1
|
Zhang S, Zhang J, Yang Y, Zang W, Cao J. Activation of Pedunculopontine Tegmental Nucleus Alleviates the Pain Induced by the Lesion of Midbrain Dopaminergic Neurons. Int J Mol Sci 2024; 25:5636. [PMID: 38891832 PMCID: PMC11171649 DOI: 10.3390/ijms25115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The loss of midbrain dopaminergic (DA) neurons is the fundamental pathological feature of Parkinson's disease (PD). PD causes chronic pain in two-thirds of patients. Recent studies showed that the activation of the pedunculopontine tegmental nucleus (PPTg) can effectively relieve inflammatory pain and neuropathic pain. The PPTg is located in the pontomesencephalic tegmentum, a target of deep brain stimulation (DBS) treatment in PD, and is involved in motor control and sensory integration. To test whether the lesion of midbrain DA neurons induced pain hypersensitivity, and whether the chemogenetic activation of the PPTg could modulate the pain, the AAV-hM3Dq receptor was transfected and expressed into the PPTg neurons of 6-hydroxydopamine-lesioned mice. In this study, von Frey, open field, and adhesive tape removal tests were used to assess animals' pain sensitivity, locomotor activity, and sensorimotor function and somatosensory perception, respectively. Here, we found that the lesion of midbrain DA neurons induced a minor deficit in voluntary movement but did not affect sensorimotor function and somatosensory perception in the tape removal test. The results showed that lesion led to pain hypersensitivity, which could be alleviated both by levodopa and by the chemogenetic activation of the PPTg. Activating the PPTg may be a potential therapeutic strategy to relieve pain phenotypes in PD.
Collapse
Affiliation(s)
- Shiqiang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yihao Yang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Weidong Zang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Genaro K, Prado WA. The role of the anterior pretectal nucleus in pain modulation: A comprehensive review. Eur J Neurosci 2021; 54:4358-4380. [PMID: 33909941 DOI: 10.1111/ejn.15255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Descending pain modulation involves multiple encephalic sites and pathways that range from the cerebral cortex to the spinal cord. Behavioral studies conducted in the 1980s revealed that electrical stimulation of the pretectal area causes antinociception dissociation from aversive responses. Anatomical and physiological studies identified the anterior pretectal nucleus and its descending projections to several midbrain, pontine, and medullary structures. The anterior pretectal nucleus is morphologically divided into a dorsal part that contains a dense neuron population (pars compacta) and a ventral part that contains a dense fiber band network (pars reticulata). Connections of the two anterior pretectal nucleus parts are broad and include prominent projections to and from major encephalic systems associated with somatosensory processes. Since the first observation that acute or chronic noxious stimuli activate the anterior pretectal nucleus, it has been established that numerous mediators participate in this response through distinct pathways. Recent studies have confirmed that at least two pain inhibitory pathways are activated from the anterior pretectal nucleus. This review focuses on rodent anatomical, behavioral, molecular, and neurochemical data that have helped to identify mediators of the anterior pretectal nucleus and pathways related to its role in pain modulation.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Genaro K, Fabris D, Prado WA. The antinociceptive effect of anterior pretectal nucleus stimulation is mediated by distinct neurotransmitter mechanisms in descending pain pathways. Brain Res Bull 2019; 146:164-170. [DOI: 10.1016/j.brainresbull.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
|
4
|
Modulation of brain electroencephalography oscillations by electroacupuncture in a rat model of postincisional pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:160357. [PMID: 23710210 PMCID: PMC3655616 DOI: 10.1155/2013/160357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/01/2013] [Accepted: 03/21/2013] [Indexed: 01/02/2023]
Abstract
The present study aimed to investigate how ongoing brain rhythmical oscillations changed during the postoperative pain and whether electroacupuncture (EA) regulated these brain oscillations when it relieved pain. We established a postincisional pain model of rats with plantar incision to mimic the clinical pathological pain state, tested the analgesic effects of EA, and recorded electroencephalography (EEG) activities before and after the EA application. By analysis of power spectrum and bicoherence of EEG, we found that in rats with postincisional pain, ongoing activities at the delta-frequency band decreased, while activities at theta-, alpha-, and beta-frequency bands increased. EA treatment on these postincisional pain rats decreased the power at high-frequency bands especially at the beta-frequency band and reversed the enhancement of the cross-frequency coupling strength between the beta band and low-frequency bands. After searching for the PubMed, our study is the first time to describe that brain oscillations are correlated with the processing of spontaneous pain information in postincisional pain model of rats, and EA could regulate these brain rhythmical frequency oscillations, including the power and cross-frequency couplings.
Collapse
|
5
|
Guethe LM, Pelegrini-da-Silva A, Borelli KG, Juliano MA, Pelosi GG, Pesquero JB, Silva CLM, Corrêa FMA, Murad F, Prado WA, Martins AR. Angiotensin (5-8) modulates nociception at the rat periaqueductal gray via the NO-sGC pathway and an endogenous opioid. Neuroscience 2012; 231:315-27. [PMID: 23219939 DOI: 10.1016/j.neuroscience.2012.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/18/2012] [Accepted: 11/21/2012] [Indexed: 01/05/2023]
Abstract
Angiotensins (Angs) modulate blood pressure, hydro-electrolyte composition, and antinociception. Although Ang (5-8) has generally been considered to be inactive, we show here that Ang (5-8) was the smallest Ang to elicit dose-dependent responses and receptor-mediated antinociception in the rat ventrolateral periaqueductal gray matter (vlPAG). Ang (5-8) antinociception seems to be selective, because it did not alter blood pressure or act on vascular or intestinal smooth muscle cells. The non-selective Ang-receptor (Ang-R) antagonist saralasin blocked Ang (5-8) antinociception, but selective antagonists of Ang-R types I, II, IV, and Mas did not, suggesting that Ang (5-8) may act via an unknown receptor. Endopeptidase EP 24.11 and amastatin-sensitive aminopeptidase from the vlPAG catalyzed the synthesis (from Ang II or Ang III) and inactivation of Ang (5-8), respectively. Selective inhibitors of neuronal-nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and a non-selective opioid receptor (opioid-R) inhibitor blocked Ang (5-8)-induced antinociception. In conclusion, Ang (5-8) is a new member of the Ang family that selectively and strongly modulates antinociception via NO-sGC and endogenous opioid in the vlPAG.
Collapse
Affiliation(s)
- L M Guethe
- Department of Psychology, FFCLRP University of São Paulo, Ribeirão Preto 14049-901, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rossaneis AC, Reis GM, Prado WA. Stimulation of the occipital or retrosplenial cortex reduces incision pain in rats. Pharmacol Biochem Behav 2011; 100:220-7. [DOI: 10.1016/j.pbb.2011.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
7
|
Silveira JWS, Dias QM, Del Bel EA, Prado WA. Serotonin receptors are involved in the spinal mediation of descending facilitation of surgical incision-induced increase of Fos-like immunoreactivity in rats. Mol Pain 2010; 6:17. [PMID: 20331882 PMCID: PMC2860347 DOI: 10.1186/1744-8069-6-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/23/2010] [Indexed: 01/27/2023] Open
Abstract
Background Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT1/2B/2C (methysergide), 5-HT2A (ketanserin) or 5-HT1/2A/2C/5/6/7 (methiothepin) receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions We conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2) 5-HT1/2A/2C/3 receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-HT1/2A/2C and 5-HT1/2C receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4) 5-HT2A/3 receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5) α-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.
Collapse
Affiliation(s)
- João Walter S Silveira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | |
Collapse
|
8
|
Angiotensin III modulates the nociceptive control mediated by the periaqueductal gray matter. Neuroscience 2009; 164:1263-73. [PMID: 19747525 DOI: 10.1016/j.neuroscience.2009.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/26/2009] [Accepted: 09/01/2009] [Indexed: 12/28/2022]
Abstract
Endogenous angiotensin (Ang) II and/or an Ang II-derived peptide, acting on Ang type 1 (AT(1)) and Ang type 2 (AT(2)) receptors, can carry out part of the nociceptive control modulated by periaqueductal gray matter (PAG). However, neither the identity of this putative Ang-peptide, nor its relationship to Ang II antinociceptive activity was clarified. Therefore, we have used tail-flick and incision allodynia models combined with an HPLC time course of Ang metabolism, to study the Ang III antinociceptive effect in the rat ventrolateral (vl) PAG using peptidase inhibitors and receptor antagonists. Ang III injection into the vlPAG increased tail-flick latency, which was fully blocked by Losartan and CGP 42,112A, but not by divalinal-Ang IV, indicating that Ang III effect was mediated by AT(1) and AT(2) receptors, but not by the AT(4) receptor. Ang III injected into the vlPAG reduced incision allodynia. Incubation of Ang II with punches of vlPAG homogenate formed Ang III, Ang (1-7) and Ang IV. Amastatin (AM) inhibited the formation of Ang III from Ang II by homogenate, and blocked the antinociceptive activity of Ang II injection into vlPAG, suggesting that aminopeptidase A (APA) formed Ang III from Ang II. Ang III can also be formed from Ang I by a vlPAG alternative pathway. Therefore, the present work shows, for the first time, that: (i) Ang III, acting on AT(1) and AT(2) receptors, can elicit vlPAG-mediated antinociception, (ii) the conversion of Ang II to Ang III in the vlPAG is required to elicit antinociception, and (iii) the antinociceptive activity of endogenous Ang II in vlPAG can be ascribed preponderantly to Ang III.
Collapse
|
9
|
Lowe AS, Beech JS, Williams SCR. Small animal, whole brain fMRI: innocuous and nociceptive forepaw stimulation. Neuroimage 2006; 35:719-28. [PMID: 17300960 DOI: 10.1016/j.neuroimage.2006.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/23/2022] Open
Abstract
Supra-spinal pain processing involves a number of extensive networks. An examination of these networks using small animal functional magnetic resonance imaging (fMRI) is difficult. While prior studies have successfully delineated regions consistent with known pain processing pathways, they have been restricted to acquisitions of limited spatial extent with coarse in-plane resolution to achieve a high temporal resolution. An isotropic, whole brain fMRI protocol has been developed for the examination of the supra-spinal consequences of innocuous and nociceptive electrical stimulation of the rat forepaw. Innocuous electrical stimulation of the rat forepaw delineated BOLD contrast responses consistent with known somatosensory processing pathways (contralateral primary somatosensory cortex (S1), a region consistent with secondary somatosensory cortex, the ventral posterolateral thalamic nucleus and ipsilateral cuneate nucleus), providing face validity for the technique. The putative noxious stimulus delineated additional regions consistent with the classical lateral and medial pain systems as well as secondarily associated areas: the aversion and descending inhibition systems. These included the ipsilateral inferior colliculus, anterior pretectal nucleus, mediodorsal thalamic nucleus, with regions in the pre-frontal, cingulated, ventral orbital and infra-limbic cortices, nucleus accumbens all exhibiting negative BOLD changes. Such regions are in agreement with, and extend, those previously reported. Acquisition, post-processing and analysis methodologies undertaken in this study constitute a marked extension of previous fMRI in the rat, enabling whole brain coverage at a spatial resolution sufficient to delineate regional changes in BOLD contrast consistent with somatosensory and nociceptive networks.
Collapse
Affiliation(s)
- Andrew S Lowe
- Experimental Neuroimaging Group, University Laboratory of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| | | | | |
Collapse
|
10
|
Pelegrini-da-Silva A, Martins AR, Prado WA. A new role for the renin-angiotensin system in the rat periaqueductal gray matter: angiotensin receptor-mediated modulation of nociception. Neuroscience 2005; 132:453-63. [PMID: 15802196 DOI: 10.1016/j.neuroscience.2004.12.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Renin-angiotensin (Ang) system (RAS) peptides injected into the periaqueductal gray matter (PAG) elicit antinociception. Saralasin blocks Ang II-elicited antinociception. Thus, it is possible that endogenous RAS peptides could participate on the modulation of nociception in the PAG. This possibility was tested here injecting, in the PAG, the specific Ang type 1 and type 2 receptor (AT1 receptor and AT(2 receptor) antagonists losartan and CGP42,112A, respectively, either alone or before Ang II. The effects of Ang II, losartan and CGP42,112A on nociception were measured using the tail flick test and the model of incision allodynia. Ang II increased tail-flick latency, an effect inhibited by both losartan and CGP42,112A. Ang II reduced incisional allodynia. Either losartan or CGP42,112A alone increased incision allodynia, suggesting that endogenous Ang II and/or an Ang-peptide participates in the control of allodynia by the PAG. AT1 and AT2 receptors were immunolocalized in neuronal cell bodies and processes in the ventrolateral PAG. Taken together, the antinociceptive effect of Ang II injection into the ventrolateral PAG, the increase of allodynia elicited by injecting either losartan or CGP42,112A alone in the PAG, and the presence of AT1 and AT2 receptors in neurons and neuronal processes in the same region, represent the first evidence that part of the tonic nociceptive control mediated by the PAG is carried out locally by endogenous Ang II and/or an Ang-peptide acting on AT1 and AT2 receptors.
Collapse
Affiliation(s)
- A Pelegrini-da-Silva
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Horowitz SS, Blanchard J, Morin LP. Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 2005; 487:127-46. [PMID: 15880498 DOI: 10.1002/cne.20521] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.
Collapse
Affiliation(s)
- Seth S Horowitz
- Department of Psychiatry, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|