1
|
Isaac J, Murugan M. Interconnected neural circuits mediating social reward. Trends Neurosci 2024; 47:1041-1054. [PMID: 39532581 PMCID: PMC11633286 DOI: 10.1016/j.tins.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Across species, social behaviors are shaped and maintained through positive reinforcement of affiliative social interactions. As with nonsocial rewards, the reinforcing properties of social interactions have been shown to involve interplay between various brain regions and the mesolimbic reward system. In this review, we summarize findings from rodent research on the neural circuits that encode and mediate different components of social reward-seeking behavior. We explore methods to parse and study social reward-related behaviors using available behavioral paradigms. We also compare the neural mechanisms that support social versus nonsocial reward-seeking. Finally, we discuss how internal state and neuromodulatory systems affect reward-seeking behavior and the neural circuits that underlie social reward.
Collapse
Affiliation(s)
- Jennifer Isaac
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Malavika Murugan
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Pan-Vazquez A, Sanchez Araujo Y, McMannon B, Louka M, Bandi A, Haetzel L, Faulkner M, Pillow JW, Daw ND, Witten IB. Pre-existing visual responses in a projection-defined dopamine population explain individual learning trajectories. Curr Biol 2024; 34:5349-5358.e6. [PMID: 39413788 PMCID: PMC11579926 DOI: 10.1016/j.cub.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
A key challenge of learning a new task is that the environment is high dimensional-there are many different sensory features and possible actions, with typically only a small reward-relevant subset. Although animals can learn to perform complex tasks that involve arbitrary associations between stimuli, actions, and rewards,1,2,3,4,5,6 a consistent and striking result across varied experimental paradigms is that in initially acquiring such tasks, large differences between individuals are apparent in the learning process.7,8,9,10,11,12 What neural mechanisms contribute to initial task acquisition, and why do some individuals learn a new task much more quickly than others? To address these questions, we recorded longitudinally from dopaminergic (DA) axon terminals in mice learning a visual decision-making task.7 Across striatum, DA responses tracked idiosyncratic and side-specific learning trajectories, consistent with widespread reward prediction error coding across DA terminals. However, even before any rewards were delivered, contralateral-side-specific visual responses were present in DA terminals, primarily in the dorsomedial striatum (DMS). These pre-existing responses predicted the extent of learning for contralateral stimuli. Moreover, activation of these terminals improved contralateral performance. Thus, the initial conditions of a projection-specific and feature-specific DA signal help explain individual learning trajectories. More broadly, this work suggests that functional heterogeneity across DA projections may serve to bias target regions toward learning about different subsets of task features, providing a potential mechanism to address the dimensionality of the initial task learning problem.
Collapse
Affiliation(s)
- Alejandro Pan-Vazquez
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Yoel Sanchez Araujo
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Brenna McMannon
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Miranta Louka
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Akhil Bandi
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Laura Haetzel
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Mayo Faulkner
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Howard Hughes Medical Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| |
Collapse
|
3
|
Millidge B, Song Y, Lak A, Walton ME, Bogacz R. Reward Bases: A simple mechanism for adaptive acquisition of multiple reward types. PLoS Comput Biol 2024; 20:e1012580. [PMID: 39561186 PMCID: PMC11614280 DOI: 10.1371/journal.pcbi.1012580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Animals can adapt their preferences for different types of reward according to physiological state, such as hunger or thirst. To explain this ability, we employ a simple multi-objective reinforcement learning model that learns multiple values according to different reward dimensions such as food or water. We show that by weighting these learned values according to the current needs, behaviour may be flexibly adapted to present preferences. This model predicts that individual dopamine neurons should encode the errors associated with some reward dimensions more than with others. To provide a preliminary test of this prediction, we reanalysed a small dataset obtained from a single primate in an experiment which to our knowledge is the only published study where the responses of dopamine neurons to stimuli predicting distinct types of rewards were recorded. We observed that in addition to subjective economic value, dopamine neurons encode a gradient of reward dimensions; some neurons respond most to stimuli predicting food rewards while the others respond more to stimuli predicting fluids. We also proposed a possible implementation of the model in the basal ganglia network, and demonstrated how the striatal system can learn values in multiple dimensions, even when dopamine neurons encode mixtures of prediction error from different dimensions. Additionally, the model reproduces the instant generalisation to new physiological states seen in dopamine responses and in behaviour. Our results demonstrate how a simple neural circuit can flexibly guide behaviour according to animals' needs.
Collapse
Affiliation(s)
- Beren Millidge
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Yuhang Song
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Armin Lak
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark E. Walton
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
4
|
Rios A, Fujita K, Isomura Y, Sato N. Adaptive circuits for action and value information in rodent operant learning. Neurosci Res 2024:S0168-0102(24)00118-4. [PMID: 39341460 DOI: 10.1016/j.neures.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Operant learning is a behavioral paradigm where animals learn to associate their actions with consequences, adapting their behavior accordingly. This review delves into the neural circuits that underpin operant learning in rodents, emphasizing the dynamic interplay between neural pathways, synaptic plasticity, and gene expression changes. We explore the cortico-basal ganglia circuits, highlighting the pivotal role of dopamine in modulating these pathways to reinforce behaviors that yield positive outcomes. We include insights from recent studies, which reveals the intricate roles of midbrain dopamine neurons in integrating action initiation and reward feedback, thereby enhancing movement-related activities in the dorsal striatum. Additionally, we discuss the molecular diversity of striatal neurons and their specific roles in reinforcement learning. The review also covers advances in transcriptome analysis techniques, such as single-cell RNA sequencing, which have provided deeper insights into the gene expression profiles associated with different neuronal populations during operant learning.
Collapse
Affiliation(s)
- Alain Rios
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Japan.
| | - Kyohei Fujita
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University (TMDU), Japan.
| | - Nobuya Sato
- Department of Psychological Sciences Kwansei Gakuin University, Japan.
| |
Collapse
|
5
|
Isaac J, Karkare SC, Balasubramanian H, Schappaugh N, Javier JL, Rashid M, Murugan M. Sex differences in neural representations of social and nonsocial reward in the medial prefrontal cortex. Nat Commun 2024; 15:8018. [PMID: 39271723 PMCID: PMC11399386 DOI: 10.1038/s41467-024-52294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The reinforcing nature of social interactions is necessary for the maintenance of appropriate social behavior. However, the neural substrates underlying social reward processing and how they might differ based on the sex and internal state of the animal remains unknown. It is also unclear whether these neural substrates are shared with those involved in nonsocial rewarding processing. We developed a fully automated, two choice (social-sucrose) operant assay in which mice choose between social and nonsocial rewards to directly compare the reward-related behaviors associated with two competing stimuli. We performed cellular resolution calcium imaging of medial prefrontal cortex (mPFC) neurons in male and female mice across varying states of water restriction and social isolation. We found that mPFC neurons maintain largely non-overlapping, flexible representations of social and nonsocial reward that vary with internal state in a sex-dependent manner. Additionally, optogenetic manipulation of mPFC activity during the reward period of the assay disrupted reward-seeking behavior across male and female mice. Thus, using a two choice operant assay, we have identified sex-dependent, non-overlapping neural representations of social and nonsocial reward in the mPFC that vary with internal state and that are essential for appropriate reward-seeking behavior.
Collapse
Affiliation(s)
- Jennifer Isaac
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Sonia Corbett Karkare
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Hymavathy Balasubramanian
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | | | - Jarildy Larimar Javier
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Maha Rashid
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Malavika Murugan
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Geiger LT, Balouek JA, Farrelly LA, Chen AS, Tang M, Bennett SN, Nestler EJ, Garcia BA, Maze I, Peña CJ. Early-life stress alters chromatin modifications in VTA to prime stress sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584631. [PMID: 38559030 PMCID: PMC10980038 DOI: 10.1101/2024.03.14.584631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Early-life stress increases sensitivity to subsequent stress, which has been observed among humans, other animals, at the level of cellular activity, and at the level of gene expression. However, the molecular mechanisms underlying such long-lasting sensitivity are poorly understood. We tested the hypothesis that persistent changes in transcription and transcriptional potential were maintained at the level of the epigenome, through changes in chromatin. We used a combination of bottom-up mass spectrometry, viral-mediated epigenome-editing, behavioral quantification, and RNA-sequencing in a mouse model of early-life stress, focusing on the ventral tegmental area (VTA), a brain region critically implicated in motivation, reward learning, stress response, and mood and drug disorders. We find that early-life stress in mice alters histone dynamics in VTA and that a majority of these modifications are associated with an open chromatin state that would predict active, primed, or poised gene expression, including enriched histone-3 lysine-4 methylation and the H3K4 monomethylase Setd7. Mimicking ELS through over-expression of Setd7 and enrichment of H3K4me1 in VTA recapitulates ELS-induced behavioral and transcriptional hypersensitivity to future stress. These findings enrich our understanding of the epigenetic mechanisms linking early-life environmental experiences to long-term alterations in stress reactivity within the brain's reward circuitry, with implications for understanding and potentially treating mood and anxiety disorders in humans.
Collapse
|
8
|
Lu X, Xue J, Lai Y, Tang X. Heterogeneity of mesencephalic dopaminergic neurons: From molecular classifications, electrophysiological properties to functional connectivity. FASEB J 2024; 38:e23465. [PMID: 38315491 DOI: 10.1096/fj.202302031r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The mesencephalic dopamine (DA) system is composed of neuronal subtypes that are molecularly and functionally distinct, are responsible for specific behaviors, and are closely associated with numerous brain disorders. Existing research has made significant advances in identifying the heterogeneity of mesencephalic DA neurons, which is necessary for understanding their diverse physiological functions and disease susceptibility. Moreover, there is a conflict regarding the electrophysiological properties of the distinct subsets of midbrain DA neurons. This review aimed to elucidate recent developments in the heterogeneity of midbrain DA neurons, including subpopulation categorization, electrophysiological characteristics, and functional connectivity to provide new strategies for accurately identifying distinct subtypes of midbrain DA neurons and investigating the underlying mechanisms of these neurons in various diseases.
Collapse
Affiliation(s)
- Xiaying Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yudong Lai
- Department of Human Anatomy, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Xiaolu Tang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Qian L, Burrell M, Hennig JA, Matias S, Murthy VN, Gershman SJ, Uchida N. The role of prospective contingency in the control of behavior and dopamine signals during associative learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578961. [PMID: 38370735 PMCID: PMC10871210 DOI: 10.1101/2024.02.05.578961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Associative learning depends on contingency, the degree to which a stimulus predicts an outcome. Despite its importance, the neural mechanisms linking contingency to behavior remain elusive. Here we examined the dopamine activity in the ventral striatum - a signal implicated in associative learning - in a Pavlovian contingency degradation task in mice. We show that both anticipatory licking and dopamine responses to a conditioned stimulus decreased when additional rewards were delivered uncued, but remained unchanged if additional rewards were cued. These results conflict with contingency-based accounts using a traditional definition of contingency or a novel causal learning model (ANCCR), but can be explained by temporal difference (TD) learning models equipped with an appropriate inter-trial-interval (ITI) state representation. Recurrent neural networks trained within a TD framework develop state representations like our best 'handcrafted' model. Our findings suggest that the TD error can be a measure that describes both contingency and dopaminergic activity.
Collapse
Affiliation(s)
- Lechen Qian
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- These authors contributed equally
| | - Mark Burrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- These authors contributed equally
| | - Jay A. Hennig
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Sara Matias
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Venkatesh. N. Murthy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Samuel J. Gershman
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
10
|
Jiang C, Huang H, Yang X, Le Q, Liu X, Ma L, Wang F. Targeting mitochondrial dynamics of morphine-responsive dopaminergic neurons ameliorates opiate withdrawal. J Clin Invest 2024; 134:e171995. [PMID: 38236644 PMCID: PMC10904060 DOI: 10.1172/jci171995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Converging studies demonstrate the dysfunction of the dopaminergic neurons following chronic opioid administration. However, the therapeutic strategies targeting opioid-responsive dopaminergic ensembles that contribute to the development of opioid withdrawal remain to be elucidated. Here, we used the neuronal activity-dependent Tet-Off system to label dopaminergic ensembles in response to initial morphine exposure (Mor-Ens) in the ventral tegmental area (VTA). Fiber optic photometry recording and transcriptome analysis revealed downregulated spontaneous activity and dysregulated mitochondrial respiratory, ultrastructure, and oxidoreductase signal pathways after chronic morphine administration in these dopaminergic ensembles. Mitochondrial fragmentation and the decreased mitochondrial fusion gene mitofusin 1 (Mfn1) were found in these ensembles after prolonged opioid withdrawal. Restoration of Mfn1 in the dopaminergic Mor-Ens attenuated excessive oxidative stress and the development of opioid withdrawal. Administration of Mdivi-1, a mitochondrial fission inhibitor, ameliorated the mitochondrial fragmentation and maladaptation of the neuronal plasticity in these Mor-Ens, accompanied by attenuated development of opioid withdrawal after chronic morphine administration, without affecting the analgesic effect of morphine. These findings highlighted the plastic architecture of mitochondria as a potential therapeutic target for opioid analgesic-induced substance use disorders.
Collapse
Affiliation(s)
- Changyou Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Han Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Qiumin Le
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xing Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
11
|
Blaess S, Krabbe S. Cell type specificity for circuit output in the midbrain dopaminergic system. Curr Opin Neurobiol 2023; 83:102811. [PMID: 37972537 DOI: 10.1016/j.conb.2023.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Midbrain dopaminergic neurons are a relatively small group of neurons in the mammalian brain controlling a wide range of behaviors. In recent years, increasingly sophisticated tracing, imaging, transcriptomic, and machine learning approaches have provided substantial insights into the anatomical, molecular, and functional heterogeneity of dopaminergic neurons. Despite this wealth of new knowledge, it remains unclear whether and how the diverse features defining dopaminergic subclasses converge to delineate functional ensembles within the dopaminergic system. Here, we review recent studies investigating various aspects of dopaminergic heterogeneity and discuss how development, behavior, and disease influence subtype characteristics. We then outline what further approaches could be pursued to gain a more inclusive picture of dopaminergic diversity, which could be crucial to understanding the functional architecture of this system.
Collapse
Affiliation(s)
- Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| | - Sabine Krabbe
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| |
Collapse
|