1
|
Nowak K, Szpot P, Jurek T, Zawadzki M. Quantification of methadone and its metabolites: EDDP and EMDP determined in autopsy cases using LC-MS/MS. J Forensic Sci 2021; 66:1003-1012. [PMID: 33512019 DOI: 10.1111/1556-4029.14674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
The paper presents a method for the determination of methadone, EDDP, and EMDP in postmortem biological materials using liquid-liquid extraction with ethyl acetate (pH9) and UHPLC-MS/MS technique. Methadone-d9 and EDDP-d3 were used as the internal standards. The method validation results for blood and urine were as follows: linearity: 0.5-1000 ng/ml; R2 > 0.9993 for methadone, EDDP and R2 > 0.9944 for EMDP. Intra- and inter-day precision: 0.1%-7.5% and 0.3%-8.6%, respectively; intra- and inter-day accuracy: -11.8% to 13.9% and -9.3 to 14.8%, respectively; recovery: 91.5%-123.0%; matrix effect: 83.5%-123.9%. This study also describes 18 postmortem cases, where methadone concentrations ranged 2.3-1180 ng/ml in blood (n = 17), from 11.0 to >10,000 ng/ml in urine (n = 13) and 135.2-409.0 in vitreous humor (VH, n = 3). EDDP concentrations ranged from not detectable to 180 ng/mL in blood, from 42.4 to >10,000 ng/ml in urine and 18.3-36.5 in VH. EMDP concentrations were found in four cases in blood from below LLOQ to 1.8 ng/ml and in seven cases in urine, ranged 2.1-243.0 ng/ml. EMDP was not detected in VH samples. The EDDP/methadone ratios and blood/urine ratios for methadone and EDDP in EMDP-positive and negative cases were performed. The paper presents mass spectra of other methadone metabolites, than EDDP and EMDP (ring hydroxylated methadone, ring hydroxylated EDDP, ring hydroxylated EMDP, methadol, and DDP). Simultaneous determination of methadone and its metabolites in order to unequivocally interpret the results of toxicological tests seems to be useful in cases related to prescription/illicit use of methadone.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland.,Institute of Toxicology Research, Borowa, Poland
| | - Paweł Szpot
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland.,Institute of Toxicology Research, Borowa, Poland
| | - Tomasz Jurek
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Zawadzki
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw, Poland.,Institute of Toxicology Research, Borowa, Poland
| |
Collapse
|
2
|
Ebrahimi-Ghiri M, Mohammadi-Mahdiabadi-Hasani MH, Nasehi M, Zarrindast MR. Better antidepressant efficacy of mecamylamine in combination with L-NAME than with L-arginine. Behav Brain Res 2020; 386:112604. [PMID: 32198105 DOI: 10.1016/j.bbr.2020.112604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Aff ;ective disorders, including anxiety and mood disorders, are a constellation of psychiatric diseases that aff ;ect over 10 % of the world's population. It has been proposed that drugs that change nicotinic acetylcholine receptor (nAChR) activity can affect mood- and anxiety-related behaviors. Also, neuronal nitric oxide synthase (nNOS) is closely associated with the pathophysiology of these disorders. To limit the potential adverse effects of alteration in cholinergic and nitric oxide (NO) systems, we investigated the combined efficacy of subthreshold doses of nAChR antagonist mecamylamine and NO ligands (L-arginine as agonist and l-NAME as an antagonist) on depression- and anxiety-related behaviors in male NMRI mice. Depression-related behaviors using the forced swim test (FST) and anxiety-like activity using the hole-board test were assessed. In our results, mecamylamine (3 mg/kg) showed antidepressant-like properties, and it also tended to have anxiolytic-like effects, though not significant. Concomitant treatment of subthreshold doses of mecamylamine (1 mg/kg) and l-arginine (25 mg/kg), l-NAME (1 mg/kg), or l-arginine/L-NAME were antidepressive. In contrast, l-arginine/L-NAME alone or in associated with mecamylamine showed anxiogenic-like efficacy. Isobolographic analysis exhibited an additive antidepressant effect of the combined subthreshold doses of mecamylamine and l-arginine, and a synergistic antidepressant effect of the combined subthreshold doses of mecamylamine and l-NAME. It should be noted that mecamylamine (3 mg/kg) elicited hypolocomotion. Our results suggest that mecamylamine produces a better antidepressant efficacy in combination with l-NAME than with l-arginine.
Collapse
Affiliation(s)
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Neuroendocrinology, Endocrinology, and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Aguilar BL, Malkova L, N'Gouemo P, Forcelli PA. Genetically Epilepsy-Prone Rats Display Anxiety-Like Behaviors and Neuropsychiatric Comorbidities of Epilepsy. Front Neurol 2018; 9:476. [PMID: 29997563 PMCID: PMC6030811 DOI: 10.3389/fneur.2018.00476] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Epilepsy is associated with a variety of neuropsychiatric comorbidities, including both anxiety and depression. Despite high occurrences of depression and anxiety seen in human epilepsy populations, little is known about the etiology of these comorbidities. Experimental models of epilepsy provide a platform to disentangle the contribution of acute seizures, genetic predisposition, and underlying circuit pathologies to anxious and depressive phenotypes. Most studies to date have focused on comorbidities in acquired epilepsies; genetic models, however, allow for the assessment of affective phenotypes that occur prior to onset of recurrent seizures. Here, we tested male and female genetically epilepsy-prone rats (GEPR-3s) and Sprague-Dawley controls in a battery of tests sensitive to anxiety-like and depressive-like phenotypes. GEPR-3s showed increased anxiety-like behavior in the open field test, elevated plus maze, light-dark transition test, and looming threat test. Moreover, GEPR-3s showed impaired prepulse inhibition of the acoustic startle reflex, decreased sucrose preference index, and impaired novel object recognition memory. We also characterized defense behaviors in response to stimulation thresholds of deep and intermediate layers of the superior colliculus (DLSC), but found no difference between strains. In sum, GEPR-3s showed inherited anxiety, an effect that did not differ significantly between sexes. The anxiety phenotype in adult GEPR-3s suggests strong genetic influences that may underlie both the seizure disorder and the comorbidities seen in epilepsy.
Collapse
Affiliation(s)
- Brittany L Aguilar
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.,Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.,Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Prosper N'Gouemo
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.,Department of Pediatrics, Georgetown University, Washington, DC, United States
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.,Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
4
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
5
|
Brito AF, Fajemiroye JO, Neri HFS, Silva DM, Silva DPB, Sanz G, Vaz BG, de Carvalho FS, Ghedini PC, Lião LM, Menegatti R, Costa EA. Anxiolytic-like effect of 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol is mediated through the benzodiazepine and nicotinic pathways. Chem Biol Drug Des 2017; 90:432-442. [PMID: 28160425 DOI: 10.1111/cbdd.12961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022]
Abstract
In this study, we proposed the design, synthesis of a new compound 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol (LQFM032), and pharmacological evaluation of its anxiolytic-like effect. This new compound was subjected to pharmacological screening referred to as Irwin test, prior to sodium pentobarbital-induced sleep, open-field and wire tests. The anxiolytic-like effect of this compound was evaluated using elevated plus maze and light-dark box tests. In addition, the mnemonic activity was evaluated through step-down test. In sodium pentobarbital-induced sleep test, LQFM032 decreased latency and increased duration of sleep. In the open-field test, LQFM032 altered behavioral parameter, that suggested anxiolytic-like activity, as increased in crossings and time spent at the center of open field. In the plus maze test and light-dark box test, the LQFM032 showed anxiolytic-like activity, increased entries and time spent on open arms, and increased in number of transitions and time spent on light area, respectively. Those effects was antagonized by flumazenil but not with 1-(2-Methoxyphenyl)-4-(4-phthalimidobutyl)piperazine (NAN-190). The LQFM032 did not alter mnemonic activity. Moreover, the anxiolytic-like activity of LQFM032 was antagonized by mecamylamine. In summary, LQFM032 showed benzodiazepine and nicotinic pathways mediated anxiolytic-like activity without altering the mnemonic activity.
Collapse
Affiliation(s)
- Adriane F Brito
- Department of Pharmacology, ICB, Federal University of Goiás, Goiânia, GO, Brazil
| | - James O Fajemiroye
- Department of Pharmacology, ICB, Federal University of Goiás, Goiânia, GO, Brazil
| | - Hiasmin F S Neri
- Department of Pharmacology, ICB, Federal University of Goiás, Goiânia, GO, Brazil
| | - Dayane M Silva
- Department of Pharmacology, ICB, Federal University of Goiás, Goiânia, GO, Brazil
| | - Daiany P B Silva
- Department of Pharmacology, ICB, Federal University of Goiás, Goiânia, GO, Brazil
| | - Germán Sanz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Paulo C Ghedini
- Department of Pharmacology, ICB, Federal University of Goiás, Goiânia, GO, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goias, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson A Costa
- Department of Pharmacology, ICB, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
6
|
Dinis-Oliveira RJ. Metabolomics of methadone: clinical and forensic toxicological implications and variability of dose response. Drug Metab Rev 2016; 48:568-576. [DOI: 10.1080/03602532.2016.1192642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Frankel S, Medvedeva N, Gutherz S, Kulick C, Kondratyev A, Forcelli PA. Comparison of the long-term behavioral effects of neonatal exposure to retigabine or phenobarbital in rats. Epilepsy Behav 2016; 57:34-40. [PMID: 26921596 PMCID: PMC4828307 DOI: 10.1016/j.yebeh.2016.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/18/2023]
Abstract
Anticonvulsant drugs, when given during vulnerable periods of brain development, can have long-lasting consequences on nervous system function. In rats, the second postnatal week approximately corresponds to the late third trimester of gestation/early infancy in humans. Exposure to phenobarbital during this period has been associated with deficits in learning and memory, anxiety-like behavior, and social behavior, among other domains. Phenobarbital is the most common anticonvulsant drug used in neonatology. Several other drugs, such as lamotrigine, phenytoin, and clonazepam, have also been reported to trigger behavioral changes. A new generation anticonvulsant drug, retigabine, has not previously been evaluated for long-term effects on behavior. Retigabine acts as an activator of KCNQ channels, a mechanism that is unique among anticonvulsants. Here, we examined the effects retigabine exposure from postnatal day (P)7 to P14 on behavior in adult rats. We compared these effects with those produced by phenobarbital (as a positive control) and saline (as a negative control). Motor behavior was assessed by using the open field and rotarod, anxiety-like behavior by the open field, elevated plus maze, and light-dark transition task, and learning/memory by the passive avoidance task; social interactions were assessed in same-treatment pairs, and nociceptive sensitivity was assessed via the tail-flick assay. Motor behavior was unaltered by exposure to either drug. We found that retigabine exposure and phenobarbital exposure both induced increased anxiety-like behavior in adult animals. Phenobarbital, but not retigabine, exposure impaired learning and memory. These drugs also differed in their effects on social behavior, with retigabine-exposed animals displaying greater social interaction than phenobarbital-exposed animals. These results indicate that neonatal retigabine induces a subset of behavioral alterations previously described for other anticonvulsant drugs and extend our knowledge of drug-induced behavioral teratogenesis to a new mechanism of anticonvulsant action.
Collapse
Affiliation(s)
- Sari Frankel
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Natalia Medvedeva
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Samuel Gutherz
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Catherine Kulick
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Alexei Kondratyev
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States.
| |
Collapse
|