1
|
Qin C, Ma H, Ni H, Wang M, Shi Y, Mandizadza OO, Li L, Ji C. Efficacy and safety of acupuncture for pain relief: a systematic review and meta-analysis. Support Care Cancer 2024; 32:780. [PMID: 39520569 DOI: 10.1007/s00520-024-08971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This study aims to evaluate the efficacy and safety of traditional acupuncture for pain relief based on rigorously designed RCTs with double-blind. The findings seek to provide valuable insights for clinical practice and inform future research. METHODS A literature search was conducted in PubMed, Web of Science, Cochrane Library, and Embase databases for randomized controlled trials on traditional acupuncture for pain management using a double-blind design, published from database inception to November 22, 2023. The Risk of Bias 2 (RoB2) tool was used to assess potential biases in the included studies, followed by a comprehensive analysis to evaluate efficacy and safety. RESULTS The findings show a significant positive effect on pain improvement, evidenced by changes in visual analog scale scores (mean difference 0.97 [95% confidence interval (CI) 0.66-1.27]). Safety analysis showed no significant differences in adverse reactions between the acupuncture and control groups (relative risk 1.40 [95% CI 0.52-3.74]), with no serious adverse effects reported. CONCLUSION Traditional acupuncture is effective and safe in pain management. This suggests that acupuncture can be a valuable approach in clinical practice. Future studies should explore optimal treatment durations and frequency, using larger sample sizes for more comprehensive insights.
Collapse
Affiliation(s)
- Chu Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Ma
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haojie Ni
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Minyan Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Shi
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Lihong Li
- Acupuncture and moxibustion Department, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Conghua Ji
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Zhang L, Dai X, Li D, Wu J, Gao S, Song F, Liu L, Zhou Y, Liu D, Mei W. MFG-E8 Ameliorates Nerve Injury-Induced Neuropathic Pain by Regulating Microglial Polarization and Neuroinflammation via Integrin β3/SOCS3/STAT3 Pathway in Mice. J Neuroimmune Pharmacol 2024; 19:49. [PMID: 39305375 DOI: 10.1007/s11481-024-10150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Spinal microglial polarization plays a crucial role in the pathological processes of neuropathic pain following peripheral nerve injury. Accumulating evidence suggests that milk fat globule epidermal growth factor-8 (MFG-E8) exhibits anti-inflammatory effect and regulates microglial polarization through the integrin β3 receptor. However, the impact of MFG-E8 on microglial polarization in the context of neuropathic pain has not yet been investigated. In this study, we evaluated the effect of MFG-E8 on pain hypersensitivity and spinal microglial polarization following spared nerve injury (SNI) of the sciatic nerve in mice. We determined the molecular mechanisms underlying the effects of MFG-E8 on pain hypersensitivity and spinal microglial polarization using pain behavior assessment, western blot (WB) analysis, immunofluorescence (IF) staining, quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and small interfering RNA (siRNA) transfection. Our findings indicate that SNI significantly increased the levels of MFG-E8 and integrin β3 expressed in microglia within the spinal cord of mice. Additionally, we observed that intrathecal injection of recombinant human MFG-E8 (rhMFG-E8) alleviated SNI induced-mechanical allodynia and thermal hyperalgesia. Furthermore, the results suggested that rhMFG-E8 facilitated M2 microglial polarization and ameliorated neuroinflammation via integrin β3/SOCS3/STAT3 pathway in the spinal cord of mice with SNI. Importantly, these effects were negated by integrin β3 siRNA, or SOCS3 siRNA. These results demonstrate that MFG-E8 ameliorates peripheral nerve injury induced-mechanical allodynia and thermal hyperalgesia by driving M2 microglial polarization and mitigating neuroinflammation mediated by integrin β3/SOCS3/STAT3 pathway in the spinal cord of mice. MFG-E8 may serve as a promising target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xinyi Dai
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Jiayi Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Shaojie Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Fu Q, Li H, Zhu Z, Li W, Ruan Z, Chang R, Wei H, Xu X, Xu X, Wu Y. Dock4 contributes to neuropathic pain by regulating spinal synaptic plasticity in mice. Front Mol Neurosci 2024; 17:1417567. [PMID: 39282658 PMCID: PMC11392915 DOI: 10.3389/fnmol.2024.1417567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Neuropathic pain (NP) conditions arising from injuries to the nervous system due to trauma, disease, or neurotoxins are chronic, severe, debilitating, and exceedingly difficult to treat. However, the mechanisms of NP are not yet clear. Here we explored the role of Dock4, an atypical Rac1 GEF, in the development of NP. Methods Mechanical allodynia was assessed as paw withdrawal threshold by a dynamic plantar aesthesiometer. Immunofluorescence staining was conducted to investigate the expression and localization of Dock4, Rac1 and GluN2B. Quantitative analysis of Dock4, Rac1 and GluN2B were determined by qRT-PCR and Western blot assay. Spontaneous excitatory and inhibitory postsynaptic currents in spinal cord slices were examined using whole cell patch clam. Dendritic spine remodeling and synaptogenesis were detected in cultured dorsal spinal neurons. Results and discussion We found that SNL caused markedly mechanical allodynia accompanied by increase of Dock4, GTP-Rac1and GluN2B, which was prevented by knockdown of Dock4. Electrophysiological tests showed that SNL facilitated excitatory synaptic transmission, however, this was also inhibited by Dock RNAi-LV. Moreover, knockdown of Dock4 prevented dendritic growth and synaptogenesis. Conclusion In summary, our data indicated that Dock4 facilitated excitatory synaptic transmission by promoting the expression of GluN2B at the synaptic site and synaptogenesis, leading to the occurrence of NP.
Collapse
Affiliation(s)
- Qiaochu Fu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongyi Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuanxu Zhu
- Department of Gynaecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Wencui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhihua Ruan
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ruijie Chang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Huixia Wei
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xunliang Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Hubei, China
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Li W, Fan Y, Lan H, Li X, Wu Q, Dong R. GDPD3 Deficiency Alleviates Neuropathic Pain and Reprograms Macrophagic Polarization Through PGE2 and PPARγ Pathway. Neurochem Res 2024; 49:1980-1992. [PMID: 38769197 PMCID: PMC11233315 DOI: 10.1007/s11064-024-04148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/22/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
The complex mechanism of neuropathic pain involves various aspects of both central and peripheral pain conduction pathways. An effective cure for neuropathic pain therefore remains elusive. We found that deficiency of the gene Gdpd3, encoding a lysophospholipase D enzyme, alleviates the inflammatory responses in dorsal root ganglia (DRG) of mice under neuropathic pain and reduces PE (20:4) and PGE2 in DRG. Gdpd3 deficiency had a stronger analgesic effect on neuropathic pain than Celecoxib, a nonsteroidal anti-inflammatory drug. Gdpd3 deficiency also interferes with the polarization of macrophages, switching from M1 towards M2 phenotype. The PPARγ/ FABP4 pathway was screened by RNA sequencing as functional related with Gdpd3 deficient BMDMs stimulated with LPS. Both protein and mRNA levels of PPARγ in GDPD3 deficient BMDMs were higher than those of the litter control mice. However, GW9962 (inhibitor of PPARγ) could reverse the reprogramming polarization of macrophages caused by GDPD3 deficiency. Therefore, our study suggests that GDPD3 deficiency exerts a relieving effect on neuropathic pain and alleviates neuroinflammation in DRG by switching the phenotype of macrophages from M1 to M2, which was mediated through PGE2 and PPARγ/ FABP4 pathway.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Youjia Fan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Haizhen Lan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaoxiao Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qichao Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rong Dong
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Kim J, Bustamante E, Sotonyi P, Maxwell N, Parameswaran P, Kent JK, Wetsel WC, Soderblom EJ, Rácz B, Soderling SH. Presynaptic Rac1 in the hippocampus selectively regulates working memory. eLife 2024; 13:RP97289. [PMID: 39046788 PMCID: PMC11268886 DOI: 10.7554/elife.97289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Jaebin Kim
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Edwin Bustamante
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary MedicineBudapestHungary
| | - Nicholas Maxwell
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Pooja Parameswaran
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Julie K Kent
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - William C Wetsel
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Psychiatry and Behavioral Sciences, Duke University School of MedicineDurhamUnited States
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Erik J Soderblom
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational Biology, Duke University School of MedicineDurhamUnited States
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary MedicineBudapestHungary
| | - Scott H Soderling
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
6
|
Mangutov E, Pradhan AA. Tiam1 is part of a novel mechanism for morphine tolerance and hyperalgesia. Brain 2024; 147:2264-2266. [PMID: 38805748 PMCID: PMC11224590 DOI: 10.1093/brain/awae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
This scientific commentary refers to ‘Tiam1-mediated maladaptive plasticity underlying morphine tolerance and hyperalgesia’ by Yao et al. (https://doi.org/10.1093/brain/awae106).
Collapse
Affiliation(s)
- Elizaveta Mangutov
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amynah A Pradhan
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Yao C, Fang X, Ru Q, Li W, Li J, Mehsein Z, Tolias KF, Li L. Tiam1-mediated maladaptive plasticity underlying morphine tolerance and hyperalgesia. Brain 2024; 147:2507-2521. [PMID: 38577773 PMCID: PMC11224607 DOI: 10.1093/brain/awae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.
Collapse
Affiliation(s)
- Changqun Yao
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Xing Fang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan 430056, China
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Jun Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Zeinab Mehsein
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingyong Li
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Kim J, Bustamante E, Sotonyi P, Maxwell ND, Parameswaran P, Kent JK, Wetsel WC, Soderblom EJ, Rácz B, Soderling SH. Presynaptic Rac1 in the hippocampus selectively regulates working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585488. [PMID: 38562715 PMCID: PMC10983896 DOI: 10.1101/2024.03.18.585488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory is selectively impaired following the expression of a genetically encoded Rac1-inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.
Collapse
Affiliation(s)
- Jaebin Kim
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Edwin Bustamante
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Peter Sotonyi
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Nicholas D Maxwell
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Pooja Parameswaran
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - Julie K Kent
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical School, Durham, North Carolina, USA
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, North Carolina, USA
- Department of Neurobiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
9
|
Silveira Prudente A, Hoon Lee S, Roh J, Luckemeyer DD, Cohen CF, Pertin M, Park CK, Suter MR, Decosterd I, Zhang JM, Ji RR, Berta T. Microglial STING activation alleviates nerve injury-induced neuropathic pain in male but not female mice. Brain Behav Immun 2024; 117:51-65. [PMID: 38190983 PMCID: PMC11034751 DOI: 10.1016/j.bbi.2024.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Microglia, resident immune cells in the central nervous system, play a role in neuroinflammation and the development of neuropathic pain. We found that the stimulator of interferon genes (STING) is predominantly expressed in spinal microglia and upregulated after peripheral nerve injury. However, mechanical allodynia, as a marker of neuropathic pain following peripheral nerve injury, did not require microglial STING expression. In contrast, STING activation by specific agonists (ADU-S100, 35 nmol) significantly alleviated neuropathic pain in male mice, but not female mice. STING activation in female mice leads to increase in proinflammatory cytokines that may counteract the analgesic effect of ADU-S100. Microglial STING expression and type I interferon-ß (IFN-ß) signaling were required for the analgesic effects of STING agonists in male mice. Mechanistically, downstream activation of TANK-binding kinase 1 (TBK1) and the production of IFN-ß, may partly account for the analgesic effect observed. These findings suggest that STING activation in spinal microglia could be a potential therapeutic intervention for neuropathic pain, particularly in males.
Collapse
Affiliation(s)
- Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA; Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Debora D Luckemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Cinder F Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Marie Pertin
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland; Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Marc R Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland; Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland; Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Wang X, Zhuang Y, Lin Z, Chen S, Chen L, Huang H, Lin H, Wu S. Research hotspots and trends on neuropathic pain-related mood disorders: a bibliometric analysis from 2003 to 2023. FRONTIERS IN PAIN RESEARCH 2023; 4:1233444. [PMID: 38179224 PMCID: PMC10764508 DOI: 10.3389/fpain.2023.1233444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Neuropathic Pain (NP) is often accompanied by mood disorders, which seriously affect the quality of life of patients. This study aimed to analyze the hotspots and trends in NP-related mood disorder research using bibliometric methods and to provide valuable predictions for future research in this field. Methods Articles and review articles on NP-related mood disorders published from January 2003 to May 2023 were retrieved from the Web of Science Core Collection. We used CiteSpace to analyze publications, countries, institutions, authors, cited authors, journals, cited journals, references, cited references, and keywords. We also analyzed collaborative network maps and co-occurrence network maps. Results A total of 4,540 studies were collected for analysis. The number of publications concerning NP-related mood disorders every year shows an upward trend. The United States was a major contributor in this field. The University of Toronto was the most productive core institution. C GHELARDINI was the most prolific author, and RH DWORKIN was the most frequently cited author. PAIN was identified as the journal with the highest productivity and citation rate. The current research hotspots mainly included quality of life, efficacy, double-blind methodology, gabapentin, pregabalin, postherpetic neuralgia, and central sensitization. The frontiers in research mainly focused on the mechanisms associated with microglia activation, oxidative stress, neuroinflammation, and NP-related mood disorders. Discussion In conclusion, the present study provided insight into the current state and trends in NP-related mood disorder research over the past 20 years. Consequently, researchers will be able to identify new perspectives on potential collaborators and cooperative institutions, hot topics, and research frontiers in this field.
Collapse
Affiliation(s)
- Xiaohua Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yueyang Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhigang Lin
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Shuijin Chen
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Lechun Chen
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Hongye Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shiye Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Ru Q, Magnusson J, Li L. Characterization of synaptic structural plasticity in mouse spinal dorsal horn neurons. STAR Protoc 2023; 4:102752. [PMID: 38041818 PMCID: PMC10701437 DOI: 10.1016/j.xpro.2023.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Here, we present a pipeline for the characterization of synaptic structural plasticity in mouse spinal dorsal horn (SDH) neurons. We describe steps for the intra-SDH microinjection of the EGFP virus to sparsely label L4 SDH neurons without laminectomy, wide dynamic range neuron imaging, dendritic spine morphometric analysis, and F-actin to G-actin ratio measurement. This protocol can be applied to investigate the synaptic structural plasticity mechanisms in the SDH as well as in the brain. For complete details on the use and execution of this protocol, please refer to Li et al. (2023).1.
Collapse
Affiliation(s)
- Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan 430056, China; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Jennifer Magnusson
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA
| | - Lingyong Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35025, USA.
| |
Collapse
|
12
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
13
|
Gundermann DG, Lymer S, Blau J. A rapid and dynamic role for FMRP in the plasticity of adult neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555985. [PMID: 37693612 PMCID: PMC10491314 DOI: 10.1101/2023.09.01.555985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fragile X syndrome (FXS) is a neuro-developmental disorder caused by silencing Fmr1, which encodes the RNA-binding protein FMRP. Although Fmr1 is expressed in adult neurons, it has been challenging to separate acute from chronic effects of loss of Fmr1 in models of FXS. We have used the precision of Drosophila genetics to test if Fmr1 acutely affects adult neuronal plasticity in vivo, focusing on the s-LNv circadian pacemaker neurons that show 24 hour rhythms in structural plasticity. We found that over-expressing Fmr1 for only 4 hours blocks the activity-dependent expansion of s-LNv projections without altering the circadian clock or activity-regulated gene expression. Conversely, acutely reducing Fmr1 expression prevented s-LNv projections from retracting. One FMRP target that we identified in s-LNvs is sif, which encodes a Rac1 GEF. Our data indicate that FMRP normally reduces sif mRNA translation at dusk to reduce Rac1 activity. Overall, our data reveal a previously unappreciated rapid and direct role for FMRP in acutely regulating neuronal plasticity in adult neurons, and underscore the importance of RNA-binding proteins in this process.
Collapse
Affiliation(s)
- Daniel G Gundermann
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Seana Lymer
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Current address: Proteintech Genomics, 11588 Sorrento Valley Rd, San Diego, CA 92121
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
14
|
Bordoni B, Girgenti GT, Escher AR. Practice of Peritoneal Adhesions in Osteopathic Medicine: Part 2. Cureus 2023; 15:e43092. [PMID: 37554375 PMCID: PMC10406449 DOI: 10.7759/cureus.43092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Peritoneal adhesions are an unwanted and frequent event following abdominal surgery, with a response rate that can reach 100%. The adhesions can be symptomatic, becoming a source of pain and discomfort for the patient, or asymptomatic, with possible chronic or acute visceral dysfunction. The article reviews what the diagnostic strategies are and discusses what could be the causes that lead to chronic pain in the presence of adhesions. The text reports the knowledge of the literature on the manual treatment of adhesions and illustrates possible symptoms that are not easily recognized by the clinician. To conclude, the article proposes osteopathic manual approaches derived from clinical experience and from what has been explained about the formation of peritoneal adhesions. Research must make further efforts to identify not only the causes triggering the formation of peritoneal neogenesis but also seek the most appropriate non-invasive treatments to help the patient.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Gregory T Girgenti
- Anesthesiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
15
|
Davis OC, Price TJ. Tiam1 creates a painful link between dendritic spine remodeling and NMDA receptors. Neuron 2023; 111:1993-1995. [PMID: 37413965 DOI: 10.1016/j.neuron.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Dendritic spine remodeling in the dorsal horn is associated with many chronic pain models. Li et al. demonstrate that Tiam1 links Rac1-mediated spine changes to NMDA receptor activity to promote behavioral signs of chronic pain in rodents.
Collapse
Affiliation(s)
- Olivia C Davis
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, Dallas, TX, USA
| | - Theodore J Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, Dallas, TX, USA.
| |
Collapse
|