1
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
2
|
Kielbinski M, Bernacka J, Zajda K, Wawrzczak-Bargieła A, Maćkowiak M, Przewlocki R, Solecki W. Acute stress modulates noradrenergic signaling in the ventral tegmental area-amygdalar circuit. J Neurochem 2023; 164:598-612. [PMID: 36161462 DOI: 10.1111/jnc.15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Noradrenergic neurotransmission is a critical mediator of stress responses. In turn, exposure to stress induces noradrenergic system adaptations, some of which are implicated in the etiology of stress-related disorders. Adrenergic receptors (ARs) in the ventral tegmental area (VTA) have been demonstrated to regulate phasic dopamine (DA) release in the forebrain, necessary for behavioral responses to conditional cues. However, the impact of stress on noradrenergic modulation of the VTA has not been previously explored. We demonstrate that ARs in the VTA regulate dopaminergic activity in the VTA-BLA (basolateral amygdala) circuit, a key system for processing stress-related stimuli; and that such control is altered by acute stress. We utilized fast-scan cyclic voltammetry to assess the effects of intra-VTA microinfusion of α1 -AR and α2 -AR antagonists (terazosin and RX-821002, respectively), on electrically evoked phasic DA release in the BLA in stress-naïve and stressed (unavoidable electric shocks - UES) anesthetized male Sprague-Dawley rats. In addition, we used western blotting to explore UES-induced alterations in AR protein level in the VTA. Intra-VTA terazosin or RX-821002 dose-dependently attenuated DA release in the BLA. Interestingly, UES decreased the effects of intra-VTA α2 -AR blockade on DA release (24 h but not 7 days after stress), while the effects of terazosin were unchanged. Despite changes in α2 -AR physiological function in the VTA, UES did not alter α2 -AR protein levels in either intracellular or membrane fractions. These findings demonstrate that NA-ergic modulation of the VTA-BLA circuit undergoes significant alterations in response to acute stress, with α2 -AR signaling indicated as a key target.
Collapse
Affiliation(s)
- Michal Kielbinski
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| | - Joanna Bernacka
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland.,Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Zajda
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| | - Agnieszka Wawrzczak-Bargieła
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marzena Maćkowiak
- Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Jagiellonian University, Institute of Applied Psychology, Krakow, Poland
| |
Collapse
|
3
|
Joanna B, Michal K, Agnieszka WB, Katarzyna Z, Marzena M, Ryszard P, Wojciech S. Alpha-2A but not 2B/C noradrenergic receptors in ventral tegmental area regulate phasic dopamine release in nucleus accumbens core. Neuropharmacology 2022; 220:109258. [PMID: 36116534 DOI: 10.1016/j.neuropharm.2022.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022]
Abstract
Adrenergic receptors (AR) in the ventral tegmental area (VTA) modulate local neuronal activity and, as a consequence, dopamine (DA) release in the mesolimbic forebrain. Such modulation has functional significance: intra-VTA blockade of α1-AR attenuates behavioral responses to salient environmental stimuli in rat models of drug seeking and conditioned fear as well as phasic DA release in the nucleus accumbens (NAc). In contrast, α2-AR in the VTA has been suggested to act primarily as autoreceptors, limiting local noradrenergic input. The regulation of noradrenaline efflux by α2-AR could be of clinical interest, as α2-AR agonists are proposed as promising pharmacological tools in the treatment of PTSD and substance use disorder. Thus, the aim of our study was to determine the subtype-specificity of α2-ARs in the VTA capable of modulating phasic DA release. We used fast scan cyclic voltammetry (FSCV) in anaesthetized male rats to measure DA release in the NAc after combined electrical stimulation and infusion of selected α2-AR antagonists into the VTA. Intra-VTA microinfusion of idazoxan - a non-subtype-specific α2-AR antagonist, as well as BRL-44408 - a selective α2A-AR antagonist, attenuated electrically-evoked DA in the NAc. In contrast, local administration of JP-1302 or imiloxan (α2B- and α2C-AR antagonists, respectively) had no effect. The effect of BRL-44408 on DA release was attenuated by intra-VTA DA D2 antagonist (raclopride) pre-administration. Finally, we confirmed the presence of α2A-AR protein in the VTA using western blotting. In conclusion, these data specify α2A-, but not α2B- or α2C-AR as the receptor subtype controlling NA release in the VTA.
Collapse
Affiliation(s)
- Bernacka Joanna
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Kielbinski Michal
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland
| | - Wawrzczak-Bargieła Agnieszka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Zajda Katarzyna
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland
| | - Maćkowiak Marzena
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Smętna Str. 12, 31-343, Krakow, Poland
| | - Przewlocki Ryszard
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Molecular Neuropharmacology, Smętna Str. 12, 31-343, Krakow, Poland
| | - Solecki Wojciech
- Jagiellonian University, Institute of Applied Psychology, Department of Neurobiology and Neuropsychology, Łojasiewicza Str. 4, 30-348, Krakow, Poland.
| |
Collapse
|
4
|
Solecki WB, Kielbinski M, Wilczkowski M, Zajda K, Karwowska K, Joanna B, Rajfur Z, Przewłocki R. Regulation of cocaine seeking behavior by locus coeruleus noradrenergic activity in the ventral tegmental area is time- and contingency-dependent. Front Neurosci 2022; 16:967969. [PMID: 35992934 PMCID: PMC9388848 DOI: 10.3389/fnins.2022.967969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorder is linked to impairments in the ventral tegmental area (VTA) dopamine (DA) reward system. Noradrenergic (NA) inputs from locus coeruleus (LC) into VTA have been shown to modulate VTA neuronal activity, and are implicated in psychostimulant effects. Phasic LC activity controls time- and context-sensitive processes: decision making, cognitive flexibility, motivation and attention. However, it is not yet known how such temporally-distinct LC activity contributes to cocaine seeking. In a previous study we demonstrated that pharmacological inhibition of NA signaling in VTA specifically attenuates cocaine-seeking. Here, we used virally-delivered opsins to target LC neurons for inhibition or excitation, delivered onto afferents in VTA of male rats seeking cocaine under extinction conditions. Optogenetic stimulation or inhibition was delivered in distinct conditions: upon active lever press, contingently with discreet cues; or non-contingently, i.e., throughout the cocaine seeking session. Non-contingent inhibition of LC noradrenergic terminals in VTA attenuated cocaine seeking under extinction conditions. In contrast, contingent inhibition increased, while contingent stimulation reduced cocaine seeking. These findings were specific for cocaine, but not natural reward (food) seeking. Our results show that NA release in VTA drives behavior depending on timing and contingency between stimuli – context, discreet conditioned cues and reinforcer availability. We show that, depending on those factors, noradrenergic signaling in VTA has opposing roles, either driving CS-induced drug seeking, or contributing to behavioral flexibility and thus extinction.
Collapse
Affiliation(s)
- Wojciech B. Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- *Correspondence: Wojciech B. Solecki,
| | - Michał Kielbinski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Michał Wilczkowski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Department of Brain Biochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Zajda
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Karolina Karwowska
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Bernacka Joanna
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Zenon Rajfur
- Department of Biosystems Physics, Institute of Physics, Jagiellonian University, Kraków, Poland
| | - Ryszard Przewłocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
5
|
Kielbinski M, Bernacka J, Solecki WB. Differential regulation of phasic dopamine release in the forebrain by the VTA noradrenergic receptor signaling. J Neurochem 2019; 149:747-759. [PMID: 31001835 DOI: 10.1111/jnc.14706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
Phasic dopamine (DA) release from the ventral tegmental area (VTA) into forebrain structures is implicated in associative learning and conditional stimulus (CS)-evoked behavioral responses. Mounting evidence points to noradrenaline signaling in the VTA as an important regulatory input. Accordingly, adrenergic receptor (AR) blockade in the VTA has been shown to modulate CS-dependent behaviors. Here, we hypothesized that α1 - and α2 -AR (but not β-AR) activity preferentially modulates phasic, in contrast to tonic, DA release. In addition, these effects could differ between forebrain targets. We used fast-scan cyclic voltammetric measurements in rats to assess the effects of intra-VTA microinfusion of terazosin, a selective α1 -AR antagonist, on electrically evoked phasic DA release in the nucleus accumbens (NAc) core and medial prefrontal cortex (mPFC). Terazosin dose-dependently attenuated phasic, but not tonic, DA release in the NAc core, but not in the mPFC. Next, we measured the effects of intra-VTA administration of the α2 -AR selective antagonist RX-821002 on evoked DA in the NAc core. Similar to the effects of α1 -AR blockade, intra-VTA α2 -AR blockade with RX-0821002 strongly and dose-dependently attenuated phasic, but not tonic, DA release. In contrast, no regulation by RX-821002 was observed in the mPFC. This effect was sensitive to intra-VTA blockade of D2 receptors with raclopride. Finally, the β-AR antagonist propranolol ineffectively modulated DA release in the NAc core. These findings revealed both α1 - and α2 -ARs in the VTA as selective regulators of phasic DA release. Importantly, we demonstrated that AR blockade modulated mesolimbic, in contrast to mesocortical, DA release in previously unstudied heterogeneity in AR regulation of forebrain phasic DA.
Collapse
Affiliation(s)
- Michał Kielbinski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Joanna Bernacka
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Wojciech B Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Porter-Stransky KA, Centanni SW, Karne SL, Odil LM, Fekir S, Wong JC, Jerome C, Mitchell HA, Escayg A, Pedersen NP, Winder DG, Mitrano DA, Weinshenker D. Noradrenergic Transmission at Alpha1-Adrenergic Receptors in the Ventral Periaqueductal Gray Modulates Arousal. Biol Psychiatry 2019; 85:237-247. [PMID: 30269865 PMCID: PMC6326840 DOI: 10.1016/j.biopsych.2018.07.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dysregulation of arousal is symptomatic of numerous psychiatric disorders. Previous research has shown that the activity of dopamine (DA) neurons in the ventral periaqueductal gray (vPAG) tracks with arousal state, and lesions of vPAGDA cells increase sleep. However, the circuitry controlling these wake-promoting DA neurons is unknown. METHODS This study combined designer receptors exclusively activated by designer drugs (DREADDs), behavioral pharmacology, electrophysiology, and immunoelectron microscopy in male and female mice to elucidate mechanisms in the vPAG that promote arousal. RESULTS Activation of locus coeruleus projections to the vPAG or vPAGDA neurons induced by DREADDs promoted arousal. Similarly, agonist stimulation of vPAG alpha1-adrenergic receptors (α1ARs) increased latency to fall asleep, whereas α1AR blockade had the opposite effect. α1AR stimulation drove vPAGDA activity in a glutamate-dependent, action potential-independent manner. Compared with other dopaminergic brain regions, α1ARs were enriched on astrocytes in the vPAG, and mimicking α1AR transmission specifically in vPAG astrocytes via Gq-DREADDS was sufficient to increase arousal. In general, the wake-promoting effects observed were not accompanied by hyperactivity. CONCLUSIONS These experiments revealed that vPAG α1ARs increase arousal, promote glutamatergic input onto vPAGDA neurons, and are abundantly expressed on astrocytes. Activation of locus coeruleus inputs, vPAG astrocytes, or vPAGDA neurons increase sleep latency but do not produce hyperactivity. Together, these results support an arousal circuit whereby noradrenergic transmission at astrocytic α1ARs activates wake-promoting vPAGDA neurons via glutamate transmission.
Collapse
Affiliation(s)
| | - Samuel W Centanni
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Saumya L Karne
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Lindsay M Odil
- Program in Neuroscience, Christopher Newport University, Newport News, Virginia
| | - Sinda Fekir
- Program in Neuroscience, Christopher Newport University, Newport News, Virginia
| | - Jennifer C Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Canaan Jerome
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Heather A Mitchell
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Nigel P Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Darlene A Mitrano
- Program in Neuroscience, Christopher Newport University, Newport News, Virginia; Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
7
|
Functional neuroanatomical review of the ventral tegmental area. Neuroimage 2019; 191:258-268. [PMID: 30710678 DOI: 10.1016/j.neuroimage.2019.01.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) are assumed to play a key role in dopamine-related functions such as reward-related behaviour, motivation, addiction and motor functioning. Although dopamine-producing midbrain structures are bordering, they show significant differences in structure and function that argue for a distinction when studying the functions of the dopaminergic midbrain, especially by means of neuroimaging. First, unlike the SNc, the VTA is not a nucleus, which makes it difficult to delineate the structure due to lack of clear anatomical borders. Second, there is no consensus in the literature about the anatomical nomenclature to describe the VTA. Third, these factors in combination with limitations in magnetic resonance imaging (MRI) complicate VTA visualization. We suggest that developing an MRI-compatible probabilistic atlas of the VTA will help to overcome these issues. Such an atlas can be used to identify the individual VTA and serve as region-of-interest for functional MRI.
Collapse
|
8
|
Adrenergic Receptor Agonists’ Modulation of Dopaminergic and Non-dopaminergic Neurons in the Ventral Tegmental Area. Neuroscience 2018; 375:119-134. [DOI: 10.1016/j.neuroscience.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/02/2023]
|
9
|
Solecki WB, Szklarczyk K, Pradel K, Kwiatkowska K, Dobrzański G, Przewłocki R. Noradrenergic signaling in the VTA modulates cocaine craving. Addict Biol 2018. [PMID: 28635140 DOI: 10.1111/adb.12514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exposure to drug-associated cues evokes drug-seeking behavior and is regarded as a major cause of relapse. Conditional stimulus upregulates noradrenaline (NA) system activity, but the drug-seeking behavior depends particularly on phasic dopamine signaling downstream from the ventral tegmental area (VTA). The VTA dopamine-ergic activity is regulated via the signaling of alpha1 -adrenergic and alpha2 -adrenergic receptors (α1 -ARs and α2 -ARs); thus, the impact of the conditional stimulus on drug-seeking behavior might involve NAergic signaling in the VTA. To date, the role of VTA ARs in regulating cocaine seeking was not studied. We found that cocaine seeking under extinction conditions in male Sprague-Dawley rats was attenuated by intra-VTA prazosin or terazosin-two selective α1 -AR antagonists. In contrast, cocaine seeking was facilitated by intra-VTA administration of the selective α1 -AR agonist phenylephrine as well as α2 -AR antagonist RX 821002, whereas the selective β-AR antagonist propranolol had no effects. In addition, blockade of α1 -AR in the VTA prevented α2 -AR antagonist-induced enhancement of cocaine seeking. Importantly, the potential non-specific effects of the VTA AR blockade on cocaine seeking could be excluded, because none of the AR antagonists influenced sucrose seeking under extinction conditions or locomotor activity in the open field test. These results demonstrate that NAergic signaling potently and selectively regulates cocaine seeking during early cocaine withdrawal via VTA α1 -AR and α2 -AR but not β-AR. Our findings provide new insight into the NAergic mechanisms that underlie cocaine craving.
Collapse
Affiliation(s)
- Wojciech Barnaba Solecki
- Department of Neurobiology and Neuropsychology; Institute of Applied Psychology, Jagiellonian University; Poland
- Department of Molecular Neuropharmacology; Institute of Pharmacology, Polish Academy of Sciences; Poland
| | - Klaudia Szklarczyk
- Department of Neurobiology and Neuropsychology; Institute of Applied Psychology, Jagiellonian University; Poland
| | - Kamil Pradel
- Department of Molecular Neuropharmacology; Institute of Pharmacology, Polish Academy of Sciences; Poland
| | - Krystyna Kwiatkowska
- Department of Molecular Neuropharmacology; Institute of Pharmacology, Polish Academy of Sciences; Poland
| | - Grzegorz Dobrzański
- Department of Molecular Neuropharmacology; Institute of Pharmacology, Polish Academy of Sciences; Poland
| | - Ryszard Przewłocki
- Department of Molecular Neuropharmacology; Institute of Pharmacology, Polish Academy of Sciences; Poland
| |
Collapse
|
10
|
Dudek M, Hyytiä P. Alcohol preference and consumption are controlled by the caudal linear nucleus in alcohol-preferring rats. Eur J Neurosci 2016; 43:1440-8. [PMID: 27038036 DOI: 10.1111/ejn.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 01/09/2023]
Abstract
The neuroanatomical and neurochemical basis of alcohol drinking has been extensively studied, but the neural circuitry mediating alcohol reinforcement has not been fully delineated. In the present experiments, we used both neuroimaging and pharmacological tools to identify neural systems associated with alcohol preference and high voluntary alcohol drinking in alcohol-preferring AA (Alko Alcohol) rats. First, we compared the basal brain activity of AA rats with that of heterogeneous Wistar rats with manganese-enhanced magnetic resonance imaging (MEMRI). Briefly, alcohol-naïve rats were implanted with subcutaneous osmotic minipumps delivering 120 mg/kg MnCl2 over a 7-day period, and were then imaged using a three-dimensional rapid acquisition-relaxation enhanced pulse sequence. MEMRI analysis revealed that the most conspicuous subcortical activation difference was located in the caudal linear nucleus of raphe (CLi), with AA rats displaying significantly lower T1 signal in this region compared to Wistar rats. However, following long-term alcohol drinking, CLi activity was increased in AA rats. In the second experiment, the CLi was targeted with pharmacological tools. AA rats trained to drink 10% alcohol during 2-h sessions were implanted with guide cannulas aimed at the CLi and were given injections of the GABAA receptor agonist muscimol into the CLi before drinking sessions. Muscimol dose-dependently increased alcohol drinking, and co-administration of the gamma aminobutyric acid (GABA)A antagonist bicuculline blocked muscimol's effect. These findings suggest that the mediocaudal region of the ventral tegmental area, particularly the CLi, is important for the propensity for high alcohol drinking and controls alcohol reward via GABAergic transmission.
Collapse
Affiliation(s)
- Mateusz Dudek
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, POB 63 00014, Helsinki, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, POB 63 00014, Helsinki, Finland
| |
Collapse
|
11
|
Mejias-Aponte CA. Specificity and impact of adrenergic projections to the midbrain dopamine system. Brain Res 2016; 1641:258-73. [PMID: 26820641 DOI: 10.1016/j.brainres.2016.01.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson's disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Carlos A Mejias-Aponte
- National Institute on Drug Abuse Histology Core, Neuronal Networks Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Biomedical Research Center, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|