1
|
Chen S, Tang L, Nie T, Fang M, Cao X. Fructo-oligofructose ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions and psychiatric comorbidities in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5004-5018. [PMID: 36987580 DOI: 10.1002/jsfa.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by pruritus and eczema lesions and psychiatric comorbidities. The gut-brain-skin axis plays a pivotal role during AD development, which might suggest a novel therapeutic strategy for AD. The present study aims to uncover the protective effects and underlying mechanisms of fructo-oligofructose (FOS), a type of prebiotic, on AD-like skin manifestations and comorbid anxiety and depression in AD mice. RESULTS Female Kunming mice were treated topically with 2,4-dinitrofluorobenzene (DNFB) to induce AD-like symptoms and FOS was administered daily for 14 days. The results showed that FOS could alleviate AD-like skin lesions markedly as evidenced by dramatic decreases in severity score, scratching bouts, the levels of immunoglobulin E (IgE) and T helper 1(Th1)/Th2-related cytokines, and the infiltration of inflammatory cells and mast cells to the dermal tissues. The comorbid anxiety and depressive-like behaviors, estimated by the forced swimming test (FST), the tail-suspension test (TST), the open-field test (OFT), and the zero maze test (ZMT) in AD mice, were significantly attenuated by FOS. Fructo-oligofructose significantly upregulated brain neurotransmitters levels of 5-hydroxytryptamine (5-HT) and dopamine (DA). Furthermore, FOS treatment increased the relative abundance of gut microbiota, such as Prevotella and Lactobacillus and the concentrations of short-chain fatty acids (SCFAs), especially acetate and iso-butyrate in the feces of AD mice. The correlation analysis indicated that the reshaped gut microbiome composition and enhanced SCFAs formation are associated with skin inflammation and behavioral alteration. CONCLUSION Collectively, these data identify FOS as a promising microbiota-targeted treatment for AD-like skin inflammation and comorbid anxiety and depressive-like behaviors. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaoze Chen
- School of Medicine, Jianghan University, Wuhan, China
| | - Liu Tang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Nie
- School of Medicine, Jianghan University, Wuhan, China
| | - Mingyu Fang
- School of Medicine, Jianghan University, Wuhan, China
| | - Xiaoqin Cao
- School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
2
|
Polinski NK, Martinez TN, Ramboz S, Sasner M, Herberth M, Switzer R, Ahmad SO, Pelligrino LJ, Clark SW, Marcus JN, Smith SM, Dave KD, Frasier MA. The GBA1 D409V mutation exacerbates synuclein pathology to differing extents in two alpha-synuclein models. Dis Model Mech 2022; 15:dmm049192. [PMID: 35419585 PMCID: PMC9150115 DOI: 10.1242/dmm.049192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Heterozygous mutations in the GBA1 gene - encoding lysosomal glucocerebrosidase (GCase) - are the most common genetic risk factors for Parkinson's disease (PD). Experimental evidence suggests a correlation between decreased GCase activity and accumulation of alpha-synuclein (aSyn). To enable a better understanding of the relationship between aSyn and GCase activity, we developed and characterized two mouse models that investigate aSyn pathology in the context of reduced GCase activity. The first model used constitutive overexpression of wild-type human aSyn in the context of the homozygous GCase activity-reducing D409V mutant form of GBA1. Although increased aSyn pathology and grip strength reductions were observed in this model, the nigrostriatal system remained largely intact. The second model involved injection of aSyn preformed fibrils (PFFs) into the striatum of the homozygous GBA1 D409V knock-in mouse model. The GBA1 D409V mutation did not exacerbate the pathology induced by aSyn PFF injection. This study sheds light on the relationship between aSyn and GCase in mouse models, highlighting the impact of model design on the ability to model a relationship between these proteins in PD-related pathology.
Collapse
Affiliation(s)
- Nicole K. Polinski
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station PO Box 4777, New York, NY 10163, USA
| | - Terina N. Martinez
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station PO Box 4777, New York, NY 10163, USA
| | - Sylvie Ramboz
- PsychoGenics, Inc, 215 College Road, Paramus, NJ 07652, USA
| | - Michael Sasner
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mark Herberth
- Charles River Laboratories, 1407 George Road, Ashland, OH 44805, USA
| | - Robert Switzer
- NeuroScience Associates, 10915 Lake Ridge Drive, Knoxville, TN 37934, USA
| | - Syed O. Ahmad
- Saint Louis University, 3437 Caroline Street, St. Louis, MO 63104, USA
| | | | - Sean W. Clark
- Amicus Therapeutics, 1 Cedarbrook Dr, Cranbury, NJ 08512, USA
| | - Jacob N. Marcus
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Sean M. Smith
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Kuldip D. Dave
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station PO Box 4777, New York, NY 10163, USA
| | - Mark A. Frasier
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station PO Box 4777, New York, NY 10163, USA
| |
Collapse
|
3
|
Beyeler A, Ju A, Chagraoui A, Cuvelle L, Teixeira M, Di Giovanni G, De Deurwaerdère P. Multiple facets of serotonergic modulation. PROGRESS IN BRAIN RESEARCH 2021; 261:3-39. [PMID: 33785133 DOI: 10.1016/bs.pbr.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The serotonergic system of the central nervous system (CNS) has been implicated in a broad range of physiological functions and behaviors, such as cognition, mood, social interaction, sexual behavior, feeding behavior, sleep-wake cycle and thermoregulation. Serotonin (5-hydroxytryptamine, 5-HT) establishes a plethora of interactions with neurochemical systems in the CNS via its numerous 5-HT receptors and autoreceptors. The facets of this control are multiple if we consider the molecular actors playing a role in the autoregulation of 5-HT neuron activity including the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B, 5-HT7 receptors as well as the serotonin transporter. Moreover, extrinsic loops involving other neurotransmitters giving the other 5-HT receptors the possibility to impact 5-HT neuron activity. Grasping the complexity of these interactions is essential for the development of a variety of therapeutic strategies for cognitive defects and mood disorders. Presently we can illustrate the plurality of the mechanisms and only conceive that these 5-HT controls are likely not uniform in terms of regional and neuronal distribution. Our understanding of the specific expression patterns of these receptors on specific circuits and neuronal populations are progressing and will expand our comprehension of the function and interaction of these receptors with other chemical systems. Thus, the development of new approaches profiling the expression of 5-HT receptors and autoreceptors should reveal additional facets of the 5-HT controls of neurochemical systems in the CNS.
Collapse
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| | - Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Lise Cuvelle
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maxime Teixeira
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Philippe De Deurwaerdère
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|
4
|
Kummrow M. Diagnostic and Therapeutic Guidelines to Abnormal Behavior in Captive Nonhuman Primates. Vet Clin North Am Exot Anim Pract 2020; 24:253-266. [PMID: 33189254 DOI: 10.1016/j.cvex.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abnormal behavior in nonhuman primates is oftentimes prematurely blamed on certain conditions, in the case of captive non-human primates, readily so on their husbandry, largely ignoring the underlying pathophysiological processes in the brain. Each life history shapes an individual's predisposition to develop or resist the development of a psychopathological disorder, which manifests itself in abnormal behavior when triggered by certain situations or conditions. In order to sustainably address the symptoms of psychopathologies, therapeutic approaches must be based on a structured, comprehensive diagnostic procedure, including behavioral and functional analyses, research into life history, and personality assessment..
Collapse
Affiliation(s)
- Maya Kummrow
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland.
| |
Collapse
|
5
|
Gonçalves NGG, de Araújo JIF, Magalhães FEA, Mendes FRS, Lobo MDP, Moreira ACDOM, Moreira RDA. Protein fraction from Artocarpus altilis pulp exhibits antioxidant properties and reverses anxiety behavior in adult zebrafish via the serotoninergic system. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
Chagraoui A, Boulain M, Juvin L, Anouar Y, Barrière G, De Deurwaerdère P. L-DOPA in Parkinson's Disease: Looking at the "False" Neurotransmitters and Their Meaning. Int J Mol Sci 2019; 21:ijms21010294. [PMID: 31906250 PMCID: PMC6981630 DOI: 10.3390/ijms21010294] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) has been successfully used in the treatment of Parkinson’s disease (PD) for more than 50 years. It fulfilled the criteria to cross the blood–brain barrier and counteract the biochemical defect of dopamine (DA). It remarkably worked after some adjustments in line with the initial hypothesis, leaving a poor place to the plethora of mechanisms involving other neurotransmitters or mechanisms of action beyond newly synthesized DA itself. Yet, its mechanism of action is far from clear. It involves numerous distinct cell populations and does not mimic the mechanism of action of dopaminergic agonists. L-DOPA-derived DA is mainly released by serotonergic neurons as a false neurotransmitter, and serotonergic neurons are involved in L-DOPA-induced dyskinesia. The brain pattern and magnitude of DA extracellular levels together with this status of false neurotransmitters suggest that the striatal effects of DA via this mechanism would be minimal. Other metabolic products coming from newly formed DA or through the metabolism of L-DOPA itself could be involved. These compounds can be trace amines and derivatives. They could accumulate within the terminals of the remaining monoaminergic neurons. These “false neurotransmitters,” also known for some of them as inducing an “amphetamine-like” mechanism, could reduce the content of biogenic amines in terminals of monoaminergic neurons, thereby impairing the exocytotic process of monoamines including L-DOPA-induced DA extracellular outflow. The aim of this review is to present the mechanism of action of L-DOPA with a specific attention to “false neurotransmission.”
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, 76000 Rouen, France
| | - Marie Boulain
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Laurent Juvin
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Youssef Anouar
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
| | - Grégory Barrière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
- Correspondence: ; Tel.: +33-0-557-57-12-90
| |
Collapse
|
7
|
Baek JY, Trinh TA, Huh W, Song JH, Kim HY, Lim J, Kim J, Choi HJ, Kim TH, Kang KS. Electro-Acupuncture Alleviates Cisplatin-Induced Anorexia in Rats by Modulating Ghrelin and Monoamine Neurotransmitters. Biomolecules 2019; 9:biom9100624. [PMID: 31635295 PMCID: PMC6843597 DOI: 10.3390/biom9100624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/31/2023] Open
Abstract
Anorexia is common in patients with cancer, mostly as a side effect of chemotherapy. The effect of electro-acupuncture (EA) on ameliorating cancer-related symptoms have been studied in animal models and in clinical trials. The aim of this study was to determine optimal conditions for the application of EA to alleviate anorexia, followed by the study of molecular mechanisms affecting its therapeutics. Anorexia was induced in male Wistar rats by injecting cisplatin, which was then followed by EA treatment at CV12, the acupuncture point located in the center of the abdominal midline. Body weight and food intake were measured daily throughout the duration of the study. The levels of monoamine neurotransmitters in the plasma were quantitatively analyzed by HPLC-ECD. Gastrointestinal hormone concentrations were elucidated with ELISA kits. RT-qPCR was performed to evaluate the mRNA expression of ghrelin (GHRL), neuropeptide Y (NPY), and pro-opiomelanocortin. The expression of c-Fos in the nucleus tractus solitarii was detected using western blotting analysis. The optimal conditions of EA to alleviate anorexia in rats was determined to be 1 unit for intensity and 10 Hz for frequency. EA treatment at CV12 reduced the levels of plasma monoamine neurotransmitters 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, dopamine, and norepinephrine; as well as stimulated the expression of GHRL and NPY to alleviate cisplatin-induced anorexia in rats. EA stimulation at CV12 could be used to treat cisplatin-induced anorexia in rats.
Collapse
Affiliation(s)
- Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Tuy An Trinh
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Wonsang Huh
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Ji Hoon Song
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Juhee Lim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea.
| | - Jinhee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea.
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea.
| | - Tae-Hun Kim
- Korean Medicine Clinical Trial Center, Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
8
|
Uzuneser TC, Speidel J, Kogias G, Wang AL, de Souza Silva MA, Huston JP, Zoicas I, von Hörsten S, Kornhuber J, Korth C, Müller CP. Disrupted-in-Schizophrenia 1 (DISC1) Overexpression and Juvenile Immune Activation Cause Sex-Specific Schizophrenia-Related Psychopathology in Rats. Front Psychiatry 2019; 10:222. [PMID: 31057438 PMCID: PMC6465888 DOI: 10.3389/fpsyt.2019.00222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023] Open
Abstract
Synaptic pruning is a critical refinement step during neurodevelopment, and schizophrenia has been associated with overpruning of cortical dendritic spines. Both human studies and animal models implicate disrupted-in-schizophrenia 1 (DISC1) gene as a strong susceptibility factor for schizophrenia. Accumulating evidence supports the involvement of DISC1 protein in the modulation of synaptic elimination during critical periods of neurodevelopment and of dopamine D2-receptor-mediated signaling during adulthood. In many species, synaptic pruning occurs during juvenile and adolescent periods and is mediated by microglia, which can be over-activated by an immune challenge, giving rise to overpruning. Therefore, we sought to investigate possible interactions between a transgenic DISC1 model (tgDISC1) and juvenile immune activation (JIA) by the bacterial cell wall endotoxin lipopolysaccharide on the induction of schizophrenia-related behavioral and neurochemical disruptions in adult female and male rats. We examined possible behavioral aberrations along three major symptom dimensions of schizophrenia including psychosis, social and emotional disruptions, and cognitive impairments. We detected significant gene-environment interactions in the amphetamine-induced locomotion in female animals and in the amphetamine-induced anxiety in male animals. Surprisingly, gene-environment interactions improved social memory in both male and female animals. JIA alone disrupted spatial memory and recognition memory, but only in male animals. DISC1 overexpression alone induced an improvement in sensorimotor gating, but only in female animals. Our neurochemical analyses detected sex- and manipulation-dependent changes in the postmortem monoamine content of animals. Taken together, we here report sex-specific effects of environment and genotype as well as their interaction on behavioral phenotypes and neurochemical profiles relevant for schizophrenia.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jil Speidel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Maria A de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten Korth
- Department of Neuropathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
REVIEW: PSYCHOPATHOLOGIES IN CAPTIVE NONHUMAN PRIMATES AND APPROACHES TO DIAGNOSIS AND TREATMENT. J Zoo Wildl Med 2018; 49:259-271. [PMID: 29900784 DOI: 10.1638/2017-0137.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the growing knowledge and literature on primate medicine, assessment and treatment of behavioral abnormalities in nonhuman primates (NHPs) is an underdeveloped field. There is ample evidence for similarity between humans and great apes, including basic neurologic physiology and emotional processes, and no substantial argument exists against a concept of continuity for abnormal conditions in NHPs that emerge in response to adverse experiences, akin to human psychopathology. NHPs have served as models for human psychopathologies for many decades, but the acquired knowledge has only hesitantly been applied to primates themselves. This review aims to raise awareness among the veterinary community of the wealth of literature on NHP psychopathologies in human medicine and anthropology literature and calls for the necessity to include mental health assessments and professionally structured treatment approaches in NHP medicine. Growing understanding about causes and pathogenesis of abnormal behavior in NHP will not only help to prevent the development of undesirable behaviors but also allow for treatment and management of long-lived, already affected animal patients.
Collapse
|
10
|
Effects of Selective Serotonin Reuptake Inhibitors on the Shock-Induced Ultrasonic Vocalization of Rats in Different Experimental Designs. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-809600-0.00029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Sgambato-Faure V, Billard T, Météreau E, Duperrier S, Fieux S, Costes N, Tremblay L, Zimmer L. Characterization and Reliability of [ 18F]2FNQ1P in Cynomolgus Monkeys as a PET Radiotracer for Serotonin 5-HT 6 Receptors. Front Pharmacol 2017; 8:471. [PMID: 28769801 PMCID: PMC5513908 DOI: 10.3389/fphar.2017.00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/03/2017] [Indexed: 01/08/2023] Open
Abstract
Brain serotonin-6 receptor (5-HT6R) is the one of the most recently identified serotonin receptors. Accumulating evidence suggests that it is a potent therapeutic target for psychiatric and neurological diseases. Since [18F]2FNQ1P was recently proposed as the first fluorinated positron emission tomography (PET) radioligand for this receptor, the objective of the present study was to demonstrate its suitability for 5-HT6R neuroimaging in primates. [18F]2FNQ1P was characterized by in vitro autoradiography and in vivo PET imaging in cynomolgus monkeys. Following in vivo PET imaging, tracer binding indices were computed using the simplified reference tissue model and Logan graphical model, with cerebellum as reference region. The tracer binding reproducibility was assessed by test–retest in five animals. Finally, specificity was assessed by pre-injection of a 5-HT6R antagonist, SB258585. In vitro, results showed wide cerebral distribution of the tracer with specificity toward 5-HT6Rs as binding was effectively displaced by SB258585. In vivo brain penetration was good with reproducible distribution at cortical and subcortical levels. The automated method gave the best spatial normalization. The Logan graphical model showed the best tracer binding indices, giving the highest magnitude, lowest standard deviation and best reproducibility and robustness. Finally, 5-HT6R antagonist pre-injection significantly decreased [18F]2FNQ1P binding mainly in the striatum and sensorimotor cortex. Taken together, these preclinical results show that [18F]2FNQ1P is a good candidate to address 5-HT6 receptors in clinical studies.
Collapse
Affiliation(s)
- Véronique Sgambato-Faure
- Université Claude Bernard Lyon ILyon, France.,Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229Bron, France
| | - Thierry Billard
- Université Claude Bernard Lyon ILyon, France.,Institut de Chimie et de Biochimie, CNRS UMR5246Villeurbanne, France
| | - Elise Météreau
- Université Claude Bernard Lyon ILyon, France.,Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229Bron, France
| | - Sandra Duperrier
- Université Claude Bernard Lyon ILyon, France.,Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229Bron, France
| | - Sylvain Fieux
- Université Claude Bernard Lyon ILyon, France.,Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028Lyon, France
| | | | - Léon Tremblay
- Université Claude Bernard Lyon ILyon, France.,Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229Bron, France
| | - Luc Zimmer
- Université Claude Bernard Lyon ILyon, France.,Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028Lyon, France.,CERMEP-Imagerie du VivantLyon, France.,Hospices Civils de LyonLyon, France
| |
Collapse
|
12
|
Tilbrook AJ, Ralph CR. Neurophysiological assessment of animal welfare. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Livestock industries such as the pork industry are striving to continuously improve the welfare of animals. Inherent to the success of this is the ability to rigorously assess the welfare of animals in the field. While much progress has been made towards the development of methodology to assess the welfare of animals, there have been major challenges to establishing practical and definitive procedures to assess the welfare of animals. These include, but are not limited to, establishing a universally accepted definition of animal welfare and the choice of measures that are taken from the animal to assess its welfare. Measures of biological functioning and affective (emotional) state of the animal have been common, but there have been many limitations in terms of practical application. Some of the reasons for this include the choice of physiological measures, which are often restrictive in providing information about welfare, affective measures being restricted to specific behavioural measures and the biological-functioning and affective-states approaches being undertaken in isolation. Biological and affective functioning are integrated and controlled by the brain. Many of the regions of the brain involved in the regulation of biological and emotional functioning have been identified. Furthermore, there is considerable knowledge about the roles and interactions among the neurophysiological systems in these brain regions. We propose a strategy to use this knowledge to develop procedures to assess animal welfare. The initial phase is to identify the neural pathways that regulate the physiological and emotional processes that allow animals to adapt and cope. The next phase is to determine the activity of these pathways in conscious animals in the field. This requires the identification of biomarkers of specific neuronal activity that can be measured in the conscious animal in the field. Emerging technologies are offering promise in the identification of such biomarkers and some of these are already applicable to the pig. There is now the opportunity to apply this strategy within the pork industry to assess the welfare of pigs throughout the value chain.
Collapse
|
13
|
Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease. Nutrients 2016; 8:nu8110684. [PMID: 27801835 PMCID: PMC5133072 DOI: 10.3390/nu8110684] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
The composition of the gut microbiome reflects the overall health status of the host. In this study, stool samples representing the gut microbiomes from 6 gluten-sensitive (GS) captive juvenile rhesus macaques were compared with those from 6 healthy, age- and diet-matched peers. A total of 48 samples representing both groups were studied using V4 16S rRNA gene DNA analysis. Samples from GS macaques were further characterized based on type of diet administered: conventional monkey chow, i.e., wheat gluten-containing diet (GD), gluten-free diet (GFD), barley gluten-derived diet (BOMI) and reduced gluten barley-derived diet (RGB). It was hypothesized that the GD diet would lower the gut microbial diversity in GS macaques. This is the first report illustrating the reduction of gut microbial alpha-diversity (p < 0.05) following the consumption of dietary gluten in GS macaques. Selected bacterial families (e.g., Streptococcaceae and Lactobacillaceae) were enriched in GS macaques while Coriobacteriaceae was enriched in healthy animals. Within several weeks after the replacement of the GD by the GFD diet, the composition (beta-diversity) of gut microbiome in GS macaques started to change (p = 0.011) towards that of a normal macaque. Significance for alpha-diversity however, was not reached by the day 70 when the feeding experiment ended. Several inflammation-associated microRNAs (miR-203, -204, -23a, -23b and -29b) were upregulated (p < 0.05) in jejunum of 4 biopsied GS macaques fed GD with predicted binding sites on 16S ribosomal RNA of Lactobacillus reuteri (accession number: NR_025911), Prevotella stercorea (NR_041364) and Streptococcus luteciae (AJ297218) that were overrepresented in feces. Additionally, claudin-1, a validated tight junction protein target of miR-29b was significantly downregulated in jejunal epithelium of GS macaques. Taken together, we predict that with the introduction of effective treatments in future studies the diversity of gut microbiomes in GS macaques will approach those of healthy individuals. Further studies are needed to elucidate the regulatory pathways of inflammatory miRNAs in intestinal mucosa of GS macaques and to correlate their expression with gut dysbiosis.
Collapse
|
14
|
Laurencin C, Danaila T, Broussolle E, Thobois S. Initial treatment of Parkinson's disease in 2016: The 2000 consensus conference revisited. Rev Neurol (Paris) 2016; 172:512-523. [PMID: 27476416 DOI: 10.1016/j.neurol.2016.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
In 2000, a French consensus conference proposed guidelines for the treatment of Parkinson's disease (PD). Since then, new drugs have been concocted, new studies have been published and clinicians have become aware of some drug-induced adverse effects that were little known in the past. This has led us to reconsider the recommendations published 16 years ago. Thus, the aim of the present review is to present the recent data related to the different medications and non-pharmacological approaches available for PD, with a special focus on early-stage PD. Levodopa (LD), dopamine agonists (DAs), catechol-O-methyltransferase inhibitors (COMT-Is), anticholinergics, monoamine oxidase inhibitors (MAOB-Is) and amantadine have been considered, and their efficacy and safety for both motor as well as non-motor aspects are reported here. This has led to our proposal for a revised therapeutic strategy for the initiation of treatment in newly diagnosed PD patients, based on the available literature and the relative benefits/side effects balance.
Collapse
Affiliation(s)
- C Laurencin
- Service de neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, 59, boulevard Pinel, 69677 Lyon/Bron, France; Faculté de médecine et de maïeutique Lyon Sud Charles-Mérieux, université de Lyon, université Claude-Bernard Lyon I, Lyon, France.
| | - T Danaila
- Service de neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, 59, boulevard Pinel, 69677 Lyon/Bron, France
| | - E Broussolle
- Service de neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, 59, boulevard Pinel, 69677 Lyon/Bron, France; CNRS, UMR 5229, institut des sciences cognitives Marc-Jeannerod, 69500 Bron, France; Faculté de médecine et de maïeutique Lyon Sud Charles-Mérieux, université de Lyon, université Claude-Bernard Lyon I, Lyon, France
| | - S Thobois
- Service de neurologie C, hôpital neurologique Pierre-Wertheimer, hospices civils de Lyon, 59, boulevard Pinel, 69677 Lyon/Bron, France; CNRS, UMR 5229, institut des sciences cognitives Marc-Jeannerod, 69500 Bron, France; Faculté de médecine et de maïeutique Lyon Sud Charles-Mérieux, université de Lyon, université Claude-Bernard Lyon I, Lyon, France
| |
Collapse
|
15
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
16
|
Akhlaghi H, Ghorbani M, Lahoori NA, Shams A, Seyedin O. Preconcentration and determination of naproxen in water samples by functionalized multi-walled carbon nanotubes hollow fiber solid phase microextraction—HPLC. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816070091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Claghorn GC, Fonseca IA, Thompson Z, Barber C, Garland T. Serotonin-mediated central fatigue underlies increased endurance capacity in mice from lines selectively bred for high voluntary wheel running. Physiol Behav 2016; 161:145-154. [DOI: 10.1016/j.physbeh.2016.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
|
18
|
Ghorbani M, Chamsaz M, Rounaghi GH. Glycine functionalized multiwall carbon nanotubes as a novel hollow fiber solid-phase microextraction sorbent for pre-concentration of venlafaxine and o-desmethylvenlafaxine in biological and water samples prior to determination by high-performance liquid chromatography. Anal Bioanal Chem 2016; 408:4247-56. [DOI: 10.1007/s00216-016-9518-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/12/2016] [Accepted: 03/24/2016] [Indexed: 01/01/2023]
|
19
|
Tran S, Nowicki M, Fulcher N, Chatterjee D, Gerlai R. Interaction between handling induced stress and anxiolytic effects of ethanol in zebrafish: A behavioral and neurochemical analysis. Behav Brain Res 2016; 298:278-85. [DOI: 10.1016/j.bbr.2015.10.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|
20
|
Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum. Proc Natl Acad Sci U S A 2016; 113:734-9. [PMID: 26733685 DOI: 10.1073/pnas.1524183113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the molecular similarities and differences between neurons in the ventral (vSt) and dorsal striatum (dSt) and their physiological implications. In the vSt, serotonin [5-Hydroxytryptamine (5-HT)] modulates mood control and pleasure response, whereas in the dSt, 5-HT regulates motor behavior. Here we show that, in mice, 5-HT depolarizes cholinergic interneurons (ChIs) of the dSt whereas hyperpolarizing ChIs from the vSt by acting on different 5-HT receptor isoforms. In the vSt, 5-HT1A (a postsynaptic receptor) and 5-HT1B (a presynaptic receptor) are highly expressed, and synergistically inhibit the excitability of ChIs. The inhibitory modulation by 5-HT1B, but not that by 5-HT1A, is mediated by p11, a protein associated with major depressive disorder. Specific deletion of 5-HT1B from cholinergic neurons results in impaired inhibition of ACh release in the vSt and in anhedonic-like behavior.
Collapse
|
21
|
Quines CB, Rosa SG, Velasquez D, Da Rocha JT, Neto JSS, Nogueira CW. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity. Behav Brain Res 2015; 301:161-7. [PMID: 26738966 DOI: 10.1016/j.bbr.2015.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 12/30/2022]
Abstract
Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.
Collapse
Affiliation(s)
- Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Suzan G Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Daniela Velasquez
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Juliana T Da Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - José S S Neto
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil.
| |
Collapse
|
22
|
Weaver SR, Cronick CM, Prichard AP, Laporta J, Benevenga NJ, Hernandez LL. Use of the RatLoft decreases pup mortality in lactating mice. Lab Anim 2015; 50:370-8. [PMID: 26568578 DOI: 10.1177/0023677215617388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lactating mice in laboratory conditions are thought to be under considerable stress. Dams may manifest this stress through a decrease in milk yield and/or increase in infanticide. The purpose of this study was to examine the effect of access to an environmental enrichment device called the RatLoft on milk yield, circulating serotonin, and pup mortality using both wild-type mice and mice genetically deficient in tryptophan hydroxylase 1 (TPH1(-/-); the rate-limiting enzyme in the non-neuronal serotonin synthesis pathway). Presence or absence of the RatLoft did not affect milk yield or circulating serotonin concentrations overall, but serotonin concentrations decreased throughout the 21-day lactation period. Serotonin concentrations were increased in TPH1-deficient mice with access to the RatLoft compared with those without the RatLoft on day 21. Pup mortality tended to decrease for dams with access to the RatLoft as compared to no RatLoft. Within the TPH1(-/-) groups, dams with access to the RatLoft tended to kill less pups per dam than dams without the RatLoft. These results demonstrate that access to the RatLoft during lactation decreases pup infanticide by dams. This environmental enrichment may be particularly beneficial to TPH1(-/-) dams that, in addition to decreased infanticide, had increased serotonin concentrations, possibly indicating enhanced well-being. Use of the RatLoft could prove beneficial to researchers working with lactating mouse models to increase the number of pups weaned and positively impact the welfare of the dam.
Collapse
Affiliation(s)
- S R Weaver
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - C M Cronick
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - A P Prichard
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J Laporta
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - N J Benevenga
- Department of Animal Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - L L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Chilmonczyk Z, Bojarski AJ, Pilc A, Sylte I. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands. Int J Mol Sci 2015; 16:18474-506. [PMID: 26262615 PMCID: PMC4581256 DOI: 10.3390/ijms160818474] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/11/2023] Open
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.
Collapse
Affiliation(s)
- Zdzisław Chilmonczyk
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland.
- Institute of Nursing and Health Sciences, University of Rzeszów, W. Kopisto 2A, 35-310 Rzeszów, Poland.
| | - Andrzej Jacek Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | - Ingebrigt Sylte
- Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, No-9037 Tromsø, Norway.
| |
Collapse
|
24
|
Zhang D, Zhang Z, Liu Y, Chu M, Yang C, Li W, Shao Y, Yue Y, Xu R. The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors. Biomaterials 2015; 68:100-13. [PMID: 26276695 DOI: 10.1016/j.biomaterials.2015.07.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022]
Abstract
Reduced graphene oxide (rGO), a carbon-based nanomaterial, has enormous potential in biomedical research, including in vivo cancer therapeutics. Concerns over the toxicity remain outstanding and must be investigated before clinical application. The effect of rGO exposure on animal behaviors, such as learning and memory abilities, has not been clarified. Herein, we explored the short- and long-term effects of orally administered rGO on mouse behaviors, including general locomotor activity level, balance and neuromuscular coordination, exploratory and anxiety behaviors, and learning and memory abilities using open-field, rotarod, and Morris water maze tests. Compared with mice administered buffer-dispersed mouse chow or buffer alone, mice receiving a high dose of small or large rGO nanosheets showed little change in exploratory, anxiety-like, or learning and memory behaviors, although general locomotor activity, balance, and neuromuscular coordination were initially affected, which the mechanisms (e.g. the influence of rGO exposure on the activity of superoxide dismutase in mouse serum) were discussed. The results presented in this work look to provide a deep understanding of the in vivo toxicity of rGO to animals, especially its effect on learning and memory and other behaviors.
Collapse
Affiliation(s)
- Ding Zhang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Zheyu Zhang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yayun Liu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Maoquan Chu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China.
| | - Chengyu Yang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Wenhao Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yuxiang Shao
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Yan Yue
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| | - Rujiao Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, PR China
| |
Collapse
|
25
|
Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J. Selective dysfunction of basal ganglia subterritories: From movement to behavioral disorders. Mov Disord 2015; 30:1155-70. [DOI: 10.1002/mds.26199] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Léon Tremblay
- Centre de Neurosciences Cognitives-UMR 5229; CNRS-Université de Lyon 1; Bron France
| | - Yulia Worbe
- UPMC Université Paris 6, UMR-S975, CRICM-Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Paris France
| | - Stéphane Thobois
- Centre de Neurosciences Cognitives-UMR 5229; CNRS-Université de Lyon 1; Bron France
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer, Neurologie C; Lyon France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux; Lyon France
| | | | - Jean Féger
- UPMC Université Paris 6, UMR-S975, CRICM-Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Paris France
| |
Collapse
|
26
|
Involvement of the serotonergic system in the anxiolytic-like effect of 2-phenylethynyl butyltellurium in mice. Behav Brain Res 2015; 277:221-7. [DOI: 10.1016/j.bbr.2014.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/15/2022]
|
27
|
Enhanced Aggressive Behaviour in a Mouse Model of Depression. Neurotox Res 2014; 27:129-42. [DOI: 10.1007/s12640-014-9498-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
|
28
|
Abstract
Depression causes significant morbidity in the human population. The Diathesis-Stress/Two-Hit model of depression hypothesizes that stress interacts with underlying (probably genetic) predispositions to produce a central nervous system that is primed to express psychopathology when confronted with stressful experiences later in life. Nonhuman primate (NHP) studies have been extensively utilized to test this model. NHPs are especially useful for studying effects of early experience, because many aspects of NHP infancy are similar to humans, whereas development occurs at an accelerated rate and therefore allows for more rapid assessment of experimental variables. In addition, the ability to manipulate putative risk factors, including introducing experimental stress during development, allows inference of causality not possible with human studies. This manuscript reviews experimental paradigms that have been utilized to model early adverse experience in NHPs, including peer-rearing, maternal separation, and variable foraging. It also provides examples of how this model has been used to investigate the effects of early experience on later neurobiology, physiology, and behavior associated with depression. We conclude that the NHP offers an excellent model to research mechanisms contributing to the Diathesis-Stress/Two-Hit model of depression.
Collapse
|