1
|
Zoicas I, Licht C, Mühle C, Kornhuber J. Repetitive transcranial magnetic stimulation (rTMS) for depressive-like symptoms in rodent animal models. Neurosci Biobehav Rev 2024; 162:105726. [PMID: 38762128 DOI: 10.1016/j.neubiorev.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) emerged as a non-invasive brain stimulation technique in the treatment of psychiatric disorders. Both preclinical and clinical studies as well as systematic reviews provide a heterogeneous picture, particularly concerning the stimulation protocols used in rTMS. Here, we present a review of rTMS effects in rodent models of depressive-like symptoms with the aim to identify the most relevant factors that lead to an increased therapeutic success. The influence of different factors, such as the stimulation parameters (stimulus frequency and intensity, duration of stimulation, shape and positioning of the coil), symptom severity and individual characteristics (age, species and genetic background of the rodents), on the therapeutic success are discussed. Accumulating evidence indicates that rTMS ameliorates a multitude of depressive-like symptoms in rodent models, most effectively at high stimulation frequencies (≥5 Hz) especially in adult rodents with a pronounced pathological phenotype. The therapeutic success of rTMS might be increased in the future by considering these factors and using more standardized stimulation protocols.
Collapse
Affiliation(s)
- Iulia Zoicas
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany.
| | - Christiane Licht
- Paracelsus Medical University, Department of Psychiatry and Psychotherapy, Prof.-Ernst-Nathan-Str. 1, Nürnberg 90419, Germany
| | - Christiane Mühle
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| | - Johannes Kornhuber
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| |
Collapse
|
2
|
Murgaš M, Unterholzner J, Stöhrmann P, Philippe C, Godbersen GM, Nics L, Reed MB, Vraka C, Vanicek T, Wadsak W, Kranz GS, Hahn A, Mitterhauser M, Hacker M, Kasper S, Lanzenberger R, Baldinger-Melich P. Effects of bilateral sequential theta-burst stimulation on 5-HT 1A receptors in the dorsolateral prefrontal cortex in treatment-resistant depression: a proof-of-concept trial. Transl Psychiatry 2023; 13:33. [PMID: 36725835 PMCID: PMC9892572 DOI: 10.1038/s41398-023-02319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Theta-burst stimulation (TBS) represents a brain stimulation technique effective for treatment-resistant depression (TRD) as underlined by meta-analyses. While the methodology undergoes constant refinement, bilateral stimulation of the dorsolateral prefrontal cortex (DLPFC) appears promising to restore left DLPFC hypoactivity and right hyperactivity found in depression. The post-synaptic inhibitory serotonin-1A (5-HT1A) receptor, also occurring in the DLPFC, might be involved in this mechanism of action. To test this hypothesis, we performed PET-imaging using the tracer [carbonyl-11C]WAY-100635 including arterial blood sampling before and after a three-week treatment with TBS in 11 TRD patients compared to sham stimulation (n = 8 and n = 3, respectively). Treatment groups were randomly assigned, and TBS protocol consisted of excitatory intermittent TBS to the left and inhibitory continuous TBS to the right DLPFC. A linear mixed model including group, hemisphere, time, and Hamilton Rating Scale for Depression (HAMD) score revealed a 3-way interaction effect of group, time, and HAMD on specific distribution volume (VS) of 5-HT1A receptor. While post-hoc comparisons showed no significant changes of 5-HT1A receptor VS in either group, higher 5-HT1A receptor VS after treatment correlated with greater difference in HAMD (r = -0.62). The results of this proof-of-concept trial hint towards potential effects of TBS on the distribution of the 5-HT1A receptor. Due to the small sample size, all results must, however, be regarded with caution.
Collapse
Affiliation(s)
- Matej Murgaš
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Peter Stöhrmann
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria.
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Giron CG, Lin TTZ, Kan RLD, Zhang BBB, Yau SY, Kranz GS. Non-Invasive Brain Stimulation Effects on Biomarkers of Tryptophan Metabolism: A Scoping Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23179692. [PMID: 36077088 PMCID: PMC9456364 DOI: 10.3390/ijms23179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal activation of the kynurenine and serotonin pathways of tryptophan metabolism is linked to a host of neuropsychiatric disorders. Concurrently, noninvasive brain stimulation (NIBS) techniques demonstrate high therapeutic efficacy across neuropsychiatric disorders, with indications for modulated neuroplasticity underlying such effects. We therefore conducted a scoping review with meta-analysis of eligible studies, conforming with the PRISMA statement, by searching the PubMed and Web of Science databases for clinical and preclinical studies that report the effects of NIBS on biomarkers of tryptophan metabolism. NIBS techniques reviewed were electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS). Of the 564 search results, 65 studies were included with publications dating back to 1971 until 2022. The Robust Bayesian Meta-Analysis on clinical studies and qualitative analysis identified general null effects by NIBS on biomarkers of tryptophan metabolism, but moderate evidence for TMS effects on elevating serum serotonin levels. We cannot interpret this as evidence for or against the effects of NIBS on these biomarkers, as there exists several confounding methodological differences in this literature. Future controlled studies are needed to elucidate the effects of NIBS on biomarkers of tryptophan metabolism, an under-investigated question with substantial implications to clinical research and practice.
Collapse
Affiliation(s)
- Cristian G. Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim T. Z. Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rebecca L. D. Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bella B. B. Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|
4
|
Wang X, Wang T, Jin J, Wang H, Li Y, Liu Z, Yin T. Anesthesia inhibited corticospinal excitability and attenuated the modulation of repetitive transcranial magnetic stimulation. BMC Anesthesiol 2022; 22:111. [PMID: 35439927 PMCID: PMC9016971 DOI: 10.1186/s12871-022-01655-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lots of studies have measured motor evoked potential (MEP) induced by transcranial magnetic stimulation (TMS) in anesthetized animals. However, in awake animals, the measurement of TMS-induced MEP is scarce as lack of sufficient restraint. So far, the explicit study of anesthesia effects on corticospinal excitability and repetitive TMS (rTMS) induced modulation is still lacking. This study aimed to: (1) measure TMS-induced MEP in both awake restrained and anesthetized rats, (2) investigate the effect of anesthesia on corticospinal excitability, and (3) on rTMS-induced modulation. METHODS MEP of eighteen rats were measured under both wakefulness and anesthesia using flexible binding and surface electrodes. Peak-to-peak MEP amplitudes, resting motor threshold (RMT) and the slope of stimulus response (SR) were extracted to investigate anesthesia effects on corticospinal excitability. Thereafter, 5 or 10 Hz rTMS was applied with 600 pulses, and the increase in MEP amplitude and the decrease in RMT were used to quantify rTMS-induced modulation. RESULTS The RMT in the awake condition was 44.6 ± 1.2% maximum output (MO), the peak-to-peak MEP amplitude was 404.6 ± 48.8 μV at 60% MO. Under anesthesia, higher RMT (55.6 ± 2.9% MO), lower peak-to-peak MEP amplitudes (258.6 ± 32.7 μV) and lower slope of SR indicated that the corticospinal excitability was suppressed. Moreover, under anesthesia, high-frequency rTMS still showed significant modulation of corticospinal excitability, but the modulation of MEP peak-to-peak amplitudes was weaker than that under wakefulness. CONCLUSIONS This study measured TMS-induced MEP in both awake and anesthetized rats, and provided explicit evidence for the inhibitory effects of anesthesia on corticospinal excitability and on high-frequency rTMS-induced modulation of MEP.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tengfei Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Early intervention attenuates synaptic plasticity impairment and neuroinflammation in 5xFAD mice. J Psychiatr Res 2021; 136:204-216. [PMID: 33618062 DOI: 10.1016/j.jpsychires.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND As an increasing population of Alzheimer's disease (AD) patients year by year, which is a serious threat to human health, an effective approach to prevent and treat AD is required. Biomarker changes relevant to β-amyloid (Aβ) 20 years or more in advance of cognitive impairment, so early intervention is a feasible idea for AD therapy. Repetitive transcranial magnetic stimulation (rTMS) as a non-invasive technique offers the possibility of early intervention. OBJECTIVE To explore the effect of high-frequency rTMS on the pathological symptoms of AD transgenic mice and its mechanisms, a figure-of-eight coil was placed 2 mm above the head of mouse to apply 20 Hz high-intensity rTMS for 14 consecutive days. METHODS In vivo electrophysiological recording, behavioral test, Western blots assay and immunofluorescence were used to measure the pathological symptoms of AD. RESULTS Our data showed that early intervention effectively reduced Aβ levels and the activation of microglia on the one hand, and decreased levels of pro-inflammatory cytokines including IL-6 and TNF-α as well as regulated PI3K/Akt/NF-κB signaling pathway on the other hand, which created a favorable brain environment. Thus, it increased the expression of synapse-associated proteins and improved neuronal synaptic plasticity in brain of early-stage of 5xFAD transgenic mice. CONCLUSIONS This study is the first to suggest that early intervention of 20 Hz rTMS ameliorates neuroinflammation to improve synaptic plasticity of early-stage of 5xFAD mice through PI3K/Akt/NF-κB signaling pathway.
Collapse
|
6
|
Cortical Modulation of Nociception. Neuroscience 2021; 458:256-270. [PMID: 33465410 DOI: 10.1016/j.neuroscience.2021.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
Collapse
|
7
|
Early-stage dysfunction of hippocampal theta and gamma oscillations and its modulation of neural network in a transgenic 5xFAD mouse model. Neurobiol Aging 2020; 94:121-129. [PMID: 32619873 DOI: 10.1016/j.neurobiolaging.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is pathologically characterized by amyloid-β (Aβ) accumulation, which induces Aβ-dependent neuronal dysfunctions. We focused on the early-stage disease progression and examined the neuronal network functioning in the 5xFAD mice. The simultaneous intracranial recordings were obtained from the hippocampal perforant path (PP) and the dentate gyrus (DG). Concomitant to Aβ accumulation, theta power was strongly attenuated in the PP and DG regions of 5xFAD mice compared to those in nontransgenic littermates. For either theta rhythm or gamma oscillation, the phase synchronization on the PP-DG pathway was impaired, evidenced by decreased phase locking value and diminished coherency index. To alleviate the neural oscillatory deficits in early-stage AD, a neural modulation approach (rTMS) was used to activate gamma oscillations and strengthen the synchronicity of neuronal activity on the PP-DG pathway. In brief, there was a significant neuronal network dysfunction at an early-stage AD-like pathology, which preceded the onset of cognitive deficits and was likely driven by Aβ accumulation, suggesting that the neural oscillation analysis played an important role in early AD diagnosis.
Collapse
|
8
|
Henssen D, Giesen E, van der Heiden M, Kerperien M, Lange S, van Cappellen van Walsum AM, Kurt E, van Dongen R, Schutter D, Vissers K. A systematic review of the proposed mechanisms underpinning pain relief by primary motor cortex stimulation in animals. Neurosci Lett 2020; 719:134489. [DOI: 10.1016/j.neulet.2019.134489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023]
|
9
|
Repetitive transcranial magnetic stimulation: Re-wiring the alcoholic human brain. Alcohol 2019; 74:113-124. [PMID: 30420113 DOI: 10.1016/j.alcohol.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
Alcohol use disorders (AUDs) are one of the leading causes of mortality and morbidity worldwide. In spite of significant advances in understanding the neural underpinnings of AUDs, therapeutic options remain limited. Recent studies have highlighted the potential of repetitive transcranial magnetic stimulation (rTMS) as an innovative, safe, and cost-effective treatment for AUDs. Here, we summarize the fundamental principles of rTMS and its putative mechanisms of action via neurocircuitries related to alcohol addiction. We will also discuss advantages and limitations of rTMS, and argue that Hebbian plasticity and connectivity changes, as well as state-dependency, play a role in shaping some of the long-term effects of rTMS. Visual imaging studies will be linked to recent clinical pilot studies describing the effect of rTMS on alcohol craving and intake, pinpointing new advances, and highlighting conceptual gaps to be filled by future controlled studies.
Collapse
|
10
|
Diana M, Raij T, Melis M, Nummenmaa A, Leggio L, Bonci A. Rehabilitating the addicted brain with transcranial magnetic stimulation. Nat Rev Neurosci 2017; 18:685-693. [PMID: 28951609 DOI: 10.1038/nrn.2017.113] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Substance use disorders (SUDs) are one of the leading causes of morbidity and mortality worldwide. In spite of considerable advances in understanding the neural underpinnings of SUDs, therapeutic options remain limited. Recent studies have highlighted the potential of transcranial magnetic stimulation (TMS) as an innovative, safe and cost-effective treatment for some SUDs. Repetitive TMS (rTMS) influences neural activity in the short and long term by mechanisms involving neuroplasticity both locally, under the stimulating coil, and at the network level, throughout the brain. The long-term neurophysiological changes induced by rTMS have the potential to affect behaviours relating to drug craving, intake and relapse. Here, we review TMS mechanisms and evidence that rTMS is opening new avenues in addiction treatments.
Collapse
Affiliation(s)
- Marco Diana
- 'G. Minardi' Laboratory for Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Tommi Raij
- Shirley Ryan AbilityLab, Center for Brain Stimulation, the Department of Physical Medicine and Rehabilitation and the Department of Neurobiology, Northwestern University, Chicago, Illinois 60611, USA
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Aapo Nummenmaa
- Massachusetts General Hospital (MGH)/Massachusetts Institute of Technology (MIT)/Harvard Medical School (HMS) Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, US National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR) and US National Institute on Drug Abuse Intramural Research Program (NIDA IRP), NIH (National Institutes of Health), Bethesda, Maryland 20892, USA; and at the Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island 02912, USA
| | - Antonello Bonci
- US National Institute on Drug Abuse Intramural Research Program (NIDA IRP); and at the Departments of Neuroscience and Psychiatry, Johns Hopkins University, Baltimore, Maryland 21224, USA
| |
Collapse
|
11
|
Abstract
A major challenge in the growing field of bioelectronic medicine is the development of tissue interface technologies promoting device integration with biological tissues. Materials based on organic bioelectronics show great promise due to a unique combination of electronic and ionic conductivity properties. In this review, we outline exciting developments in the field of organic bioelectronics and demonstrate the medical importance of these active, electronically controllable materials. Importantly, organic bioelectronics offer a means to control cell-surface attachment as required for many device-tissue applications. Experiments have shown that cells readily attach and proliferate on reduced but not oxidized organic bioelectronic materials. In another application, the active properties of organic bioelectronics were used to develop electronically triggered systems for drug release. After incorporating drugs by advanced loading strategies, small compound drugs were released upon electrochemical trigger, independent of charge. Another type of delivery device was used to achieve well-controlled, spatiotemporal delivery of cationic drugs. Via electrophoretic transport within a polymer, cations were delivered with single-cell precision. Finally, organic bioelectronic materials are commonly used as electrode coatings improving the electrical properties of recording and stimulation electrodes. Because such coatings drastically reduce the electrode impedance, smaller electrodes with improved signal-to-noise ratio can be fabricated. Thus, rapid technological advancement combined with the creation of tiny electronic devices reacting to changes in the tissue environment helps to promote the transition from standard pharmaceutical therapy to treatment based on 'electroceuticals'. Moreover, the widening repertoire of organic bioelectronics will expand the options for true biological interfaces, providing the basis for personalized bioelectronic medicine.
Collapse
Affiliation(s)
- S Löffler
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K P R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - A Richter-Dahlfors
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Shang Y, Wang X, Shang X, Zhang H, Liu Z, Yin T, Zhang T. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Neurobiol Learn Mem 2016; 134 Pt B:369-78. [PMID: 27555233 DOI: 10.1016/j.nlm.2016.08.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/07/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique, by which cognitive deficits can be alleviated. Furthermore, rTMS may facilitate learning and memory. However, its underlying mechanism is still little known. The aim of this study was to investigate if the facilitation of spatial cognition and synaptic plasticity, induced by rTMS, is regulated by enhancing pre- and postsynaptic proteins in normal rats. Morris water maze (MWM) test was performed to examine the spatial cognition. The synaptic plasticity, including long-term potentiation (LTP) and depotentiation (DEP), presynaptic plasticity paired-pulse facilitation (PPF), from the hippocampal Schaffer collaterals to CA1 region was subsequently measured using in vivo electrophysiological techniques. The expressions of brain-derived neurotrophic factor (BDNF), presynaptic protein synaptophysin (SYP) and postsynaptic protein NR2B were measured by Western blot. Our data show that the spatial learning/memory and reversal learning/memory in rTMS rats were remarkably enhanced compared to that in the Sham group. Furthermore, LTP and DEP as well as PPF were effectively facilitated by 5Hz-rTMS. Additionally, the expressions of BDNF, SYP and NR2B were significantly increased via magnetic stimulation. The results suggest that rTMS considerably increases the expressions of BDNF, postsynaptic protein NR2B and presynaptic protein SYP, and thereby significantly enhances the synaptic plasticity and spatial cognition in normal animals.
Collapse
Affiliation(s)
- Yingchun Shang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xueliang Shang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Hui Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Tao Zhang
- College of Life Sciences and State Key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|