1
|
Yamaguchi T, Ozawa H, Yamaguchi S, Hamaguchi S, Ueda S. Calbindin-Positive Neurons Co-express Functional Markers in a Location-Dependent Manner Within the A11 Region of the Rat Brain. Neurochem Res 2021; 46:853-865. [PMID: 33439431 DOI: 10.1007/s11064-020-03217-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022]
Abstract
The A11 region plays a role in numerous physiological functions, including pain and locomotor activity, and consists of a variety of neurons including GABAergic, calbindin positive (Calb+), and dopaminergic (DA) neurons. However, the neurochemical nature of Calb+ neurons and their regulatory role in the A11 region remain largely unknown. In this study, we examined the kind of functional markers co-expressed in the Calb+ neurons using sections from 8-week-old rats. To examine a marker related to classical neurotransmitters, we performed in situ hybridization for vesicular glutamate transporter 2 (vGluT2) or glutamate decarboxylase (GAD) 65 and 67, in conjunction with Calb immunohistochemistry. We found cellular co-expression of Calb with vGluT2 or GAD65/67 throughout the A11 region. Nearly all Calb+/GAD65/67+ neurons were found in the rostral-middle aspect of the A11 region. In contrast, Calb+/vGluT2+ neurons were found predominantly in the middle-caudal aspect of the A11 region. For receptors and neuropeptides, we performed immunohistochemistry for androgen receptor (AR), estrogen receptors (ERα and ERβ), and calcitonin gene-related peptide (CGRP). We found that Calb+ neurons co-expressed AR in the rostral aspect of the A11 region in both male and female rats. However, we rarely find cellular co-expression of Calb with ERα or ERβ in this region. For CGRP, we found both Calb+ neurons with or without CGRP expression. These results demonstrate that Calb+ neurons co-express many functional markers. Calb+ neurons have a distinct distribution pattern and may play a variety of regulatory roles, depending on their location within the A11 region.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| | - Hidechika Ozawa
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
- Department of Anesthesia and Pain Medicine, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Shigeki Yamaguchi
- Department of Anesthesia and Pain Medicine, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Shinsuke Hamaguchi
- Department of Anesthesia and Pain Medicine, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| |
Collapse
|
2
|
van Reij RR, Joosten EA, van den Hoogen NJ. Dopaminergic neurotransmission and genetic variation in chronification of post-surgical pain. Br J Anaesth 2019; 123:853-864. [DOI: 10.1016/j.bja.2019.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023] Open
|
3
|
Wang X, Ma S, Wu H, Shen X, Xu S, Guo X, Bolick ML, Wu S, Wang F. Macrophage migration inhibitory factor mediates peripheral nerve injury-induced hypersensitivity by curbing dopaminergic descending inhibition. Exp Mol Med 2018; 50:e445. [PMID: 29504609 PMCID: PMC5903823 DOI: 10.1038/emm.2017.271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Our previous works disclosed the contributing role of macrophage migration inhibitory factor (MIF) and dopaminergic inhibition by lysine dimethyltransferase G9a/Glp complex in peripheral nerve injury-induced hypersensitivity. We herein propose that the proinflammatory cytokine MIF participates in the regulation of neuropathic hypersensitivity by interacting with and suppressing the descending dopaminergic system. The lumbar spinal cord (L-SC) and ventral tegmental area (VTA) are two major locations with significant upregulation of MIF after chronic constriction injury (CCI) of the sciatic nerve, and they display time-dependent changes, along with a behavioral trajectory. Correspondingly, dopamine (DA) content shows the reverse characteristic change to MIF with a time-dependent curve in post-surgical behavior. The levels of both MIF and DA are reversed by the MIF tautomerase inhibitor ISO-1, and a negative relationship exists between MIF and DA. The reversed role of ISO-1 also affects tyrosine hydroxylase expression. Furthermore, CCI induces Th promoter CpG site methylation in the L-SC and VTA areas, and this effect could be abated by ISO-1 administration. G9a/SUV39H1 and H3K9me2/H3K9me3 enrichment within the Th promoter region following CCI in the L-SC and VTA was also decreased by ISO-1. In cultured dopaminergic neurons, rMIF enhanced the recruitment of G9a and SUV39H1, followed by an increase in H3K9me2/H3K9me3. These molecular changes correspondingly exhibited alterations in Th promoter CpG site methylation and pain behaviors. In summary, MIF functions as a braking factor in curbing dopaminergic descending inhibition in peripheral nerve injury-induced hypersensitivity by mediating Th gene methylation through G9a/SUV39H1-associated H3K9 methylation.
Collapse
Affiliation(s)
- Xian Wang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shaolei Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haibo Wu
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaofeng Shen
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- Institute of Pediatrics, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Maria L Bolick
- Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| | - Shizheng Wu
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Fuzhou Wang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Mechanistic evaluation of tapentadol in reducing the pain perception using in-vivo brain and spinal cord microdialysis in rats. Eur J Pharmacol 2017; 809:224-230. [PMID: 28412373 DOI: 10.1016/j.ejphar.2017.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022]
Abstract
Role of monoamine neurotransmitters in the modulation of emotional and pain processing in spinal cord and brain regions is not well known. Tapentadol, a norepinephrine reuptake inhibitor with µ-opioid receptor agonistic activity has recently been introduced for the treatment of moderate to severe pain. The objective of the present study was to examine the effects of tapentadol on modulation of monoamines in the prefrontal cortex and dorsal horn using brain microdialysis. Tapentadol was administered intraperitoneally at 4.64-21.5mg/kg to male Wistar rats. Based on these results, 10mg/kg i.p. was chosen for spinal microdialysis in freely moving rats. Tapentadol produced significant and dose-dependent increase in cortical dopamine and norepinephrine levels with mean maximum increase of 600% and 300%, respectively. Treatment had no effect on cortical serotonin levels. In the dorsal horn, serotonin, dopamine and norepinephrine levels were significantly increased with mean maximum increases of 220%, 190% and 280%, respectively. Although the density of dopamine transporter is low in cortex, the increase of dopamine and norepinephrine levels in cortex could be mediated through the inhibition of norepinephrine transporter. In the dorsal horn, increase in norepinephrine levels could be due to inhibition of norepinephrine transporter in the spinal cord. Whereas, activation of opioids receptors in non-spinal regions might be responsible for increase in dopamine and serotonin levels. The results from current investigation suggest that clinical efficacy of tapentadol in neuropathic pain is mediated through the enhanced monoaminergic neurotransmission in the spinal cord and regions involved with emotional processing in brain.
Collapse
|
5
|
Ozawa H, Yamaguchi T, Hamaguchi S, Yamaguchi S, Ueda S. Three Types of A11 Neurons Project to the Rat Spinal Cord. Neurochem Res 2017; 42:2142-2153. [PMID: 28303496 DOI: 10.1007/s11064-017-2219-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/23/2022]
Abstract
The A11 dopaminergic cell group is the only group among the A8-A16 dopaminergic cell groups that includes neurons innervating the spinal cord, and a decrease in dopaminergic transmission at the spinal cord is thought to contribute to the pathogenesis of restless legs syndrome. However, the mechanisms regulating the neuronal activity of A11 dopaminergic neurons remain to be elucidated. Unraveling the neuronal composition, distribution and connectivity of A11 neurons would provide insights into the mechanisms regulating the spinal dopaminergic system. To address this, we performed immunohistochemistry for calcium-binding proteins such as calbindin (Calb) and parvalbumin (PV), in combination with the retrograde tracer Fluorogold (FG) injected into the spinal cord. Immunohistochemistry for Calb, PV, or tyrosine hydroxylase (TH), a marker for dopaminergic neurons, revealed that there were at least three types of neurons in the A11 region: neurons expressing Calb, TH, or both TH and Calb, whereas there were no PV-immunoreactive (IR) cell bodies. Both Calb- and PV-IR processes were found throughout the entire A11 region, extending in varied directions depending on the level relative to bregma. We found retrogradely labeled FG-positive neurons expressing TH, Calb, or both TH and Calb, as well as FG-positive neurons lacking both TH and Calb. These findings indicate that the A11 region is composed of a variety of neurons that are distinct in their neurochemical properties, and suggest that the diencephalospinal dopamine system may be regulated at the A11region by both Calb-IR and PV-IR processes, and at the terminal region of the spinal cord by Calb-IR processes derived from the A11 region.
Collapse
Affiliation(s)
- Hidechika Ozawa
- Department of Anesthesiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Tsuyoshi Yamaguchi
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Shinsuke Hamaguchi
- Department of Anesthesiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shigeki Yamaguchi
- Department of Anesthesiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 880 Kita-kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| |
Collapse
|
6
|
Biber Muftuler FZ, Yurt Kilcar A, Unak P. A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4082-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Koblinger K, Füzesi T, Ejdrygiewicz J, Krajacic A, Bains JS, Whelan PJ. Characterization of A11 neurons projecting to the spinal cord of mice. PLoS One 2014; 9:e109636. [PMID: 25343491 PMCID: PMC4208762 DOI: 10.1371/journal.pone.0109636] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023] Open
Abstract
The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA) to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic) nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH) that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC), the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2), which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT). In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.
Collapse
Affiliation(s)
- Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jillian Ejdrygiewicz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Aleksandra Krajacic
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Jaideep S. Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
8
|
Response to Letter to the Editor. Pain 2014; 155:200-201. [DOI: 10.1016/j.pain.2013.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/22/2022]
|
9
|
Garland EL, Froeliger B, Zeidan F, Partin K, Howard MO. The downward spiral of chronic pain, prescription opioid misuse, and addiction: cognitive, affective, and neuropsychopharmacologic pathways. Neurosci Biobehav Rev 2013; 37:2597-607. [PMID: 23988582 DOI: 10.1016/j.neubiorev.2013.08.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
Prescription opioid misuse and addiction among chronic pain patients are emerging public health concerns of considerable significance. Estimates suggest that more than 10% of chronic pain patients misuse opioid analgesics, and the number of fatalities related to nonmedical or inappropriate use of prescription opioids is climbing. Because the prevalence and adverse consequences of this threat are increasing, there is a pressing need for research that identifies the biobehavioral risk chain linking chronic pain, opioid analgesia, and addictive behaviors. To that end, the current manuscript draws upon current neuropsychopharmacologic research to provide a conceptual framework of the downward spiral leading to prescription opioid misuse and addiction among chronic pain patients receiving opioid analgesic pharmacotherapy. Addictive use of opioids is described as the outcome of a cycle initiated by chronic pain and negative affect and reinforced by opioidergic-dopamingeric interactions, leading to attentional hypervigilance for pain and drug cues, dysfunctional connectivity between self-referential and cognitive control networks in the brain, and allostatic dysregulation of stress and reward circuitry. Implications for clinical practice are discussed; multimodal, mindfulness-oriented treatment is introduced as a potentially effective approach to disrupting the downward spiral and facilitating recovery from chronic pain and opioid addiction.
Collapse
Affiliation(s)
- Eric L Garland
- Supportive Oncology & Survivorship Program, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States; College of Social Work, University of Utah, Salt Lake City, UT, United States.
| | | | | | | | | |
Collapse
|
10
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Song Z, Guo Q, Zhang J, Li M, Liu C, Zou W. Proteomic analysis of PKCγ-related proteins in the spinal cord of morphine-tolerant rats. PLoS One 2012; 7:e42068. [PMID: 22860055 PMCID: PMC3409149 DOI: 10.1371/journal.pone.0042068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/02/2012] [Indexed: 12/16/2022] Open
Abstract
Background Morphine tolerance is a common drawback of chronic morphine exposure, hindering use of this drug. Studies have shown that PKCã may play a key role in the development of morphine tolerance, although the mechanisms are not fully known. Methodology/Principal Findings In a rat model of morphine tolerance, PKCã knockdown in the spinal cord was successfully carried out using RNA interference (RNAi) with lentiviral vector-mediated short hairpin RNA of PKCã (LV-shPKCã). Spinal cords (L4-L5) were obtained surgically from morphine-tolerant (MT) rats with and without PKCã knockdown, for comparative proteomic analysis. Total proteins from the spinal cords (L4-L5) were extracted and separated using two-dimensional gel electrophoresis (2DGE); 2D gel images were analyzed with PDQuest software. Seven differential gel-spots were observed with increased spot volume, and 18 spots observed with decreased spot volume. Among these, 13 differentially expressed proteins (DEPs) were identified with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), comparing between MT rats with and without PKCã knockdown. The DEPs identified have roles in the cytoskeleton, as neurotrophic factors, in oxidative stress, in ion metabolism, in cell signaling, and as chaperones. Three DEPs (GFAP, FSCN and GDNF) were validated with Western blot analysis, confirming the DEP data. Furthermore, using immunohistochemical analysis, we reveal for the first time that FSCN is involved in the development of morphine tolerance. Conclusions/Significance These data cast light on the proteins associated with the PKCã activity during morphine tolerance, and hence may contribute to clarification of the mechanisms by which PKCã influences MT.
Collapse
Affiliation(s)
- Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhang
- Department of Anesthesiology, the Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Chang Liu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- * E-mail:
| |
Collapse
|
12
|
Synthesis, radiolabeling and biodistribution of a new opioid glucuronide derivative: ethyl-morphine glucuronide (em-glu). J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-1472-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|