1
|
Yang D, Shu T, Zhao H, Sun Y, Xu W, Tu G. Knockdown of macrophage migration inhibitory factor (MIF), a novel target to protect neurons from parthanatos induced by simulated post-spinal cord injury oxidative stress. Biochem Biophys Res Commun 2020; 523:719-725. [PMID: 31948762 DOI: 10.1016/j.bbrc.2019.12.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 01/28/2023]
Abstract
Parthanatos is a form of regulated cell death (RCD) that is closely linked to DNA damage, which is a common consequence of oxidative stress due to central nervous trauma, such as spinal cord injury (SCI). The mechanism by which apoptosis-inducing factor (AIF) mediates DNA strand breaks in parthanatos was not clear until the discovery of the nuclease function of MIF. A previous study suggested that observed results may not be reliable if the oxidative stress induced in cells observed under experimental pathological conditions does not accurately replicate the specific pathologies being studied. According to an earlier direct measurement of extracellular oxidative stress in a rat SCI model, post-SCI oxidative stress was approximately the same as exposure to 150 μM H2O2. However, this concentration has been reported as sublethal oxidative stress in other cell types related to senescence, apoptosis, and parthanatos. Using sublethal H2O2 concentrations to induce oxidative stress is equivocal. Also, different cell types have diverse tolerances and responses to oxidative stress, and, therefore, exposure to H2O2. To avoid these limitations, the present study explored the mechanism of neuronal death under this simulated post-SCI oxidative stress and determined the effects of MIF knockdown in parthanatos associated with SCI. Immunofluorescence and flow cytometry were used to reveal typical characteristics of parthanatos that were blocked by PARP-1 inhibitors but not caspase inhibitors. In addition to classic features like PARP-1 and caspase-3 cleavage that were absent, we determined that parthanatos instead of apoptosis played a major role in the cell death caused by oxidative stress following SCI. Flow cytometry analysis of cells transfected by adenovirus with MIF-shRNA then exposed to H2O2 showed a significant decrease in cell death for MIF knockdown cells, even after AIF nuclear translocation. The comet assay also displayed significantly fewer DNA strand breaks after MIF knockdown. This is the first study has verified that MIF knockdown enables to protect neurons from parthanatos under a simulated in vivo oxidative stress following SCI. It suggests that MIF knockdown is a promising therapy to rescue neurons suffering from oxidative stress-induced SCI pathology.
Collapse
Affiliation(s)
- Dongfang Yang
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| | - Tingting Shu
- Dalian Medical University, Lvshunkou District, Dalian City, Liaoning Province, PR China.
| | - Haosen Zhao
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| | - Yang Sun
- Department of Hand and Foot Surgery, Dalian Municipal Central Hospital, Shahekou District, Dalian City, Liaoning Province, PR China.
| | - Weibing Xu
- Department of Spine Surgery, Dalian Municipal Central Hospital, Shahekou District, Dalian City, Liaoning Province, PR China.
| | - Guanjun Tu
- China Medical University, Shenbei New District, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
2
|
Mechanism of Neuroprotection Against Experimental Spinal Cord Injury by Riluzole or Methylprednisolone. Neurochem Res 2017; 44:200-213. [PMID: 29290040 DOI: 10.1007/s11064-017-2459-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022]
Abstract
Any spinal cord injury carries the potential for persistent disability affecting motor, sensory and autonomic functions. To prevent this outcome, it is highly desirable to block a chain of deleterious reactions developing in the spinal areas immediately around the primary lesion. Thus, early timing of pharmacological neuroprotection should be one major strategy whose impact may be first studied with preclinical models. Using a simple in vitro model of the rat spinal cord it is possible to mimic pathological processes like excitotoxicity that damages neurons because of excessive glutamate receptor activation due to injury, or hypoxic/dysmetabolic insult that preferentially affects glia following vascular dysfunction. While ongoing research is exploring the various components of pathways leading to cell death, current treatment principally relies on the off-label use of riluzole (RLZ) or methylprednisolone sodium succinate (MPSS). The mechanism of action of these drugs is diverse as RLZ targets mainly neurons and MPSS targets glia. Even when applied after a transient excitotoxic stimulus, RLZ can provide effective prevention of secondary excitotoxic damage to premotoneurons, although not to motoneurons that remain very vulnerable. This observation indicates persistent inability to express locomotor activity despite pharmacological treatment conferring some histological protection. MPSS can protect glia from dysmetabolic insult, yet it remains poorly effective to prevent neuronal death. In summary, it appears that these pharmacological agents can produce delayed protection for certain cell types only, and that their combined administration does not provide additional benefit. The search should continue for better, mechanism-based neuroprotective agents.
Collapse
|
3
|
Kaur J, Flores Gutiérrez J, Nistri A. Neuroprotective effect of propofol against excitotoxic injury to locomotor networks of the rat spinal cord in vitro. Eur J Neurosci 2016; 44:2418-2430. [PMID: 27468970 DOI: 10.1111/ejn.13353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Although neuroprotection to contain the initial damage of spinal cord injury (SCI) is difficult, multicentre studies show that early neurosurgery under general anaesthesia confers positive benefits. An interesting hypothesis is that the general anaesthetic itself might largely contribute to neuroprotection, although in vivo clinical settings hamper studying this possibility directly. To further test neuroprotective effects of a widely used general anaesthetic, we studied if propofol could change the outcome of a rat isolated spinal cord SCI model involving excitotoxicity evoked by 1 h application of kainate with delayed consequences on neurons and locomotor network activity. Propofol (5 μm; 4-8 h) enhanced responses to GABA and depressed those to NMDA together with decrease in polysynaptic reflexes that partly recovered after 1 day washout. Fictive locomotion induced by dorsal root stimuli or NMDA and serotonin was weaker the day after propofol application. Kainate elicited a significant loss of spinal neurons, especially motoneurons, whose number was halved. When propofol was applied for 4-8 h after kainate washout, strong neuroprotection was observed in all spinal areas, including attenuation of motoneuron loss. Although propofol had minimal impact on recovery of electrophysiological characteristics 24 h later, it did not further depress network activity. A significant improvement in disinhibited burst periodicity suggested potential to ameliorate neuronal excitability in analogy to histological data. Functional recovery of locomotor networks perhaps required longer time due to the combined action of excitotoxicity and anaesthetic depression at 24 h. These results suggest propofol could confer good neuroprotection to spinal circuits during experimental SCI.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Javier Flores Gutiérrez
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy. .,SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|
4
|
Delayed application of the anesthetic propofol contrasts the neurotoxic effects of kainate on rat organotypic spinal slice cultures. Neurotoxicology 2016; 54:1-10. [PMID: 26947011 DOI: 10.1016/j.neuro.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
Abstract
Excitotoxicity due to hyperactivation of glutamate receptors is thought to underlie acute spinal injury with subsequent strong deficit in spinal network function. Devising an efficacious protocol of neuroprotection to arrest excitotoxicity might, therefore, spare a substantial number of neurons and allow later recovery. In vitro preparations of the spinal cord enable detailed measurement of spinal damage evoked by the potent glutamate analogue kainate. Any clinically-relevant neuroprotective treatment should start after the initial lesion and spare networks for at least 24h when cell damage plateaus. Using this strategy, we have observed that the gas anesthetic methoxyflurane provided strong, delayed neuroprotection. It is unclear if this beneficial effect was due to the mechanism of action by methoxyflurane, or it was the consequence of anesthetic depression. To test this hypothesis, we investigated the effect by propofol (commonly injected i.v. for general anesthesia) after kainate excitotoxicity induced on organotypic spinal slices. At 5μM concentration, propofol significantly attenuated cell death, including neuronal losses and, especially, damage to the highly vulnerable motoneurons. The action by propofol was fully prevented when co-applied with the GABAA antagonist bicuculline, indicating that neuroprotection required intact GABAA receptor function. Although bicuculline per se was not neurotoxic, it largely enhanced the lesional effects of kainate, suggesting that GABAA receptor activity could limit excitotoxicity. Our data might offer an explanation for the beneficial clinical outcome of neurosurgery performed as soon as possible after spinal lesion: we posit that general anesthesia contributes to this outcome, regardless of the type of anesthetic used.
Collapse
|
5
|
Sámano C, Kaur J, Nistri A. A study of methylprednisolone neuroprotection against acute injury to the rat spinal cord in vitro. Neuroscience 2015; 315:136-49. [PMID: 26701292 DOI: 10.1016/j.neuroscience.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Methylprednisolone sodium succinate (MPSS) has been proposed as a first-line treatment for acute spinal cord injury (SCI). Its clinical use remains, however, controversial because of the modest benefits and numerous side-effects. We investigated if MPSS could protect spinal neurons and glia using an in vitro model of the rat spinal cord that enables recording reflexes, fictive locomotion and morphological analysis of damage. With this model, a differential lesion affecting mainly either neurons or glia can be produced via kainate-evoked excitotoxicity or application of a pathological medium (lacking O2 and glucose), respectively. MPSS (6-10 μM) applied for 24 h after 1-h pathological medium protected astrocytes and oligodendrocytes especially in the ventrolateral white matter. This effect was accompanied by the return of slow, alternating oscillations (elicited by NMDA and 5-hydroxytryptamine (5-HT)) reminiscent of a sluggish fictive locomotor pattern. MPSS was, however, unable to reverse even a moderate neuronal loss and the concomitant suppression of fictive locomotion evoked by kainate (0.1 mM; 1 h). These results suggest that MPSS could, at least in part, contrast damage to spinal glia induced by a dysmetabolic state (associated to oxygen and glucose deprivation) and facilitate reactivation of spinal networks. Conversely, when even a minority of neurons was damaged by excitotoxicity, MPSS did not protect them nor did it restore network function in the current experimental model.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City, Mexico
| | - J Kaur
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - A Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory) Laboratory, Istituto di Medicina Fisica e Riabilitazione, Udine, Italy.
| |
Collapse
|
6
|
Passeri D, Camaioni E, Liscio P, Sabbatini P, Ferri M, Carotti A, Giacchè N, Pellicciari R, Gioiello A, Macchiarulo A. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors. ChemMedChem 2015; 11:1219-26. [PMID: 26424664 DOI: 10.1002/cmdc.201500391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/08/2022]
Abstract
Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.
Collapse
Affiliation(s)
- Daniela Passeri
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Emidio Camaioni
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Paride Liscio
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Paola Sabbatini
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | - Martina Ferri
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Andrea Carotti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Nicola Giacchè
- TES Pharma S.r.l., via Palmiro Togliatti 20, 06073 Corciano, Perugia, Italy
| | | | - Antimo Gioiello
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Antonio Macchiarulo
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
7
|
PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease. PLoS One 2015; 10:e0134482. [PMID: 26252217 PMCID: PMC4529170 DOI: 10.1371/journal.pone.0134482] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington’s disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.
Collapse
|
8
|
The volatile anesthetic methoxyflurane protects motoneurons against excitotoxicity in an in vitro model of rat spinal cord injury. Neuroscience 2014; 285:269-80. [PMID: 25446348 DOI: 10.1016/j.neuroscience.2014.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/21/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022]
Abstract
Neuroprotection of the spinal cord during the early phase of injury is an important goal to determine a favorable outcome by prevention of delayed pathological events, including excitotoxicity, which otherwise extend the primary damage and amplify the often irreversible loss of motor function. While intensive care and neurosurgical intervention are important treatments, effective neuroprotection requires further experimental studies focused to target vulnerable neurons, particularly motoneurons. The present investigation examined whether the volatile general anesthetic methoxyflurane might protect spinal locomotor networks from kainate-evoked excitotoxicity using an in vitro rat spinal cord preparation as a model. The protocols involved 1h excitotoxic stimulation on day 1 followed by electrophysiological and immunohistochemical testing on day 2. A single administration of methoxyflurane applied together with kainate (1h), or 30 or even 60 min later prevented any depression of spinal reflexes, loss of motoneuron excitability, and histological damage. Methoxyflurane per se temporarily decreased synaptic transmission and motoneuron excitability, effects readily reversible on washout. Spinal locomotor activity recorded as alternating electrical discharges from lumbar motor pools was fully preserved on the second day after application of methoxyflurane together with (or after) kainate. These data suggest that a volatile general anesthetic could provide strong electrophysiological and histological neuroprotection that enabled expression of locomotor network activity 1 day after the excitotoxic challenge. It is hypothesized that the benefits of early neurosurgery for acute spinal cord injury (SCI) might be enhanced if, in addition to injury decompression and stabilization, the protective role of general anesthesia is exploited.
Collapse
|
9
|
Lechaftois M, Dreano E, Palmier B, Margaill I, Marchand-Leroux C, Bachelot-Loza C, Lerouet D. Another "string to the bow" of PJ34, a potent poly(ADP-Ribose)polymerase inhibitor: an antiplatelet effect through P2Y12 antagonism? PLoS One 2014; 9:e110776. [PMID: 25329809 PMCID: PMC4203827 DOI: 10.1371/journal.pone.0110776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Neuro- and vasoprotective effects of poly(ADP-ribose)polymerase (PARP) inhibition have been largely documented in models of cerebral ischemia, particularly with the potent PARP inhibitor PJ34. Furthermore, after ischemic stroke, physicians are faced with incomplete tissue reperfusion and reocclusion, in which platelet activation/aggregation plays a key role. Data suggest that certain PARP inhibitors could act as antiplatelet agents. In that context, the present in vitro study investigated on human blood the potential antiplatelet effect of PJ34 and two structurally different PARP inhibitors, DPQ and INO-1001. Methods and results ADP concentrations were chosen to induce a biphasic aggregation curve resulting from the successive activation of both its receptors P2Y1 and P2Y12. In these experimental conditions, PJ34 inhibited the second phase of aggregation; this effect was reduced by incremental ADP concentrations. In addition, in line with a P2Y12 pathway inhibitory effect, PJ34 inhibited the dephosphorylation of the vasodilator stimulated phosphoprotein (VASP) in a concentration-dependent manner. Besides, PJ34 had no effect on platelet aggregation induced by collagen or PAR1 activating peptide, used at concentrations inducing a strong activation independent on secreted ADP. By contrast, DPQ and INO-1001 were devoid of any effect whatever the platelet agonist used. Conclusions We showed that, in addition to its already demonstrated beneficial effects in in vivo models of cerebral ischemia, the potent PARP inhibitor PJ34 exerts in vitro an antiplatelet effect. Moreover, this is the first study to report that PJ34 could act via a competitive P2Y12 antagonism. Thus, this antiplatelet effect could improve post-stroke reperfusion and/or prevent reocclusion, which reinforces the interest of this drug for stroke treatment.
Collapse
Affiliation(s)
- Marie Lechaftois
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Elise Dreano
- Inserm UMR S1140, Paris, France
- Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Bruno Palmier
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Isabelle Margaill
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Christilla Bachelot-Loza
- Inserm UMR S1140, Paris, France
- Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
| | - Dominique Lerouet
- EA4475-“Pharmacologie de la Circulation Cérébrale”, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Comue Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Kalmar-Nagy K, Degrell P, Szabo A, Sumegi K, Wittmann I, Gallyas F, Sumegi B. PARP inhibition attenuates acute kidney allograft rejection by suppressing cell death pathways and activating PI-3K-Akt cascade. PLoS One 2013; 8:e81928. [PMID: 24312605 PMCID: PMC3849354 DOI: 10.1371/journal.pone.0081928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/17/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Novel immunosuppressive therapy facilitates long term allograft survival, but acute tubular necrosis and ischemia-reperfusion during transplantation can compromise allograft function. These processes are related to oxidative stress which activates poly- (ADP-ribose) polymerase (PARP) contributing to the activation of cell death pathways. Here we raised the possibility that PARP inhibition curbs cell death pathways and shifts kinase signaling to improved graft survival. METHODS FINDINGS In an acute rat kidney rejection model, we provided evidence that the PARP inhibitor 4-hydroxy-quinazoline (4OHQ) attenuates rejection processes initiated oxidative/nitrosative stress, nuclear poly-ADP-ribosylation and the disintegration of the tubulo-interstitial structures. The PARP inhibitor attenuated rejection processes induced pro-apoptotic pathways by increasing Bcl-2/Bax ratio and suppressing pro-apoptotic t-Bid levels. In transplanted kidneys, the cell death inducing JNK1/2 is normally activated, but PARP inhibition suppressed this activation with having only modest effects on ERK1/2 and p38 MAP kinases. In untreated transplanted kidneys, no significant alterations were detected in the cytoprotective PI-3K-Akt pathway, but the PARP inhibitor significantly activated Akt (by S473 phosphorylation) and suppressed GSK-3β, as well as activated acute NF-kappaB activation contributing to graft protection. CONCLUSION These data show the protective role of PARP inhibition on graft survival by attenuating poly-ADP-ribosylation, oxidative stress, suppressing pro-apoptotic and increasing anti-apoptotic protein level, and by shifting MAP kinases and PI-3-K-Akt pathways to cytoprotective direction. Thus, addition of PARP inhibitors to standard immunosuppressive therapies during kidney transplantation may provide increased protection to prolong graft survival.
Collapse
Affiliation(s)
| | - Peter Degrell
- 2nd Department of Internal Medicine and Nephrology Centre, University of Pecs Medical School, Pecs, Hungary
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Katalin Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Istvan Wittmann
- 2nd Department of Internal Medicine and Nephrology Centre, University of Pecs Medical School, Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
- * E-mail:
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
11
|
Ekblad T, Camaioni E, Schüler H, Macchiarulo A. PARP inhibitors: polypharmacology versus selective inhibition. FEBS J 2013; 280:3563-75. [DOI: 10.1111/febs.12298] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Torun Ekblad
- Karolinska Institutet; Department of Medical Biochemistry and Biophysics; Stockholm Sweden
| | - Emidio Camaioni
- Dipartimento di Chimica e Tecnologia del Farmaco; University of Perugia; Perugia Italy
| | - Herwig Schüler
- Karolinska Institutet; Department of Medical Biochemistry and Biophysics; Stockholm Sweden
| | - Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco; University of Perugia; Perugia Italy
| |
Collapse
|
12
|
Sámano C, Nasrabady S, Nistri A. A study of the potential neuroprotective effect of riluzole on locomotor networks of the neonatal rat spinal cord in vitro damaged by excitotoxicity. Neuroscience 2012; 222:356-65. [DOI: 10.1016/j.neuroscience.2012.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
|