1
|
Velasco-González R, Coffeen U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 2022; 40:1673-1689. [PMID: 36169871 DOI: 10.1007/s12640-022-00582-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.
Collapse
Affiliation(s)
- Roberto Velasco-González
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.,Maestría en Ciencias Biológicas, UNAM, Ciudad de México, México
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.
| |
Collapse
|
2
|
Wang GJ, Zhang X, Huang LD, Xiao Y. Involvement of the Sodium Channel Nav1.7 in Paclitaxel-induced Peripheral Neuropathy through ERK1/2 Signaling in Rats. Curr Neurovasc Res 2021; 17:267-274. [PMID: 32407275 DOI: 10.2174/1567202617666200514113441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Paclitaxel treatment is a major cause of chemotherapy-induced peripheral neuropathy. The sodium channel Nav1.7 plays a critical role in pain perception. However, whether Nav1.7 in the dorsal root ganglion (DRG) is involved in paclitaxel-induced peripheral neuropathy remains unclear. Thus, our study aimed to evaluate whether Nav1.7 participates in the pathogenesis of paclitaxel-induced neuropathy. METHODS Paclitaxel-induced peripheral neuropathy was generated by intraperitoneal administration of paclitaxel on four alternate days. RESULTS The results showed that DRG mRNA and protein expression levels of Nav1.7 were upregulated between days 7 and 21 after the administration of paclitaxel. Besides, paclitaxel upregulated extracellular signal-regulated kinase (ERK1/2) phosphorylation in DRG. Intrathecal injection of U0126 (a MEK inhibitor) blocking ERK1/2 phosphorylation blunted up-regulation of Nav1.7 in the DRG and correspondingly attenuated hyperalgesia. CONCLUSION These results indicated that the sodium channel Nav1.7 in the DRG exerted an important function in paclitaxel-induced neuropathy, which was associated with ERK phosphorylation in neurons.
Collapse
Affiliation(s)
- Guang Jie Wang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xi Zhang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Li-De Huang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yun Xiao
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
3
|
Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S. Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 2020; 324:113121. [PMID: 31758983 PMCID: PMC6993945 DOI: 10.1016/j.expneurol.2019.113121] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Paclitaxel (Brand name Taxol) is widely used in the treatment of common cancers like breast, ovarian and lung cancer. Although highly effective in blocking tumor progression, paclitaxel also causes peripheral neuropathy as a side effect in 60-70% of chemotherapy patients. Recent efforts by numerous labs have aimed at defining the underlying mechanisms of paclitaxel-induced peripheral neuropathy (PIPN). In vitro models using rodent dorsal root ganglion neurons, human induced pluripotent stem cells, and rodent in vivo models have revealed a number of molecular pathways affected by paclitaxel within axons of sensory neurons and within other cell types, such as the immune system and peripheral glia, as well skin. These studies revealed that paclitaxel induces altered calcium signaling, neuropeptide and growth factor release, mitochondrial damage and reactive oxygen species formation, and can activate ion channels that mediate responses to extracellular cues. Recent studies also suggest a role for the matrix-metalloproteinase 13 (MMP-13) in mediating neuropathy. These diverse changes may be secondary to paclitaxel-induced microtubule transport impairment. Human genetic studies, although still limited, also highlight the involvement of cytoskeletal changes in PIPN. Newly identified molecular targets resulting from these studies could provide the basis for the development of therapies with which to either prevent or reverse paclitaxel-induced peripheral neuropathy in chemotherapy patients.
Collapse
Affiliation(s)
- Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, University School of Medicine, Indianapolis, IN 46202, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
4
|
Nazıroğlu M, Braidy N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front Physiol 2017; 8:1040. [PMID: 29326595 PMCID: PMC5733463 DOI: 10.3389/fphys.2017.01040] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Abnormal Ca2+ channel physiology, expression levels, and hypersensitivity to heat have been implicated in several pain states following treatment with chemotherapeutic agents. As members of the Ca2+ permeable transient receptor potential (TRP), five of the channels (TRPV1-4 and TRPM2) are activated by different heat temperatures, and two of the channels (TRPA1 and TRPM8) are activated by cold temperature. Accumulating evidences indicates that antagonists of TRPA1 and TRPM8 may protect against cisplatin, oxaliplatin, and paclitaxel-induced mitochondrial oxidative stress, inflammation, cold allodynia, and hyperalgesia. TRPV1 was responsible from the cisplatin-induced heat hyperalgesia and mechanical allodynia in the sensory neurons. TRPA1, TRPM8, and TRPV2 protein expression levels were mostly increased in the dorsal root (DRG) and trigeminal ganglia by these treatments. There is a debate on direct or oxaliplatin-induced oxidative cold stress dependent TRPA1 and TRPV4 activation in the DRG. Involvement of molecular pathways such as cysteine groups, glutathione metabolism, anandamide, cAMP, lipopolysaccharide, proteinase-activated receptor 2, and mitogen-activated protein kinase were also indicated in the oxaliplatin and paclitaxel-induced cold allodynia. In this review, we summarized results of five temperature-regulated TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, and TRPV4) as novel targets for treating chemotherapy-induced peripheral pain
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Darby LM, Meng H, Fehrenbacher JC. Paclitaxel inhibits the activity and membrane localization of PKCα and PKCβI/II to elicit a decrease in stimulated calcitonin gene-related peptide release from cultured sensory neurons. Mol Cell Neurosci 2017; 82:105-117. [PMID: 28404507 DOI: 10.1016/j.mcn.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/08/2017] [Accepted: 04/08/2017] [Indexed: 11/27/2022] Open
Abstract
Peripheral neuropathy is a dose-limiting and debilitating side effect of the chemotherapeutic drug, paclitaxel. Consequently, elucidating the mechanisms by which this drug alters sensory neuronal function is essential for the development of successful therapeutics for peripheral neuropathy. We previously demonstrated that chronic treatment with paclitaxel (3-5days) reduces neuropeptide release stimulated by agonists of TRPV1. Because the activity of TRPV1 channels is modulated by conventional and novel PKC isozymes (c/nPKC), we investigated whether c/nPKC mediate the loss of neuropeptide release following chronic treatment with paclitaxel (300nM; 3 and 5days). Release of the neuropeptide, calcitonin gene-related peptide (CGRP), was measured as an index of neuronal sensitivity. Following paclitaxel treatment, cultured dorsal root ganglia sensory neurons were stimulated with a c/nPKC activator, phorbol 12,13-dibutyrate (PDBu), or a TRPV1 agonist, capsaicin, in the absence and presence of selective inhibitors of conventional PKCα and PKCβI/II isozymes (cPKC). Paclitaxel (300nM; 3days and 5days) attenuated both PDBu- and capsaicin-stimulated release in a cPKC-dependent manner. Under basal conditions, there were no changes in the protein expression, phosphorylation or membrane localization of PKC α, βI or βII, however, paclitaxel decreased cPKC activity as indicated by a reduction in the phosphorylation of cPKC substrates. Under stimulatory conditions, paclitaxel attenuated the membrane translocation of phosphorylated PKC α, βI and βII, providing a rationale for the attenuation in PDBu- and capsaicin-stimulated release. Our findings suggest that a decrease in cPKC activity and membrane localization are responsible for the reduction in stimulated peptide release following chronic treatment with paclitaxel in sensory neurons.
Collapse
Affiliation(s)
- Lisa M Darby
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA.
| | - Hongdi Meng
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA
| | - Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA.
| |
Collapse
|
6
|
Taguchi K. [Role of Transient Receptor Potential Channels in Paclitaxel- and Oxaliplatin-induced Peripheral Neuropathy]. YAKUGAKU ZASSHI 2016; 136:287-96. [PMID: 26831807 DOI: 10.1248/yakushi.15-00214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral neuropathy is a common adverse effect of paclitaxel and oxaliplatin treatment. The major dose-limiting side effect of these drugs is peripheral sensory neuropathy. The symptoms of paclitaxel-induced neuropathy are mostly sensory and peripheral in nature, consisting of mechanical allodynia/hyperalgesia, tingling, and numbness. Oxaliplatin-induced neurotoxicity manifests as rapid-onset neuropathic symptoms that are exacerbated by cold exposure and as chronic neuropathy that develops after several treatment cycles. Although many basic and clinical researchers have studied anticancer drug-induced peripheral neuropathy, the mechanism is not well understood. In this review, we focus on (1) analysis of transient receptor potential vanilloid 1 (TRPV1) channel expression in the rat dorsal root ganglion (DRG) after paclitaxel treatment and (2) analysis of transient receptor potential ankyrin 1 (TRPA1) channel in the DRG after oxaliplatin treatment. This review describes that (1) paclitaxel-induced neuropathic pain may be the result of up-regulation of TRPV1 in small- and medium-diameter DRG neurons. In addition, paclitaxel treatment increases the release of substance P, but not calcitonin gene-related peptide, in the superficial layers of the spinal dorsal horn. (2) TRPA1 expression via activation of p38 mitogen-activated protein kinase in small-diameter DRG neurons, at least in part, contributes to the development of oxaliplatin-induced acute cold hyperalgesia. We suggest that TRPV1 or TRPA1 antagonists may be potential therapeutic lead compounds for treating anticancer drug-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Kyoji Taguchi
- Departments of Medicinal Pharmacology, Showa Pharmaceutical University
| |
Collapse
|
7
|
Shang S, Zhu F, Liu B, Chai Z, Wu Q, Hu M, Wang Y, Huang R, Zhang X, Wu X, Sun L, Wang Y, Wang L, Xu H, Teng S, Liu B, Zheng L, Zhang C, Zhang F, Feng X, Zhu D, Wang C, Liu T, Zhu MX, Zhou Z. Intracellular TRPA1 mediates Ca2+ release from lysosomes in dorsal root ganglion neurons. J Cell Biol 2016; 215:369-381. [PMID: 27799370 PMCID: PMC5100290 DOI: 10.1083/jcb.201603081] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/16/2016] [Accepted: 10/04/2016] [Indexed: 11/22/2022] Open
Abstract
Transient receptor potential A1 (TRPA1) is a nonselective cation channel implicated in thermosensation and inflammatory pain. In this study, we show that TRPA1 (activated by allyl isothiocyanate, acrolein, and 4-hydroxynonenal) elevates the intracellular Ca2+ concentration ([Ca2+]i) in dorsal root ganglion (DRG) neurons in the presence and absence of extracellular Ca2+ Pharmacological and immunocytochemical analyses revealed the presence of TRPA1 channels both on the plasma membrane and in endolysosomes. Confocal line-scan imaging demonstrated Ca2+ signals elicited from individual endolysosomes ("lysosome Ca2+ sparks") by TRPA1 activation. In physiological solutions, the TRPA1-mediated endolysosomal Ca2+ release contributed to ∼40% of the overall [Ca2+]i rise and directly triggered vesicle exocytosis and calcitonin gene-related peptide release, which greatly enhanced the excitability of DRG neurons. Thus, in addition to working via Ca2+ influx, TRPA1 channels trigger vesicle release in sensory neurons by releasing Ca2+ from lysosome-like organelles.
Collapse
Affiliation(s)
- Shujiang Shang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.,Laboratory Animal Center, Peking University, Beijing 100871, China.,School of Life Science, Peking University, Beijing 100871, China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bin Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lei Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yeshi Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Li Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Huadong Xu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Sasa Teng
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Chen Zhang
- School of Life Science, Peking University, Beijing 100871, China
| | - Fukang Zhang
- Institute for Biomedical Science of Pain, Capital Medical University, Beijing 100069, China
| | - Xinghua Feng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Desheng Zhu
- Laboratory Animal Center, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tao Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Chiba T, Oka Y, Kambe T, Koizumi N, Abe K, Kawakami K, Utsunomiya I, Taguchi K. Paclitaxel-induced peripheral neuropathy increases substance P release in rat spinal cord. Eur J Pharmacol 2016; 770:46-51. [DOI: 10.1016/j.ejphar.2015.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
|
9
|
Miyano K, Minami K, Yokoyama T, Ohbuchi K, Yamaguchi T, Murakami S, Shiraishi S, Yamamoto M, Matoba M, Uezono Y. Tramadol and its metabolite m1 selectively suppress transient receptor potential ankyrin 1 activity, but not transient receptor potential vanilloid 1 activity. Anesth Analg 2015; 120:790-8. [PMID: 25642661 DOI: 10.1213/ane.0000000000000625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The transient receptor potential vanilloid 1 (TRPV1) and the transient receptor potential ankyrin 1 (TRPA1), which are expressed in sensory neurons, are polymodal nonselective cation channels that sense noxious stimuli. Recent reports showed that these channels play important roles in inflammatory, neuropathic, or cancer pain, suggesting that they may serve as attractive analgesic pharmacological targets. Tramadol is an effective analgesic that is widely used in clinical practice. Reportedly, tramadol and its metabolite (M1) bind to μ-opioid receptors and/or inhibit reuptake of monoamines in the central nervous system, resulting in the activation of the descending inhibitory system. However, the fundamental mechanisms of tramadol in pain control remain unclear. TRPV1 and TRPA1 may be targets of tramadol; however, they have not been studied extensively. METHODS We examined whether and how tramadol and M1 act on human embryonic kidney 293 (HEK293) cells expressing human TRPV1 (hTRPV1) or hTRPA1 by using a Ca imaging assay and whole-cell patch-clamp recording. RESULTS Tramadol and M1 (0.01-10 μM) alone did not increase in intracellular Ca concentration ([Ca]i) in HEK293 cells expressing hTRPV1 or hTRPA1 compared with capsaicin (a TRPV1 agonist) or the allyl isothiocyanate (AITC, a TRPA1 agonist), respectively. Furthermore, in HEK293 cells expressing hTRPV1, pretreatment with tramadol or M1 for 5 minutes did not change the increase in [Ca]i induced by capsaicin. Conversely, pretreatment with tramadol (0.1-10 μM) and M1 (1-10 μM) significantly suppressed the AITC-induced [Ca]i increases in HEK293 cells expressing hTRPA1. In addition, the patch-clamp study showed that pretreatment with tramadol and M1 (10 μM) decreased the inward currents induced by AITC. CONCLUSIONS These data indicate that tramadol and M1 selectively inhibit the function of hTRPA1, but not that of hTRPV1, and that hTRPA1 may play a role in the analgesic effects of these compounds.
Collapse
Affiliation(s)
- Kanako Miyano
- From the *Division of Cancer Pathophysiology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; †Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan; ‡Tsumura Research Labs, Tumura & Co., Inashiki-gun, Ibaraki, Japan; §Division of Biostatistics, Tohoku University Graduate School of Medicine, Clinical Research Data Center, Tohoku University Hospital, Sendai, Miyagi, Japan; ∥Department of Palliative Medicine, Seirei Sakura Citizen Hospital, Sakura-shi, Chiba, Japan; and ¶Department of Palliative Medicine, Aomori Prefectural Central Hospital, Aomori-city, Aomori, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nociceptor beta II, delta, and epsilon isoforms of PKC differentially mediate paclitaxel-induced spontaneous and evoked pain. J Neurosci 2015; 35:4614-25. [PMID: 25788678 DOI: 10.1523/jneurosci.1580-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As one of the most effective and frequently used chemotherapeutic agents, paclitaxel produces peripheral neuropathy (paclitaxel-induced peripheral neuropathy or PIPN) that negatively affects chemotherapy and persists after cancer therapy. The mechanisms underlying this dose-limiting side effect remain to be fully elucidated. This study aimed to investigate the role of nociceptor protein kinase C (PKC) isoforms in PIPN. Employing multiple complementary approaches, we have identified a subset of PKC isoforms, namely βII, δ, and ϵ, were activated by paclitaxel in the isolated primary afferent sensory neurons. Persistent activation of PKCβII, PKCδ, and PKCϵ was also observed in the dorsal root ganglion neurons after chronic treatment with paclitaxel in a mouse model of PIPN. Isoform-selective inhibitors of PKCβII, PKCδ, and PKCϵ given intrathecally dose-dependently attenuated paclitaxel-induced mechanical allodynia and heat hyperalgesia. Surprisingly, spinal inhibition of PKCβII and PKCδ, but not PKCϵ, blocked the spontaneous pain induced by paclitaxel. These data suggest that a subset of nociceptor PKC isoforms differentially contribute to spontaneous and evoked pain in PIPN, although it is not clear whether PKCϵ in other regions regulates spontaneous pain in PIPN. The findings can potentially offer new selective targets for pharmacological intervention of PIPN.
Collapse
|
11
|
De Iuliis F, Taglieri L, Salerno G, Lanza R, Scarpa S. Taxane induced neuropathy in patients affected by breast cancer: Literature review. Crit Rev Oncol Hematol 2015; 96:34-45. [PMID: 26004917 DOI: 10.1016/j.critrevonc.2015.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Taxane induced neuropathy (TIN) is the most limiting side effect of taxane based chemotherapy, relative to the majority of breast cancer patients undergoing therapy with both docetaxel and paclitaxel. The symptoms begin symmetrically from the toes, because the tips of the longest nerves are affected for first. The patients report sensory symptoms such as paresthesia, dysesthesia, numbness, electric shock-like sensation, motor impairment and neuropathic pain. There is a great inter-individual variability among breast cancer women treated with taxanes, in fact 20-30% of them don't develop neurotoxicity. Actually, there is no standard therapy for TIN, although many medications, antioxidants and natural substances have been tested in vitro and in vivo. We will summarize all most recent literature data on TIN prevention and treatment, in order to reach an improvement in TIN management. Further studies are needed to evaluate new therapies that restore neuronal function and improve life quality of patients.
Collapse
Affiliation(s)
- Francesca De Iuliis
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Ludovica Taglieri
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Gerardo Salerno
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Rosina Lanza
- Ginecology and Obstetrics Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy
| | - Susanna Scarpa
- Experimental Medicine Department, Sapienza University, viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
12
|
Valtcheva MV, Davidson S, Zhao C, Leitges M, Gereau RW. Protein kinase Cδ mediates histamine-evoked itch and responses in pruriceptors. Mol Pain 2015; 11:1. [PMID: 25558916 PMCID: PMC4298070 DOI: 10.1186/1744-8069-11-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/23/2014] [Indexed: 01/28/2023] Open
Abstract
Background Itch-producing compounds stimulate receptors expressed on small diameter fibers that innervate the skin. Many of the currently known pruritogen receptors are Gq Protein-Coupled Receptors (GqPCR), which activate Protein Kinase C (PKC). Specific isoforms of PKC have been previously shown to perform selective functions; however, the roles of PKC isoforms in regulating itch remain unclear. In this study, we investigated the novel PKC isoform PKCδ as an intracellular modulator of itch signaling in response to histamine and the non-histaminergic pruritogens chloroquine and β-alanine. Results Behavioral experiments indicate that PKCδ knock-out (KO) mice have a 40% reduction in histamine-induced scratching when compared to their wild type littermates. On the other hand, there were no differences between the two groups in scratching induced by the MRGPR agonists chloroquine or β-alanine. PKCδ was present in small diameter dorsal root ganglion (DRG) neurons. Of PKCδ-expressing neurons, 55% also stained for the non-peptidergic marker IB4, while a smaller percentage (15%) expressed the peptidergic marker CGRP. Twenty-nine percent of PKCδ-expressing neurons also expressed TRPV1. Calcium imaging studies of acutely dissociated DRG neurons from PKCδ-KO mice show a 40% reduction in the total number of neurons responsive to histamine. In contrast, there was no difference in the number of capsaicin-responsive neurons between KO and WT animals. Acute pharmacological inhibition of PKCδ with an isoform-specific peptide inhibitor (δV1-1) also significantly reduced the number of histamine-responsive sensory neurons. Conclusions Our findings indicate that PKCδ plays a role in mediating histamine-induced itch, but may be dispensable for chloroquine- and β-alanine-induced itch.
Collapse
Affiliation(s)
| | | | | | | | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University in St, Louis, 660 S, Euclid Ave, Box 8054, 63110 St, Louis, MO, USA.
| |
Collapse
|
13
|
Fehrenbacher JC. Chemotherapy-Induced Peripheral Neuropathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:471-508. [DOI: 10.1016/bs.pmbts.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Uchida H, Nagai J, Ueda H. Lysophosphatidic acid and its receptors LPA1 and LPA3 mediate paclitaxel-induced neuropathic pain in mice. Mol Pain 2014; 10:71. [PMID: 25411045 PMCID: PMC4246549 DOI: 10.1186/1744-8069-10-71] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022] Open
Abstract
Background Paclitaxel, which is widely used for the treatment of solid tumors, causes neuropathic pain via poorly understood mechanisms. Previously, we have demonstrated that lysophosphatidic acid (LPA) and its receptors (LPA1 and LPA3) are required for the initiation of peripheral nerve injury-induced neuropathic pain. The present study aimed to clarify whether LPA and its receptors could mediate paclitaxel-induced neuropathic pain. Results Intraperitoneal administration of paclitaxel triggered a marked increase in production of LPA species (18:1-, 16:0-, and 18:0-LPA) in the spinal dorsal horn. Also, we found significant activations of spinal cytosolic phospholipase A2 and calcium-independent phospholipase A2 after the paclitaxel treatment. The paclitaxel-induced LPA production was completely abolished not only by intrathecal pretreatment with neurokinin 1 (NK1) or N-methyl-D-aspartate (NMDA) receptor antagonist, but also in LPA1 receptor-deficient (Lpar1−/−) and LPA3 receptor-deficient (Lpar3−/−) mice. In addition, the pharmacological blockade of NK1 or NMDA receptor prevented a reduction in the paw withdrawal threshold against mechanical stimulation after paclitaxel treatments. Importantly, the paclitaxel-induced mechanical allodynia was absent in Lpar1−/− and Lpar3−/− mice. Conclusions These results suggest that LPA1 and LPA3 receptors-mediated amplification of spinal LPA production is required for the development of paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
| | | | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
15
|
Ko MH, Hu ME, Hsieh YL, Lan CT, Tseng TJ. Peptidergic intraepidermal nerve fibers in the skin contribute to the neuropathic pain in paclitaxel-induced peripheral neuropathy. Neuropeptides 2014; 48:109-17. [PMID: 24630273 DOI: 10.1016/j.npep.2014.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 02/05/2023]
Abstract
Paclitaxel in chemotherapy-induced peripheral neuropathy (CIPN) is predominantly with a dose-limiting effect on neuropathic pain in clinical strategy. In the present study, the relationship between the neuropathic pain and nerve degeneration in paclitaxel CIPN was investigated. Adult male Sprague-Dawley (SD) rats were divided into three paclitaxel groups (0.5, 1.0, 2.0mg/kg) and a vehicle group with four intraperitoneal (i.p.) injections on alternating days. Our results demonstrated that the paclitaxel groups significantly exhibited the reductions of thermal hyperalgesia and mechanical allodynia. The neurotoxicity of paclitaxel conveyed the degeneration of intraepidermal nerve fibers (IENFs) in hindpaw glabrous skin. Nevertheless, the influence of paclitaxel to the peptidergic IENFs are even unknown. The skin innervation of protein gene product 9.5 (PGP 9.5)-immunoreactive (IR) IENFs in paclitaxel groups revealed the decreasing levels of density (73.54±0.72%, 63.17±1.77%, 61.79±2.68%, respectively; vs. vehicle group, p<0.05) throughout the entire experimental period. Additionally, the diminishing levels of density for peptidergic substance P (SP)-IR IENFs in paclitaxel groups were significantly shown (48.84±1.74%, 30.02±1.69%, 30.14±0.37%, respectively; vs. vehicle group, p<0.05). On the contrary, the density for peptidergic calcitonin gene-related peptide (CGRP)-IR IENFs in paclitaxel groups were revealed the similar decreasing levels (82.75±0.91%, 84.34±3.20%, 81.99±0.25%, respectively; vs. vehicle group, p<0.05). Linear regression analyses exhibited that densities of IENFs for PGP 9.5, SP, CGRP were correlated with withdrawal latencies (r(2)=0.77, p<0.0001; r(2)=0.75, p<0.0001; r(2)=0.28, p=0.0001, respectively) and mechanical thresholds (r(2)=0.43, p<0.0001; r(2)=0.73, p<0.0001; r(2)=0.40, p<0.0001, respectively). Therefore, the present results suggested that the development of neuropathic pain following paclitaxel injection induced the progressive degeneration of IENFs in skin and gave the evidence that the peptidergic IENFs may play an important role in therapeutic strategy of paclitaxe CIPN.
Collapse
Affiliation(s)
- Miau-Hwa Ko
- Department of Anatomy, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-E Hu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, College of Medicine, China Medical University, Taichung, Taiwan; Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
16
|
Pittman SK, Gracias NG, Vasko MR, Fehrenbacher JC. Paclitaxel alters the evoked release of calcitonin gene-related peptide from rat sensory neurons in culture. Exp Neurol 2014; 253:146-53. [PMID: 24374060 PMCID: PMC5954981 DOI: 10.1016/j.expneurol.2013.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/03/2023]
Abstract
Peripheral neuropathy (PN) is a debilitating and dose-limiting side effect of treatment with the chemotherapeutic agent, paclitaxel. Understanding the effects of paclitaxel on sensory neuronal function and the signaling pathways which mediate these paclitaxel-induced changes in function are critical for the development of therapies to prevent or alleviate the PN. The effects of long-term administration of paclitaxel on the function of sensory neurons grown in culture, using the release of the neuropeptide calcitonin gene-related peptide (CGRP) as an endpoint of sensory neuronal function, were examined. Dorsal root ganglion cultures were treated with low (10 nM) and high (300 nM) concentrations of paclitaxel for 1, 3, or 5 days. Following paclitaxel treatment, the release of CGRP was determined using capsaicin, a TRPV1 agonist; allyl isothiocyanate (AITC), a TRPA1 agonist; or high extracellular potassium. The effects of paclitaxel on the release of CGRP were stimulant-, concentration-, and time-dependent. When neurons were stimulated with capsaicin or AITC, a low concentration of paclitaxel (10nM) augmented transmitter release, whereas a high concentration (300 nM) reduced transmitter release in a time-dependent manner; however, when high extracellular potassium was used as the evoking stimulus, all concentrations of paclitaxel augmented CGRP release from sensory neurons. These results suggest that paclitaxel alters the function of sensory neurons in vitro, and suggest that the mechanisms by which paclitaxel alters neuronal function may include functional changes in TRP channel activity. The described in vitro model will facilitate future studies to identify the signaling pathways by which paclitaxel alters neuronal sensitivity.
Collapse
Affiliation(s)
- Sherry K Pittman
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA.
| | - Neilia G Gracias
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Columbia University, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA.
| | - Michael R Vasko
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Indiana University School of Medicine, Department of Anesthesiology, USA.
| | - Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Indiana University School of Medicine, Department of Anesthesiology, USA.
| |
Collapse
|
17
|
Yano T, Kawashiri T, Egashira N, Oishi R. [Substance P in antitumor drug-induced adverse reactions]. Nihon Yakurigaku Zasshi 2013; 142:255. [PMID: 24212596 DOI: 10.1254/fpj.142.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
18
|
Kawakami K, Chiba T, Katagiri N, Saduka M, Abe K, Utsunomiya I, Hama T, Taguchi K. Paclitaxel increases high voltage-dependent calcium channel current in dorsal root ganglion neurons of the rat. J Pharmacol Sci 2013; 120:187-95. [PMID: 23090716 DOI: 10.1254/jphs.12123fp] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Peripheral neuropathic pain is a serious side effect of paclitaxel treatment. However, the mechanism of this paclitaxel-induced neuropathic pain is unknown. In this study, we investigated the effects of paclitaxel on the voltage-dependent calcium channel (VDCC) current in rat dorsal root ganglion (DRG) neurons using the whole-cell patch clamp technique. Behavioral assessment using von Frey filament stimuli showed that 2 and 4 mg/kg paclitaxel treatment induced mechanical allodynia/hyperalgesia. Paclitaxel-induced mechanical hyperalgesia was significantly inhibited by gabapentin (100 mg/kg). Using the patch clamp method, we observed that paclitaxel (4 mg/kg) treatment significantly increased the VDCC current in small- and medium-diameter DRG neurons. Moreover, paclitaxel-induced increase in the VDCC current in medium-diameter DRG neurons was completely inhibited by 10 and 100 μM gabapentin. Similar effects in small-diameter DRG neurons were only seen with 100 μM gabapentin. Western blotting revealed that paclitaxel increased protein levels of the VDCC subunit α₂δ-1 (Ca(v)α₂δ-1) in DRG neurons. Immunohistochemistry showed that paclitaxel treatment increased Ca(v)α₂δ-1 protein expression in DRG neurons. Thus, paclitaxel treatment increases the VDCC current in small- and medium-diameter DRG neurons and upregulates Ca(v)α₂δ-1. The antihyperalgesic action of gabapentin may be due to inhibition of paclitaxel-induced increases in the VDCC current in DRG neurons.
Collapse
Affiliation(s)
- Kazuyoshi Kawakami
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Morioka N, Yoshida Y, Nakamura Y, Hidaka N, Hisaoka-Nakashima K, Nakata Y. The regulation of exon-specific brain-derived neurotrophic factor mRNA expression by protein kinase C in rat cultured dorsal root ganglion neurons. Brain Res 2013; 1509:20-31. [PMID: 23528267 DOI: 10.1016/j.brainres.2013.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 01/03/2023]
Abstract
Although brain-derived neurotrophic factor (BDNF) is localized in primary sensory neurons and has crucial roles in nociceptive transduction, the mechanisms involved in regulation of BDNF exon-specific mRNA expression in dorsal root ganglion (DRG) neurons have yet to be determined. Rat primary cultures of DRG neurons were stimulated with phorbol-12-myristate-13-acetate (PMA), a potent activator of protein kinase C (PKC), which resulted in the robust expression of both BDNF mRNA and protein. Among each BDNF mRNA exon, it was found that exons I, IV and VI were especially induced after PMA stimulation. The induction of these exons was significantly blocked by Gö6983 (a broad spectrum PKC inhibitor), Gö6976 (a conventional PKCs and PKCμ inhibitor), and rottlerin (a PKCδ inhibitor), but not by a PKCε inhibitor. The effect of PMA on exons I and VI was blocked by either U0126 (a MAP kinase kinase (MEK) inhibitor) or SB202190 (a p38 inhibitor), and PMA's effect on exon IV was inhibited by U0126 but not by SB202190. Furthermore, the activation of cAMP-responsive element-binding protein (CREB) was associated with the induction of exons I and IV, and the activation of nuclear factor-κB (NF-κB) contributed to the induction of exons I, IV and VI. These results show that the activation of PKCs induces the expression of BDNF mRNA exons I, IV and VI through exon-specific mechanisms, including extracellular signal-regulated kinase, p38, CREB and NF-κB, in cultured DRG neurons. These data suggest multiple pathways in the expression of BDNF in nociceptive sensory neurons.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Hiroshima 734-8553, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Chen L, Stuart L, Ohsumi TK, Burgess S, Varshney GK, Dastur A, Borowsky M, Benes C, Lacy-Hulbert A, Schmidt EV. Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics. BMC Cancer 2013; 13:93. [PMID: 23442791 PMCID: PMC3598783 DOI: 10.1186/1471-2407-13-93] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/19/2013] [Indexed: 11/16/2022] Open
Abstract
Background The development of resistance to chemotherapies represents a significant barrier to successful cancer treatment. Resistance mechanisms are complex, can involve diverse and often unexpected cellular processes, and can vary with both the underlying genetic lesion and the origin or type of tumor. For these reasons developing experimental strategies that could be used to understand, identify and predict mechanisms of resistance in different malignant cells would be a major advance. Methods Here we describe a gain-of-function forward genetic approach for identifying mechanisms of resistance. This approach uses a modified piggyBac transposon to generate libraries of mutagenized cells, each containing transposon insertions that randomly activate nearby gene expression. Genes of interest are identified using next-gen high-throughput sequencing and barcode multiplexing is used to reduce experimental cost. Results Using this approach we successfully identify genes involved in paclitaxel resistance in a variety of cancer cell lines, including the multidrug transporter ABCB1, a previously identified major paclitaxel resistance gene. Analysis of co-occurring transposons integration sites in single cell clone allows for the identification of genes that might act cooperatively to produce drug resistance a level of information not accessible using RNAi or ORF expression screening approaches. Conclusion We have developed a powerful pipeline to systematically discover drug resistance in mammalian cells in vitro. This cost-effective approach can be readily applied to different cell lines, to identify canonical or context specific resistance mechanisms. Its ability to probe complex genetic context and non-coding genomic elements as well as cooperative resistance events makes it a good complement to RNAi or ORF expression based screens.
Collapse
Affiliation(s)
- Li Chen
- Center for Molecular Therapeutics, Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, CNY 149-Rm7308, Thirteenth St. Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res 2013; 36:237-51. [PMID: 23435945 DOI: 10.1007/s12272-013-0057-y] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/14/2012] [Indexed: 01/25/2023]
Abstract
Gabapentin is an anti-epileptic agent but now it is also recommended as first line agent in neuropathic pain, particularly in diabetic neuropathy and post herpetic neuralgia. α2δ-1, an auxillary subunit of voltage gated calcium channels, has been documented as its main target and its specific binding to this subunit is described to produce different actions responsible for pain attenuation. The binding to α2δ-1 subunits inhibits nerve injury-induced trafficking of α1 pore forming units of calcium channels (particularly N-type) from cytoplasm to plasma membrane (membrane trafficking) of pre-synaptic terminals of dorsal root ganglion (DRG) neurons and dorsal horn neurons. Furthermore, the axoplasmic transport of α2δ-1 subunits from DRG to dorsal horns neurons in the form of anterograde trafficking is also inhibited in response to gabapentin administration. Gabapentin has also been shown to induce modulate other targets including transient receptor potential channels, NMDA receptors, protein kinase C and inflammatory cytokines. It may also act on supra-spinal region to stimulate noradrenaline mediated descending inhibition, which contributes to its anti-hypersensitivity action in neuropathic pain.
Collapse
Affiliation(s)
- Ankesh Kukkar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | | | | | | |
Collapse
|
22
|
Egashira N, Kawashiri T, Oishi R. [Evidence from basic studies on mechanisms and treatment drugs for oxaliplatin-induced peripheral neuropathy]. Nihon Yakurigaku Zasshi 2013; 141:66-70. [PMID: 23391544 DOI: 10.1254/fpj.141.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Nakamura Y, Izumi H, Shimizu T, Hisaoka-Nakashima K, Morioka N, Nakata Y. Volume Transmission of Substance P in Striatum Induced by Intraplantar Formalin Injection Attenuates Nociceptive Responses via Activation of the Neurokinin 1 Receptor. J Pharmacol Sci 2013; 121:257-71. [DOI: 10.1254/jphs.12218fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
24
|
Persistent chemoneuropathy in patients receiving the plant alkaloids paclitaxel and vincristine. Cancer Chemother Pharmacol 2012; 71:619-26. [PMID: 23228992 DOI: 10.1007/s00280-012-2047-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/25/2012] [Indexed: 01/27/2023]
Abstract
PURPOSE Chemoneuropathy remains a painful, burdensome complication of cancer treatment for patients receiving a range of chemotherapeutics, yet the cause and persistence of this condition are not fully documented. This study was designed to quantify the longevity of and contributions to neuropathy following treatment with the plant alkaloids paclitaxel and vincristine. METHODS Quantitative sensory testing was conducted approximately 18 months apart on 14 patients, seven of which had been treated with paclitaxel and seven with vincristine and compared to data from 18 healthy control subjects. In addition, skin biopsies were obtained to investigate changes in the density of Meissner's corpuscles and epidermal nerve fibers (ENFs), the loss of which is thought to contribute to multiple forms of neuropathy. RESULTS Impairments in motor skills, as measured by a grooved peg-board, were found. Deficits in touch detection were observed using von Frey monofilaments, as were changes in sharpness detection using a weighted needle device. Using a Peltier device, warmth and heat detection were impaired. These deficits were consistent across time. Remarkably, the average length of time patients reported painful neuropathy was over four and a half years. Skin biopsies were found to be deficient in Meissner's corpuscles and ENFs. CONCLUSIONS The combination of widespread deficits in sensory testing and decreases in skin innervation for cancer patients receiving paclitaxel or vincristine document a persistent polyneuropathy which severely impacts these patients. Decreases in Meissner's corpuscles and ENFs indicate a possible mechanism for the neuropathy.
Collapse
|
25
|
Ito S, Tajima K, Nogawa M, Inoue N, Kyoi T, Takahashi Y, Sasagawa T, Nakamura A, Kotera T, Ueda M, Yamashita Y, Banno K. Etodolac, a cyclooxygenase-2 inhibitor, attenuates paclitaxel-induced peripheral neuropathy in a mouse model of mechanical allodynia. J Pharmacol Exp Ther 2012; 342:53-60. [PMID: 22460833 DOI: 10.1124/jpet.111.187401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of the cyclooxygenase-2 (COX-2) inhibitor etodolac on the mechanical allodynia induced by paclitaxel was investigated in mice and compared with the effects of the nonselective COX inhibitors indomethacin and diclofenac, the selective COX-2 inhibitor celecoxib, the calcium channel α(2)δ subunit inhibitor pregabalin, the sodium channel blocker mexiletine, and the serotonin-norepinephrine reuptake inhibitor duloxetine. The decrease in the paw-withdrawal threshold induced by paclitaxel was reversed by oral administration of etodolac at 10 mg/kg but was not affected by indomethacin, diclofenac, or celecoxib. The antiallodynic effect of etodolac gradually increased during repeated administration, and after 2 weeks the paw-withdrawal threshold at the preadministration point was significantly increased. Pregabalin, duloxetine, and mexiletine also showed an antiallodynic effect in this model. Whereas pregabalin had a preadministration effect similar to that of etodolac during repeated administration, mexiletine or duloxetine had no such effect. There was almost no difference in the distribution of etodolac and diclofenac in nervous tissue, indicating that COX inhibition is unlikely to be involved in the antiallodynic effect of etodolac. Etodolac did not show a neuroprotective effect against morphological transformations such as the axonal degeneration induced by paclitaxel. Instead, etodolac probably acts at the level of functional changes accompanying paclitaxel treatment, such as alterations in the activation state of components of the pain transmission pathway. Our findings suggest that etodolac attenuates paclitaxel-induced peripheral neuropathy by a COX-independent pathway and that it might be useful for the treatment of paclitaxel-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Sunao Ito
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., 14, Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nakamura Y, Une Y, Miyano K, Abe H, Hisaoka K, Morioka N, Nakata Y. Activation of transient receptor potential ankyrin 1 evokes nociception through substance P release from primary sensory neurons. J Neurochem 2012; 120:1036-47. [PMID: 22182301 DOI: 10.1111/j.1471-4159.2011.07628.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To examine mechanisms underlying substance P (SP) release from primary sensory neurons in response to activation of the non-selective cation channel transient receptor potential ankyrin 1 (TRPA1), SP release from cultured rat dorsal root ganglion neurons was measured, using radioimmunoassay, by stimulating TRPA1 with allyl isothiocyanate (AITC), a TRPA1 agonist. AITC-evoked SP release occurred in a concentration- and time-dependent manner. Interestingly, p38 mitogen-activated protein kinase (p38) inhibitor SB203580 significantly attenuated AITC-evoked SP release. The in vivo effect of AITC-evoked SP release from primary sensory neurons in mice was evaluated. Hind paw intraplantar injection of AITC induced nociceptive behaviors and inflammation (edema, thermal hyperalgesia). AITC-induced thermal hyperalgesia and edema were inhibited by intraplantar pre-treatment with either SB203580 or neurokinin-1 receptor antagonist CP96345. Moreover, intrathecal pre-treatment with either CP96345 or SB203580 inhibited AITC-induced nociceptive behaviors and thermal hyperalgesia. Immunohistochemical studies demonstrated that intraplantar AITC injection induced the phosphorylation of p38 in mouse dorsal root ganglion neurons containing SP. These findings suggest that activation of TRPA1 evokes SP release from the primary sensory neurons through phosphorylation of p38, subsequent nociceptive behaviors and inflammatory responses. Furthermore, the data also indicate that blocking the effects of TRPA1 activation at the periphery leads to significant antinociception.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, Prenen J, Creminon C, Geppetti P, Nassini R. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch 2012; 463:561-9. [PMID: 22258694 DOI: 10.1007/s00424-011-1071-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022]
Abstract
Paclitaxel produces a sensory neuropathy, characterized by mechanical and cold hypersensitivity, which are abated by antioxidants. The transient receptor potential vanilloid 4 (TRPV4) channel has been reported to contribute to paclitaxel-evoked allodynia in rodents. We recently showed that TRP ankyrin 1 (TRPA1) channel mediates oxaliplatin-evoked cold and mechanical allodynia, and the drug targets TRPA1 via generation of oxidative stress. Here, we have explored whether TRPA1 activation contributes to paclitaxel-induced mechanical and cold hypersensitivity and whether this activation is mediated by oxidative stress generation. Paclitaxel-evoked mechanical allodynia was reduced partially by the TRPA1 antagonist, HC-030031, and the TRPV4 antagonist, HC-067047, and was completely abated by the combination of the two antagonists. The reduced paclitaxel-evoked mechanical allodynia, observed in TRPA1-deficient mice, was completely abolished when mice were treated with HC-067047. Cold allodynia was abated completely by HC-030031 and in TRPA1-deficient mice. Exposure to paclitaxel of slices of mouse esophagus released the sensory neuropeptide, calcitonin gene-related peptide (CGRP). This effect was abolished by capsaicin desensitization and in calcium-free medium (indicating neurosecretion from sensory nerve terminals), partially reduced by either HC-030031 or HC-067047, and completely abated in the presence of glutathione (GSH). Finally, the reduced CGRP release, observed in esophageal slices of TRPA1-deficient mice, was further inhibited by GSH. Paclitaxel via oxygen radical formation targets TRPA1 and TRPV4, and both channels are key for the delayed development of mechanical allodynia. Cold allodynia is, however, entirely dependent on TRPA1.
Collapse
Affiliation(s)
- Serena Materazzi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li YS, Wang JX, Jia MM, Liu M, Li XJ, Tang HB. Dragon's blood inhibits chronic inflammatory and neuropathic pain responses by blocking the synthesis and release of substance P in rats. J Pharmacol Sci 2011; 118:43-54. [PMID: 22198006 DOI: 10.1254/jphs.11160fp] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/06/2011] [Indexed: 10/14/2022] Open
Abstract
As a traditional Chinese medicine, dragon's blood (DB) is widely used in treating various pains for thousands of years due to its potent anti-inflammatory and analgesic effects. In the present study, we observed that intragastric administration of DB at dosages of 0.14, 0.56, and 1.12 g/kg potently inhibited paw edema, hyperalgesia, cyclooxygenase-2 (COX-2) protein expression, or preprotachykinin-A mRNA expression in carrageenan-inflamed or sciatic nerve-injured (chronic constriction injury) rats, respectively. A short-term (15 s or 10 min) pre-exposure of cultured rat dorsal root ganglion (DRG) neurons to DB (0.3, 3, and 30 µg/ml) or its component cochinchinenin B (CB; 0.1, 1, and 10 µM) blocked capsaicin-evoked increases in both the intracellular calcium ion concentration and the substance P release. Moreover, a long-term (180 min) exposure of cultured rat DRG neurons to DB or CB significantly attenuated bradykinin-induced substance P release. These findings indicate that DB exerts anti-inflammatory and analgesic effects by blocking the synthesis and release of substance P through inhibition of COX-2 protein induction and intracellular calcium ion concentration. Therefore, DB may serve as a promising potent therapeutic agent for treatment of chronic pain, and its effective component CB might partly contribute to anti-inflammatory and analgesic effects.
Collapse
Affiliation(s)
- Yu-Sang Li
- Department of Pharmacology, College of Pharmacy, South-Central University for Nationalities, China
| | | | | | | | | | | |
Collapse
|
29
|
Tatsushima Y, Egashira N, Kawashiri T, Mihara Y, Yano T, Mishima K, Oishi R. Involvement of Substance P in Peripheral Neuropathy Induced by Paclitaxel but Not Oxaliplatin. J Pharmacol Exp Ther 2011; 337:226-35. [DOI: 10.1124/jpet.110.175976] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Boyette-Davis J, Xin W, Zhang H, Dougherty PM. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 2010; 152:308-313. [PMID: 21145656 DOI: 10.1016/j.pain.2010.10.030] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 01/27/2023]
Abstract
Loss of intraepidermal nerve fibers (IENFs) has been speculated to play a critical role in the development of various neuropathies. In this study, the density of IENFs were studied over time during the induction of Taxol (Bristol-Myers Squibb, NY, USA)-induced chemoneuropathy and compared with the changes in IENFs in animals co-treated with Taxol plus the protective agent minocycline. Rats were injected (intraperitoneally) with 2mg/kg of Taxol every other day for four injections (day 1, 3, 5, and 7). Minocycline (25mg/kg) was given in a separate group of rats 24h prior to the first dose of Taxol and every day for the next 9days (day 0 through 9). Animals were tested for mechanical paw withdrawal thresholds prior to any drug administrations and again on day 7, 14, and 30. Immunohistochemistry using the pan-neuronal marker protein gene product 9.5 was performed on glabrous skin of the hind-paw foot pad to stain for IENFs also on day 7, 14, and 30. The results show that Taxol-treated animals developed mechanical sensitivity and corresponding IENF loss. Animals receiving minocycline plus Taxol showed no hyperalgesia or loss of IENFs. This study confirms, for the first time, that a loss of IENFs occurs as a neuropathy develops, and further shows a protection against both IENF loss and hyperalgesia with minocycline treatment. The progression of Taxol-induced mechanical hypersensitivity coincides with loss of intraepidermal nerve fibers, and the hyperalgesia and nerve fiber loss were prevented with minocycline treatment.
Collapse
Affiliation(s)
- J Boyette-Davis
- Department of Anesthesiology and Pain Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | |
Collapse
|