactive oxygen species (ROS) activate transient receptor potential (TRP) channels in gastrointestinal sensory nerves and consequently induce sympathoexcitation. We evaluated the redox properties of EC and its tetramer cinntamtannin A2 (A2) at pH 5 or 7, mimicking plant vacuole or oral cavity/small intestine using a luminescent probe. At pH 5, A2 or EC showed O2・- scavenging ability, but they promoted O2・- generation at pH 7. We observed blood flow in rat cremaster arterioles using laser Doppler, a single oral dose of 10 µg/kg A2 markedly increased blood flow, while EC showed little activity. This change with A2 was significantly dampened by co-administration of adrenaline blocker, ROS scavenger N-acetyl-L-cysteine (NAC), TRP vanilloid 1, or ankyrin 1 antagonist. We also performed a docking simulation of EC or A2 with the binding site of a typical ligand for each TRP channel and calculated the respective binding affinities. The binding energies were notably higher for A2 than typical ligands, suggesting that A2 is less likely to bind to these sites. ROS produced at neutral pH following the orally administered A2 to the gastrointestinal tract could activate TRP channels, triggering sympathetic hyperactivation and causing hemodynamic changes.
Collapse
Affiliation(s)
- Taiki Fushimi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology
| | - Chie Hirahata
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology
| | - Kento Hiroki
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Yasuyuki Fujii
- Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania
| | - Yoshitomo Suhara
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology; Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology; Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology
| | - Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology; Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology; Department of Bio-science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology.
| |
Collapse
|
20
|
Nemes B, László S, Zsidó BZ, Hetényi C, Feher A, Papp F, Varga Z, Szőke É, Sándor Z, Pintér E. Elucidation of the binding mode of organic polysulfides on the human TRPA1 receptor. Front Physiol 2023; 14:1180896. [PMID: 37351262 PMCID: PMC10282659 DOI: 10.3389/fphys.2023.1180896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Previous studies have established that endogenous inorganic polysulfides have significant biological actions activating the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor. Organic polysulfides exert similar effects, but they are much more stable molecules, therefore these compounds are more suitable as drugs. In this study, we aimed to better understand the mechanism of action of organic polysulfides by identification of their binding site on the TRPA1 receptor. Methods: Polysulfides can readily interact with the thiol side chain of the cysteine residues of the protein. To investigate their role in the TRPA1 activation, we replaced several cysteine residues by alanine via site-directed mutagenesis. We searched for TRPA1 mutant variants with decreased or lost activating effect of the polysulfides, but with other functions remaining intact (such as the effects of non-electrophilic agonists and antagonists). The binding properties of the mutant receptors were analyzed by in silico molecular docking. Functional changes were tested by in vitro methods: calcium sensitive fluorescent flow cytometry, whole-cell patch-clamp and radioactive calcium-45 liquid scintillation counting. Results: The cysteines forming the conventional binding site of electrophilic agonists, namely C621, C641 and C665 also bind the organic polysulfides, with the key role of C621. However, only their combined mutation abolished completely the organic polysulfide-induced activation of the receptor. Discussion: Since previous papers provided evidence that organic polysulfides exert analgesic and anti-inflammatory actions in different in vivo animal models, we anticipate that the development of TRPA1-targeted, organic polysulfide-based drugs will be promoted by this identification of the binding site.
Collapse
Affiliation(s)
- Balázs Nemes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs László
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
21
|
Bali A, Schaefer SP, Trier I, Zhang AL, Kabeche L, Paulsen CE. Molecular mechanism of hyperactivation conferred by a truncation of TRPA1. Nat Commun 2023; 14:2867. [PMID: 37208332 PMCID: PMC10199097 DOI: 10.1038/s41467-023-38542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
A drastic TRPA1 mutant (R919*) identified in CRAMPT syndrome patients has not been mechanistically characterized. Here, we show that the R919* mutant confers hyperactivity when co-expressed with wild type (WT) TRPA1. Using functional and biochemical assays, we reveal that the R919* mutant co-assembles with WT TRPA1 subunits into heteromeric channels in heterologous cells that are functional at the plasma membrane. The R919* mutant hyperactivates channels by enhancing agonist sensitivity and calcium permeability, which could account for the observed neuronal hypersensitivity-hyperexcitability symptoms. We postulate that R919* TRPA1 subunits contribute to heteromeric channel sensitization by altering pore architecture and lowering energetic barriers to channel activation contributed by the missing regions. Our results expand the physiological impact of nonsense mutations, reveal a genetically tractable mechanism for selective channel sensitization, uncover insights into the process of TRPA1 gating, and provide an impetus for genetic analysis of patients with CRAMPT or other stochastic pain syndromes.
Collapse
Affiliation(s)
- Avnika Bali
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Samantha P Schaefer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Alice L Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Candice E Paulsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Ju Y, Luo M, Yan T, Zhou Z, Zhang M, Zhao Z, Liu X, Mei Z, Xiong H. TRPA1 is involved in the inhibitory effect of Ke-teng-zi on allergic contact dermatitis via MAPK and JAK/STAT3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116182. [PMID: 36706935 DOI: 10.1016/j.jep.2023.116182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Entada phaseoloides (Linn.) Merr. commonly named "Ke-teng-zi" is a traditional Chinese folk medicine and reported to treat dermatitis, spasm, and headache. However, the exact effect and the mechanism of Ke-teng-zi on the treatment of dermatitis is unclear. AIM OF THE STUDY To elucidate the antipruritic effect and molecular mechanisms of Ke-teng-zi on the treatment of allergic contact dermatitis (ACD). MATERIALS AND METHODS The main components of the n-butanol fraction of 70% ethanol extract from Ke-teng-zi (abbreviated as KB) were analyzed by HPLC. The chloroquine (CQ)-induced acute itch and squaraine dibutyl ester (SADBE)-induced ACD chronic itch in mice was established, and the TNF-α/IFN-γ stimulated Human keratinocytes (HaCaT) were used to evaluate the antipruritic and anti-inflammatory effects of KB. Behavioral tests, lesion scoring, and histology were also examined. The expression levels of molecules in MAPK and JAK/STAT3 pathways, the mRNA levels of chemokines and cytokines in both the skin of ACD mice and the HaCaT cells were detected by western blot and qPCR. Furthermore, whole-cell patch-clamp recordings in TRPA1-tranfected HEK293T cells were used to elucidate the effect of KB on TRPA1 channels. TRPA1 siRNA was used to evaluate the role of TRPA1 in the anti-inflammatory effect of KB in keratinocytes. RESULTS The main compounds in KB could bind to the active sites of TRPA1 mainly through hydrogen bond and hydrophobic bond interactions. KB could inhibit the scratching behavior in CQ-induced acute itch, and the inhibitory effect of KB was blocked by TRPA1 inhibitor HC-030031. In addition, KB significantly decreased the scratching bouts of ACD mice, reduced the skin lesion scores, mast cells degranulation, and epidermal thickening, inhibited the production of inflammatory chemokines/cytokines and CGRP, and down-regulated the levels of p-ERK1/2, p-p38, and p-STAT3, compared to the ACD mice. Moreover, continuous application of KB induced the desensitization of TRPA1 channels. Also, KB inhibited the expression of p-ERK1/2, p-p38, and p-STAT3, and down-regulated the expression of inflammatory chemokines and cytokines in vitro, which were reversed by the TRPA1 siRNA. CONCLUSIONS KB alleviated the pruritus and skin inflammation in ACD mice through TRPA1 channels desensitization and down-regulation of intracellular MAPK and JAK/STAT3 signaling pathways. Our results suggested that Ke-teng-zi is a potential drug for the treatment of inflammatory skin diseases such as ACD.
Collapse
Affiliation(s)
- Yankun Ju
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Miao Luo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ting Yan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Zhengfan Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Man Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Zhongqiu Zhao
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, 63110, USA; Barnes-Jewish Hospital, St Louis, MO, 63110, USA
| | - Xinqiao Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430074, China.
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
23
|
Nadezhdin KD, Correia L, Narangoda C, Patel DS, Neuberger A, Gudermann T, Kurnikova MG, Chubanov V, Sobolevsky AI. Structural mechanisms of TRPM7 activation and inhibition. Nat Commun 2023; 14:2639. [PMID: 37156763 PMCID: PMC10167348 DOI: 10.1038/s41467-023-38362-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
The transient receptor potential channel TRPM7 is a master regulator of the organismal balance of divalent cations that plays an essential role in embryonic development, immune responses, cell mobility, proliferation, and differentiation. TRPM7 is implicated in neuronal and cardiovascular disorders, tumor progression and has emerged as a new drug target. Here we use cryo-EM, functional analysis, and molecular dynamics simulations to uncover two distinct structural mechanisms of TRPM7 activation by a gain-of-function mutation and by the agonist naltriben, which show different conformational dynamics and domain involvement. We identify a binding site for highly potent and selective inhibitors and show that they act by stabilizing the TRPM7 closed state. The discovered structural mechanisms provide foundations for understanding the molecular basis of TRPM7 channelopathies and drug development.
Collapse
Affiliation(s)
- Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Leonor Correia
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Chamali Narangoda
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dhilon S Patel
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Moccia F, Montagna D. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel as a Sensor of Oxidative Stress in Cancer Cells. Cells 2023; 12:cells12091261. [PMID: 37174661 PMCID: PMC10177399 DOI: 10.3390/cells12091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Moderate levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), fuel tumor metastasis and invasion in a variety of cancer types. Conversely, excessive ROS levels can impair tumor growth and metastasis by triggering cancer cell death. In order to cope with the oxidative stress imposed by the tumor microenvironment, malignant cells exploit a sophisticated network of antioxidant defense mechanisms. Targeting the antioxidant capacity of cancer cells or enhancing their sensitivity to ROS-dependent cell death represent a promising strategy for alternative anticancer treatments. Transient Receptor Potential Ankyrin 1 (TRPA1) is a redox-sensitive non-selective cation channel that mediates extracellular Ca2+ entry upon an increase in intracellular ROS levels. The ensuing increase in intracellular Ca2+ concentration can in turn engage a non-canonical antioxidant defense program or induce mitochondrial Ca2+ dysfunction and apoptotic cell death depending on the cancer type. Herein, we sought to describe the opposing effects of ROS-dependent TRPA1 activation on cancer cell fate and propose the pharmacological manipulation of TRPA1 as an alternative therapeutic strategy to enhance cancer cell sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy
- Pediatric Clinic, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
25
|
Wang X, Li Y, Wei H, Yang Z, Luo R, Gao Y, Zhang W, Liu X, Sun L. Molecular architecture and gating mechanisms of the Drosophila TRPA1 channel. Cell Discov 2023; 9:36. [PMID: 37015924 PMCID: PMC10073219 DOI: 10.1038/s41421-023-00527-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/03/2023] [Indexed: 04/06/2023] Open
Abstract
The transient receptor potential channel subfamily A member 1 (TRPA1) ion channel is an evolutionary conserved polymodal sensor responding to noxious temperature or chemical stimuli. Notably, the thermosensitivity of TRPA1 varies among different species or even different isoforms in the same species. However, the underlying molecular basis of its thermo-gating remains largely unknown. Here, we determine the structures of a heat-sensitive isoform of TRPA1 in Drosophila melanogaster in two distinct conformations with cryo-samples prepared at 8 °C. Large conformational changes are observed in the ankyrin repeat domain (ARD) and the coiled-coil domain between the two states. Remarkably, all 17 ankyrin repeats are mapped in the newly resolved conformation, forming a propeller-like architecture. Two intersubunit interfaces are identified in the amino (N)-terminal domain, and play vital roles during both heat and chemical activation as shown by electrophysiological analysis. With cryo-samples prepared at 35 °C, only one conformation is resolved, suggesting possible state transitions during heat responses. These findings provide a basis for further understanding how the ARD regulates channel functions, and insights into the gating mechanism of TRPA1.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China
| | - Yawen Li
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China
| | - Hong Wei
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China
| | - Zhisen Yang
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China
| | - Rui Luo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Yongxiang Gao
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China.
| | - Xin Liu
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China.
| | - Linfeng Sun
- Department of Neurology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China.
- CAS Centre for Excellence in Molecular Cell Science, University of Science and Technology of China, 230027, Hefei, China.
| |
Collapse
|
26
|
Zhu KF, Yuan C, Du YM, Sun KL, Zhang XK, Vogel H, Jia XD, Gao YZ, Zhang QF, Wang DP, Zhang HW. Applications and prospects of cryo-EM in drug discovery. Mil Med Res 2023; 10:10. [PMID: 36872349 PMCID: PMC9986049 DOI: 10.1186/s40779-023-00446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time- and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy (cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence (AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of medium-resolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.
Collapse
Affiliation(s)
- Kong-Fu Zhu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Chuang Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Yong-Ming Du
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Kai-Lei Sun
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Hong Kong, 999077 China
| | - Xiao-Kang Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 Guangdong China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
| | - Xu-Dong Jia
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Yuan-Zhu Gao
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Qin-Fen Zhang
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Da-Ping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 Guangdong China
| | - Hua-Wei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| |
Collapse
|
27
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
28
|
Mesch S, Walter D, Laux-Biehlmann A, Basting D, Flanagan S, Miyatake Ondozabal H, Bäurle S, Pearson C, Jenkins J, Elves P, Hess S, Coelho AM, Rotgeri A, Bothe U, Nawaz S, Zollner TM, Steinmeyer A. Discovery of BAY-390, a Selective CNS Penetrant Chemical Probe as Transient Receptor Potential Ankyrin 1 (TRPA1) Antagonist. J Med Chem 2023; 66:1583-1600. [PMID: 36622903 PMCID: PMC9884088 DOI: 10.1021/acs.jmedchem.2c01830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 01/10/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a voltage-dependent, ligand-gated ion channel, and activation thereof is linked to a variety of painful conditions. Preclinical studies have demonstrated the role of TRPA1 receptors in a broad range of animal models of acute, inflammatory, and neuropathic pain. In addition, a clinical study using the TRPA1 antagonist GRC-17536 (Glenmark Pharmaceuticals) demonstrated efficacy in a subgroup of patients with painful diabetic neuropathy. Consequently, there is an increasing interest in TRPA1 inhibitors as potential analgesics. Herein, we report the identification of a fragment-like hit from a high-throughput screening (HTS) campaign and subsequent optimization to provide a novel and brain-penetrant TRPA1 inhibitor (compound 18, BAY-390), which is now being made available to the research community as an open-source in vivo probe.
Collapse
Affiliation(s)
- Stefanie Mesch
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daryl Walter
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Alexis Laux-Biehlmann
- Exploratory
Pathobiology, RED preMED, R&D, Bayer
AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Daniel Basting
- Pharmaceutical
R&D, Drug Discovery, Lead Identification and Characterization, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Stuart Flanagan
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Hideki Miyatake Ondozabal
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Stefan Bäurle
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Christopher Pearson
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - James Jenkins
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Philip Elves
- Discovery
Chemistry, Evotec UK, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K.
| | - Stephen Hess
- In
Vitro Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen
7, 22419 Hamburg, Germany
| | - Anne-Marie Coelho
- In Vivo Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Andrea Rotgeri
- Pharmaceutical
R&D, Early Development, Drug Metabolism and Pharmacokinetics, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Ulrich Bothe
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Schanila Nawaz
- In Vivo Pharmacology, Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Thomas M. Zollner
- Pharmaceutical
R&D, Preclinical Research, Therapeutic Area Endocrinology, Metabolism
and Reproductive Health, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Andreas Steinmeyer
- Pharmaceutical
R&D, Drug Discovery, Medicinal Chemistry, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| |
Collapse
|
29
|
Anti-Inflammatory Effects of Cannabigerol in Rheumatoid Arthritis Synovial Fibroblasts and Peripheral Blood Mononuclear Cell Cultures Are Partly Mediated by TRPA1. Int J Mol Sci 2023; 24:ijms24010855. [PMID: 36614296 PMCID: PMC9820932 DOI: 10.3390/ijms24010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Since its medical legalization, cannabis preparations containing the major phytocannabinoids (cannabidiol (CBD) and δ9-tetrahydrocannabinol (THC)) have been used by patients with rheumatoid arthritis (RA) to alleviate pain and inflammation. However, minor cannabinoids such as cannabigerol (CBG) also demonstrated anti-inflammatory properties, but due to the lack of studies, they are not widely used. CBG binds several cellular target proteins such as cannabinoid and α2-adrenergic receptors, but it also ligates several members of the transient potential receptor (TRP) family with TRPA1 being the main target. TRPA1 is not only involved in nnociception, but it also protects cells from apoptosis under oxidative stress conditions. Therefore, modulation of TRPA1 signaling by CBG might be used to modulate disease activity in RA as this autoimmune disease is accompanied by oxidative stress and subsequent activation of pro-inflammatory pathways. Rheumatoid synovial fibroblasts (RASF) were stimulated or not with tumor necrosis factor (TNF) for 72 h to induce TRPA1 protein. CBG increased intracellular calcium levels in TNF-stimulated RASF but not unstimulated RASF in a TRPA1-dependent manner. In addition, PoPo3 uptake, a surrogate marker for drug uptake, was enhanced by CBG. RASF cell viability, IL-6 and IL-8 production were decreased by CBG. In peripheral blood mononuclear cell cultures (PBMC) alone or together with RASF, CBG-modulated interleukin (IL)-6, IL-10, TNF and immunoglobulin M and G production which was dependent on activation stimulus (T cell-dependent or independent). However, effects on PBMCs were only partially mediated by TRPA1 as the antagonist A967079 did inhibit some but not all effects of CBG on cytokine production. In contrast, TRPA1 antagonism even enhanced the inhibitory effects of CBG on immunoglobulin production. CBG showed broad anti-inflammatory effects in isolated RASF, PBMC and PBMC/RASF co-cultures. As CBG is non-psychotropic, it might be used as add-on therapy in RA to reduce IL-6 and autoantibody levels.
Collapse
|
30
|
Sun L, Zhang J, Niu C, Deering-Rice CE, Hughen RW, Lamb JG, Rose K, Chase KM, Almestica-Roberts M, Walter M, Schmidt EW, Light AR, Olivera BM, Reilly CA. CYP1B1-derived epoxides modulate the TRPA1 channel in chronic pain. Acta Pharm Sin B 2023; 13:68-81. [PMID: 36815047 PMCID: PMC9939319 DOI: 10.1016/j.apsb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Changshan Niu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - John G. Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Katherine Rose
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M. Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Markel Walter
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, UT 84112, USA,Corresponding author. Tel.: +1 8015815236.
| |
Collapse
|
31
|
Abstract
The discovery of NAADP-evoked Ca2+ release in sea urchin eggs and then as a ubiquitous Ca2+ mobilizing messenger has introduced several novel paradigms to our understanding of Ca2+ signalling, not least in providing a link between cell stimulation and Ca2+ release from lysosomes and other acidic Ca2+ storage organelles. In addition, the hallmark concentration-response relationship of NAADP-mediated Ca2+ release, shaped by striking activation/desensitization mechanisms, influences its actions as an intracellular messenger. There has been recent progress in our understanding of the molecular mechanisms underlying NAADP-evoked Ca2+ release, such as the identification of the endo-lysosomal two-pore channel family of cation channels (TPCs) as their principal target and the identity of NAADP-binding proteins that complex with them. The NAADP/TPC signalling axis has gained recent prominence in pathophysiology for their roles in such disease processes as neurodegeneration, tumorigenesis and cellular viral entry.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lora L Martucci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
32
|
Rebouças EDL, da Silva AW, Rodrigues MC, Ferreira MKA, Mendes FRS, Marinho MM, Marinho EM, Pereira LR, Araújo JIFD, da Silva JYG, Moura LFWG, Magalhaes FEA, Salles Trevisan MT, Dos Santos HS, Marinho ES, Guedes MIF. Antinociceptive, anti-inflammatory and hypoglycemic activities of the ethanolic Turnera subulata Sm. flower extract in adult zebrafish ( Danio rerio). J Biomol Struct Dyn 2022; 40:13062-13074. [PMID: 34629028 DOI: 10.1080/07391102.2021.1981449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Turnera subulata Sm. belongs to the family Turneraceae and is found in Brazil. The present study evaluated the antinociceptive, anti-inflammatory, and hypoglycemic potential of T. subulata flower extract (EtFloTsu) in zebrafish (Danio rerio). The total phenol and flavonoid contents of EtFloTsu were determined and identified using the Folin Ciocalteu reagent and aluminum chloride (AlCl3), respectively. The constituents of the extract were identified by HPLC-DAD, and the in vitro antioxidant activity (DPPH) was determined, toxicity in brine shrimp, and acute toxicity of 96 h in adult zebrafish. In addition, adult zebrafish (n = 6/fish) were treated orally with EtFloTsu (4, 20, or 40 mg/kg; vo) and subjected to formalin-induced nociception tests (with its possible mechanism of action with camphor), carrageenan-induced inflammation, and D-glucose-induced hyperglycemia (111 mM). Oxidative stress in the liver and brain tissues was assessed. EtFloTsu showed high levels of phenolic and flavonoid compounds with antioxidant activity. The phytochemicals chlorogenic acid, luteolin-7-o-glucoside, vitexin, and apigenin-7-o-glucoside were also identified in EtFloTsu. The synergism between these constituents was possibly responsible for the antinociceptive (via TRPA1), anti-inflammatory, and hypoglycemic effects of EtFloTsu in adult zebrafish, without causing toxicity in animals. Therefore, T. subulata flowers have therapeutic agents that could treat pain, inflammation, diabetes, and related complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emanuela de Lima Rebouças
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Antonio Wlisses da Silva
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Marnielle Coutinho Rodrigues
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Kueirislene Amâncio Ferreira
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco Rogênio Silva Mendes
- Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Emanuelle Machado Marinho
- Group of Theoretical Chemistry - GQT, Pici Campus, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lucas Ramos Pereira
- Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | - José Ismael Feitosa de Araújo
- Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | - José Ytalo Gomes da Silva
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Francisco Ernani Alves Magalhaes
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil.,Department of Chemistry, Laboratory of Natural Products, Bioprospecting and Biotechnology, CECITEC Campus, State University of Ceará, Tauá, Ceará, Brazil
| | | | - Hélcio Silva Dos Santos
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Natural Products Chemistry - LQPN-S, Science and Technology Center (CCT), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil.,Department of Chemistry, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Group of Theoretical Chemistry and Electrochemical - GQTE, FAFIDAM Campus, State University of Ceará, Iguatu, Ceará, Brazil
| | - Maria Izabel Florindo Guedes
- Northeast Biotechnology Network, Graduate Program of Biotechnology, Campus do Itaperi, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Biotechnology and Molecular Biology, Health Sciences Center (CCS), Itaperi Campus, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
33
|
Zhang L, Simonsen C, Zimova L, Wang K, Moparthi L, Gaudet R, Ekoff M, Nilsson G, Hellmich UA, Vlachova V, Gourdon P, Zygmunt PM. Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function. Nat Commun 2022; 13:7483. [PMID: 36470868 PMCID: PMC9722916 DOI: 10.1038/s41467-022-35163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
TRPV2 is a ligand-operated temperature sensor with poorly defined pharmacology. Here, we combine calcium imaging and patch-clamp electrophysiology with cryo-electron microscopy (cryo-EM) to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from rat and human mast cells. Each ligand causes distinct conformational changes in TRPV2 as revealed by cryo-EM. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine. Taken together, we discover a new cannabinoid binding site in TRPV2 that is under the influence of allosteric control by probenecid. This molecular insight into ligand modulation enhances our understanding of TRPV2 in normal and pathophysiology.
Collapse
Affiliation(s)
- Liying Zhang
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden ,grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden ,grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Simonsen
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lucie Zimova
- grid.418095.10000 0001 1015 3316Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kaituo Wang
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lavanya Moparthi
- grid.5640.70000 0001 2162 9922Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden ,grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rachelle Gaudet
- grid.38142.3c000000041936754XDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA USA
| | - Maria Ekoff
- grid.24381.3c0000 0000 9241 5705Division Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Gunnar Nilsson
- grid.24381.3c0000 0000 9241 5705Division Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Ute A. Hellmich
- grid.9613.d0000 0001 1939 2794Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry and Cluster of Excellence “Balance of the Microverse”, Friedrich Schiller University Jena, Jena, Germany ,grid.7839.50000 0004 1936 9721Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt/Main, Germany
| | - Viktorie Vlachova
- grid.418095.10000 0001 1015 3316Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pontus Gourdon
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden ,grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter M. Zygmunt
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
34
|
Alarcón-Alarcón D, Cabañero D, de Andrés-López J, Nikolaeva-Koleva M, Giorgi S, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine. Nat Commun 2022; 13:6304. [PMID: 36272975 PMCID: PMC9588003 DOI: 10.1038/s41467-022-33835-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
TRPA1 and TRPM8 are transient receptor potential channels expressed in trigeminal neurons that are related to pathophysiology in migraine models. Here we use a mouse model of nitroglycerine-induced chronic migraine that displays a sexually dimorphic phenotype, characterized by mechanical hypersensitivity that develops in males and females, and is persistent up to day 20 in female mice, but disappears by day 18 in male mice. TRPA1 is required for development of hypersensitivity in males and females, whereas TRPM8 contributes to the faster recovery from hypersensitivity in males. TRPM8-mediated antinociception effects required the presence of endogenous testosterone in males. Administration of exogenous testosterone to females and orchidectomized males led to recovery from hypersensitivity. Calcium imaging and electrophysiological recordings in in vitro systems confirmed testosterone activity on murine and human TRPM8, independent of androgen receptor expression. Our findings suggest a protective function of TRPM8 in shortening the time frame of hypersensitivity in a mouse model of migraine.
Collapse
Affiliation(s)
- David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Jorge de Andrés-López
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| |
Collapse
|
35
|
The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain. Nat Commun 2022; 13:6113. [PMID: 36253390 PMCID: PMC9576766 DOI: 10.1038/s41467-022-33876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.
Collapse
|
36
|
Torres KV, Pantke S, Rudolf D, Eberhardt MM, Leffler A. The coumarin osthole is a non-electrophilic agonist of TRPA1. Neurosci Lett 2022; 789:136878. [PMID: 36115537 DOI: 10.1016/j.neulet.2022.136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
The naturally occurring coumarin osthole has antipruritic properties, and recent reports suggest that this effect is due an inhibition or desensitization of the cation channels TRPV1 and TRPV3. Osthole was also suggested to activate TRPA1, an effect that should rather be pruritic than antipruritic. Here we characterized the effects of osthole on TRPA1 by means of ratiometric calcium imaging and patch clamp electrophysiology. In HEK 293 expressing human (h) TRPA1, osthole induced a concentration-dependent increase in intracellular calcium that was inhibited by the TRPA1-inhibitor A967079. In mouse dorsal root ganglion (DRG) cells, osthole induced a strong calcium-influx that was partly mediated by TRPA1. Osthole evoked fully reversible membrane currents in whole-cell as well as cell-free inside-out recordings on hTRPA1. Osthole failed to activate the mutant hTRPA1-S873V/T874L, a previously described binding site for the non-electrophilic TRPA1-agonists menthol and carvacrol. The combined application of osthole and carvacrol diminished channel activation, suggesting a competitive binding. Finally, osthole failed to activate TRPM8 and TRPV4 but induced a modest activation of hTRPV1 expressed in HEK 293 cells. We conclude that osthole is a potent non-electrophilic agonist of TRPA1. The relevance of this property for the antipruritic effects needs to be further explored.
Collapse
Affiliation(s)
- Karen V Torres
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Sebastian Pantke
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Daniel Rudolf
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Mirjam M Eberhardt
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
37
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
38
|
Abstract
Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.
Collapse
Affiliation(s)
- Melinda M Diver
- Department of Physiology, University of California, San Francisco, California, USA;
- Current affiliation: Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - John V Lin King
- Department of Physiology, University of California, San Francisco, California, USA;
- Current affiliation: Department of Biology, Stanford University, Palo Alto, California, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, California, USA;
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA;
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
39
|
Cabezas-Bratesco D, Mcgee FA, Colenso CK, Zavala K, Granata D, Carnevale V, Opazo JC, Brauchi SE. Sequence and structural conservation reveal fingerprint residues in TRP channels. eLife 2022; 11:73645. [PMID: 35686986 PMCID: PMC9242649 DOI: 10.7554/elife.73645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential (TRP) proteins are a large family of cation-selective channels, surpassed in variety only by voltage-gated potassium channels. Detailed molecular mechanisms governing how membrane voltage, ligand binding, or temperature can induce conformational changes promoting the open state in TRP channels are still a matter of debate. Aiming to unveil distinctive structural features common to the transmembrane domains within the TRP family, we performed phylogenetic reconstruction, sequence statistics, and structural analysis over a large set of TRP channel genes. Here, we report an exceptionally conserved set of residues. This fingerprint is composed of twelve residues localized at equivalent three-dimensional positions in TRP channels from the different subtypes. Moreover, these amino acids are arranged in three groups, connected by a set of aromatics located at the core of the transmembrane structure. We hypothesize that differences in the connectivity between these different groups of residues harbor the apparent differences in coupling strategies used by TRP subgroups.
Collapse
Affiliation(s)
| | - Francisco A Mcgee
- Department of Biology, Temple University, Philadelphia, United States
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kattina Zavala
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniele Granata
- Department of Biology, Temple University, Philadelphia, United States
| | | | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | | |
Collapse
|
40
|
Yelshanskaya MV, Sobolevsky AI. Ligand-Binding Sites in Vanilloid-Subtype TRP Channels. Front Pharmacol 2022; 13:900623. [PMID: 35652046 PMCID: PMC9149226 DOI: 10.3389/fphar.2022.900623] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/02/2023] Open
Abstract
Vanilloid-subfamily TRP channels TRPV1-6 play important roles in various physiological processes and are implicated in numerous human diseases. Advances in structural biology, particularly the "resolution revolution" in cryo-EM, have led to breakthroughs in molecular characterization of TRPV channels. Structures with continuously improving resolution uncover atomic details of TRPV channel interactions with small molecules and protein-binding partners. Here, we provide a classification of structurally characterized binding sites in TRPV channels and discuss the progress that has been made by structural biology combined with mutagenesis, functional recordings, and molecular dynamics simulations toward understanding of the molecular mechanisms of ligand action. Given the similarity in structural architecture of TRP channels, 16 unique sites identified in TRPV channels may be shared between TRP channel subfamilies, although the chemical identity of a particular ligand will likely depend on the local amino-acid composition. The characterized binding sites and molecular mechanisms of ligand action create a diversity of druggable targets to aid in the design of new molecules for tuning TRP channel function in disease conditions.
Collapse
Affiliation(s)
| | - Alexander I. Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
41
|
Structural Modeling of TRPA1 Ion Channel-Determination of the Binding Site for Antagonists. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103077. [PMID: 35630553 PMCID: PMC9145427 DOI: 10.3390/molecules27103077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
TRPA1 is a transmembrane cation channel, one of the most promising targets in the context of respiratory diseases. Its general structure has already been experimentally resolved, but the binding site of TRPA1 antagonists such as HC-030031, a model methylxanthine derivative, remains unknown. The present study aimed to determine the potential binding site of xanthine antagonists and to describe their binding mode, using a molecular modeling approach. This study represents the first attempt to bring together site-directed mutagenesis reports and the latest cryo-EM structure of an antagonist bound to TRPA1. Our research suggests that the core moiety of HC-030031 binds to a pocket formed by the TRP-like domain and the pre-S1, S4, S5 helices of one subunit. The structure, determined by cryo-EM, shows interactions of a core hypoxanthine moiety in the same area of the binding site, sharing the interaction of xanthine/hypoxanthine with Trp-711. Moreover, the predicted binding mode of HC-030031 assumes interaction with Asn-855, a residue demonstrated to be important for HC-030031 recognition in site-directed mutagenesis studies. Our model proved to be advantageous in a retrospective virtual screening benchmark; therefore, it will be useful in research on new TRPA1 antagonists among xanthine derivatives and their bioisosteres.
Collapse
|
42
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
43
|
Nishiyama K, Nishimura A, Shimoda K, Tanaka T, Kato Y, Shibata T, Tanaka H, Kurose H, Azuma YT, Ihara H, Kumagai Y, Akaike T, Eaton P, Uchida K, Nishida M. Redox-dependent internalization of the purinergic P2Y 6 receptor limits colitis progression. Sci Signal 2022; 15:eabj0644. [PMID: 35015570 DOI: 10.1126/scisignal.abj0644] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki 444-8787, Japan
| | - Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), NINS, Tokyo 105-0001, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H-101, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Hitoshi Kurose
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasu-Taka Azuma
- Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, Osaka 598-8531, Japan
| | - Hideshi Ihara
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Philip Eaton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), NINS, Okazaki 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (School of Life Science, Graduate University for Advanced Studies), Okazaki 444-8787, Japan.,Center for Novel Science Initiatives (CNSI), NINS, Tokyo 105-0001, Japan
| |
Collapse
|
44
|
Lees JA, Dias JM, Han S. Applications of Cryo-EM in small molecule and biologics drug design. Biochem Soc Trans 2021; 49:2627-2638. [PMID: 34812853 PMCID: PMC8786282 DOI: 10.1042/bst20210444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Electron cryo-microscopy (cryo-EM) is a powerful technique for the structural characterization of biological macromolecules, enabling high-resolution analysis of targets once inaccessible to structural interrogation. In recent years, pharmaceutical companies have begun to utilize cryo-EM for structure-based drug design. Structural analysis of integral membrane proteins, which comprise a large proportion of druggable targets and pose particular challenges for X-ray crystallography, by cryo-EM has enabled insights into important drug target families such as G protein-coupled receptors (GPCRs), ion channels, and solute carrier (SLCs) proteins. Structural characterization of biologics, such as vaccines, viral vectors, and gene therapy agents, has also become significantly more tractable. As a result, cryo-EM has begun to make major impacts in bringing critical therapeutics to market. In this review, we discuss recent instructive examples of impacts from cryo-EM in therapeutics design, focusing largely on its implementation at Pfizer. We also discuss the opportunities afforded by emerging technological advances in cryo-EM, and the prospects for future development of the technique.
Collapse
Affiliation(s)
- Joshua A. Lees
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| | - Joao M. Dias
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| | - Seungil Han
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research and Development, Groton, CT 06340, U.S.A
| |
Collapse
|
45
|
Qiao Z, Luo J, Tang YQ, Zhou Q, Qi H, Yin Z, Tang X, Zhu W, Zhang Y, Wei N, Wang K. Photosensitive and Photoswitchable TRPA1 Agonists Optically Control Pain through Channel Desensitization. J Med Chem 2021; 64:16282-16292. [PMID: 34662118 DOI: 10.1021/acs.jmedchem.1c01579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel, as a nonselective ligand-gated cation channel robustly in dorsal root ganglion sensory neurons, is implicated in sensing noxious stimuli and nociceptive signaling. However, small-molecule tools targeting TRPA1 lack temporal and spatial resolution, limiting their use for validation of TRPA1 as a therapeutic target for pain. In our previous work, we found that 4,4'-(diazene-1,2-diyl)dianiline (AB1) is a photoswitchable TRPA1 agonist, but the poor water solubility and activity hinder its further development. Here, we report a series of specific and potent azobenzene-derived photoswitchable TRPA1 agonists (series 1 and 2) that enable optical control of the TRPA1 channel. Two representative compounds 1g and 2c can alleviate capsaicin-induced pain in the cheek model of mice through channel desensitization but not in TRPA1 knockout mice. Taken together, our findings demonstrate that photoswitchable TRPA1 agonists can be used as pharmacological tools for study of pain signaling.
Collapse
Affiliation(s)
- Zhen Qiao
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Jiajie Luo
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Yi-Quan Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiqi Zhou
- Department of Pharmacology, Qilu Medical University School of Pharmacy, Zibo 255300, China
| | - Hang Qi
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Zhengji Yin
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Xiaowen Tang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Wei Zhu
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Yanru Zhang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.,Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - Ningning Wei
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.,Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| | - KeWei Wang
- Departments of Pharmacology and Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.,Institute of Innovative Drug, Qingdao University, Qingdao 266021, China
| |
Collapse
|
46
|
Zsidó BZ, Börzsei R, Pintér E, Hetényi C. Prerequisite Binding Modes Determine the Dynamics of Action of Covalent Agonists of Ion Channel TRPA1. Pharmaceuticals (Basel) 2021; 14:988. [PMID: 34681212 PMCID: PMC8540651 DOI: 10.3390/ph14100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a transmembrane protein channeling the influx of calcium ions. As a polymodal nocisensor, TRPA1 can be activated by thermal, mechanical stimuli and a wide range of chemically damaging molecules including small volatile environmental toxicants and endogenous algogenic lipids. After activation by such compounds, the ion channel opens up, its central pore widens allowing calcium influx into the cytosol inducing signal transduction pathways. Afterwards, the calcium influx desensitizes irritant evoked responses and results in an inactive state of the ion channel. Recent experimental determination of structures of apo and holo forms of TRPA1 opened the way towards the design of new agonists, which can activate the ion channel. The present study is aimed at the elucidation of binding dynamics of agonists using experimental structures of TRPA1-agonist complexes at the atomic level applying molecular docking and dynamics methods accounting for covalent and non-covalent interactions. Following a test of docking methods focused on the final, holo structures, prerequisite binding modes were detected involving the apo forms. It was shown how reversible interactions with prerequisite binding sites contribute to structural changes of TRPA1 leading to covalent bonding of agonists. The proposed dynamics of action allowed a mechanism-based forecast of new, druggable binding sites of potent agonists.
Collapse
Affiliation(s)
- Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| | - Rita Börzsei
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary; (B.Z.Z.); (E.P.)
| |
Collapse
|
47
|
The Combined Effect of Branching and Elongation on the Bioactivity Profile of Phytocannabinoids. Part I: Thermo-TRPs. Biomedicines 2021; 9:biomedicines9081070. [PMID: 34440274 PMCID: PMC8391922 DOI: 10.3390/biomedicines9081070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
The affinity of cannabinoids for their CB1 and CB2 metabotropic receptors is dramatically affected by a combination of α-branching and elongation of their alkyl substituent, a maneuver exemplified by the n-pentyl -> α,α-dimethylheptyl (DMH) swap. The effect of this change on other cannabinoid end-points is still unknown, an observation surprising since thermo-TRPs are targeted by phytocannabinoids with often sub-micromolar affinity. To fill this gap, the α,α-dimethylheptyl analogues of the five major phytocannabinoids [CBD (1a), Δ8-THC (6a), CBG (7a), CBC (8a) and CBN (9a)] were prepared by total synthesis, and their activity on thermo-TRPs (TRPV1-4, TRPM8, and TRPA1) was compared with that of one of their natural analogues. Surprisingly, the DMH chain promoted a shift in the selectivity toward TRPA1, a target involved in pain and inflammatory diseases, in all investigated compounds. A comparative study of the putative binding modes at TRPA1 between DMH-CBC (8b), the most active compound within the series, and CBC (8a) was carried out by molecular docking, allowing the rationalization of their activity in terms of structure–activity relationships. Taken together, these observations qualify DMH-CBC (8b) as a non-covalent TRPA1-selective cannabinoid lead that is worthy of additional investigation as an analgesic and anti-inflammatory agent.
Collapse
|
48
|
Zhao Y, McVeigh BM, Moiseenkova-Bell VY. Structural Pharmacology of TRP Channels. J Mol Biol 2021; 433:166914. [PMID: 33676926 PMCID: PMC8338738 DOI: 10.1016/j.jmb.2021.166914] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Transient receptor potential (TRP) ion channels are a super-family of ion channels that mediate transmembrane cation flux with polymodal activation, ranging from chemical to physical stimuli. Furthermore, due to their ubiquitous expression and role in human diseases, they serve as potential pharmacological targets. Advances in cryo-EM TRP channel structural biology has revealed general, as well as diverse, architectural elements and regulatory sites among TRP channel subfamilies. Here, we review the endogenous and pharmacological ligand-binding sites of TRP channels and their regulatory mechanisms.
Collapse
Affiliation(s)
- Yaxian Zhao
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bridget M McVeigh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Ruan Z, Haley E, Orozco IJ, Sabat M, Myers R, Roth R, Du J, Lü W. Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nat Struct Mol Biol 2021; 28:604-613. [PMID: 34168372 PMCID: PMC8767786 DOI: 10.1038/s41594-021-00607-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
The Ca2+-activated TRPM5 channel plays essential roles in taste perception and insulin secretion. However, the mechanism by which Ca2+ regulates TRPM5 activity remains elusive. We report cryo-EM structures of the zebrafish TRPM5 in an apo closed state, a Ca2+-bound open state, and an antagonist-bound inhibited state. We define two novel ligand binding sites: a Ca2+ site (CaICD) in the intracellular domain and an antagonist site in the transmembrane domain (TMD). The CaICD site is unique to TRPM5 and has two roles: modulating the voltage dependence and promoting Ca2+ binding to the CaTMD site, which is conserved throughout TRPM channels. Conformational changes initialized from both Ca2+ sites cooperatively open the ion-conducting pore. The antagonist NDNA wedges into the space between the S1-S4 domain and pore domain, stabilizing the transmembrane domain in an apo-like closed state. Our results lay the foundation for understanding the voltage-dependent TRPM channels and developing new therapeutic agents.
Collapse
Affiliation(s)
- Zheng Ruan
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503
| | - Emery Haley
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503
| | - Ian J. Orozco
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503
| | - Mark Sabat
- Takeda California Inc, 9625 Towne Centre Dr, San Diego, CA 92121
| | - Richard Myers
- Takeda California Inc, 9625 Towne Centre Dr, San Diego, CA 92121
| | - Rebecca Roth
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503
| | - Juan Du
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503,CORRESPONDING AUTHOR: Correspondence and requests for materials should be addressed to J. D. () TEL: (616) 234-5358, FAX: 616-234-5170 or W. L. (). TEL: (616) 234-5022, FAX: 616-234-5170
| | - Wei Lü
- Van Andel Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503,CORRESPONDING AUTHOR: Correspondence and requests for materials should be addressed to J. D. () TEL: (616) 234-5358, FAX: 616-234-5170 or W. L. (). TEL: (616) 234-5022, FAX: 616-234-5170
| |
Collapse
|
50
|
Schmiege P, Fine M, Li X. Atomic insights into ML-SI3 mediated human TRPML1 inhibition. Structure 2021; 29:1295-1302.e3. [PMID: 34171299 DOI: 10.1016/j.str.2021.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022]
Abstract
Transient receptor potential mucolipin 1 (TRPML1) regulates lysosomal calcium signaling, lipid trafficking, and autophagy-related processes. This channel is regulated by phosphoinositides and the low pH environment of the lysosome, maintaining calcium levels essential for proper lysosomal function. Recently, several small molecules specifically targeting the TRPML family have been demonstrated to modulate channel activity. One of these, a synthetic antagonist ML-SI3, can prevent lysosomal calcium efflux and has been reported to block downstream TRPML1-mediated induction of autophagy. Here, we report a cryo-electron microscopy structure of human TRPML1 with ML-SI3 at 2.9-Å resolution. ML-SI3 binds to the hydrophobic cavity created by S5, S6, and PH1, the same cavity where the synthetic agonist ML-SA1 binds. Electrophysiological characterizations show that ML-SI3 can compete with ML-SA1, blocking channel activation yet does not inhibit PI(3,5)P2-dependent activation of the channel. Consequently, this work provides molecular insight into how ML-SI3 and native lipids regulate TRPML1 activity.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Fine
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|