1
|
Napier M, Kumar A, Szulist N, Martin D, Scott AL. P2X7 expression patterns in the developing Fmr1-knockout mouse hippocampus. Hippocampus 2024; 34:633-644. [PMID: 39269925 DOI: 10.1002/hipo.23634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Fragile-X Syndrome (FXS) is the leading monogenetic cause of intellectual disability among children but remains without a cure. Using the Fmr1 KO mouse model of FXS, much work has been done to understand FXS hippocampus dysfunction. Purinergic signaling, where ATP and its metabolites are used as signaling molecules, participates in hippocampus development, but it is unknown if purinergic signaling is affected in the developing Fmr1 KO hippocampus. In our study, we characterized the purinergic receptor P2X7. We first found that P2X7 was reduced in Fmr1 KO whole hippocampus tissue at P14 and P21, corresponding to the periods of neurite outgrowth and synaptic refinement in the hippocampus. We then evaluated the cell-specific expression of P2X7 with immunofluorescence and found differences between WT and Fmr1 KO mice in P2X7 colocalization with hippocampal microglia and neurons. P2X7 colocalized more with microglia at P14 and P21, but there was a sex-specific reduction in P2X7 colocalization with neurons. In contrast, male mice at P14 and P21 showed reduced neuronal P2X7 colocalization compared to females, but only females showed reduced absolute neuronal P2X7 expression across the dorsal hippocampal formation. Together, our results suggest that P2X7 expression is altered during Fmr1-KO hippocampal development, potentially influencing several developmental processes in the Fmr1-KO hippocampus formation.
Collapse
Affiliation(s)
- Matthew Napier
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ashish Kumar
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Natasha Szulist
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dale Martin
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Boccazzi M, Raffaele S, Zanettin T, Abbracchio MP, Fumagalli M. Altered Purinergic Signaling in Neurodevelopmental Disorders: Focus on P2 Receptors. Biomolecules 2023; 13:biom13050856. [PMID: 37238724 DOI: 10.3390/biom13050856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
With the umbrella term 'neurodevelopmental disorders' (NDDs) we refer to a plethora of congenital pathological conditions generally connected with cognitive, social behavior, and sensory/motor alterations. Among the possible causes, gestational and perinatal insults have been demonstrated to interfere with the physiological processes necessary for the proper development of fetal brain cytoarchitecture and functionality. In recent years, several genetic disorders caused by mutations in key enzymes involved in purine metabolism have been associated with autism-like behavioral outcomes. Further analysis revealed dysregulated purine and pyrimidine levels in the biofluids of subjects with other NDDs. Moreover, the pharmacological blockade of specific purinergic pathways reversed the cognitive and behavioral defects caused by maternal immune activation, a validated and now extensively used rodent model for NDDs. Furthermore, Fragile X and Rett syndrome transgenic animal models as well as models of premature birth, have been successfully utilized to investigate purinergic signaling as a potential pharmacological target for these diseases. In this review, we examine results on the role of the P2 receptor signaling in the etiopathogenesis of NDDs. On this basis, we discuss how this evidence could be exploited to develop more receptor-specific ligands for future therapeutic interventions and novel prognostic markers for the early detection of these conditions.
Collapse
Affiliation(s)
- Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Thomas Zanettin
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
3
|
Grković I, Mitrović N, Dragić M. Ectonucleotidases in the hippocampus: Spatial distribution and expression after ovariectomy and estradiol replacement. VITAMINS AND HORMONES 2021; 118:199-221. [PMID: 35180927 DOI: 10.1016/bs.vh.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular purine nucleotides, such as adenosine 5'-triphosphate (ATP), are important modulators of hippocampal function and plasticity. In the extracellular space, ATP is inherently short-lived molecule, which undergoes rapid enzymatic degradation to adenosine by ectonucleotidases. Given that ectonucleotidases have distinct and overlapping distribution in the hippocampus, and as ovarian hormones participate in a formation, maturation, and a refinement of synaptic contacts, both during development and in adulthood, the present chapter summarizes known data about spatial distribution of selected ecto-enzymes and estradiol-induced effects on ectonucleotidases in the rat hippocampus.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Braune M, Scherf N, Heine C, Sygnecka K, Pillaiyar T, Parravicini C, Heimrich B, Abbracchio MP, Müller CE, Franke H. Involvement of GPR17 in Neuronal Fibre Outgrowth. Int J Mol Sci 2021; 22:ijms222111683. [PMID: 34769111 PMCID: PMC8584086 DOI: 10.3390/ijms222111683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growth-promoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.
Collapse
Affiliation(s)
- Max Braune
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Nico Scherf
- Methods and Development Group Neural Data Analysis and Statistical Computing, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany;
| | - Claudia Heine
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Katja Sygnecka
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Chiara Parravicini
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Albertstr. 23, 79104 Freiburg, Germany;
| | - Maria P. Abbracchio
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Christa E. Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
- Correspondence: ; Tel.: +49-(0)341-9724602; Fax: +49-(0)341-9724609
| |
Collapse
|
5
|
BAC transgenic mice to study the expression of P2X2 and P2Y 1 receptors. Purinergic Signal 2021; 17:449-465. [PMID: 34050505 PMCID: PMC8410928 DOI: 10.1007/s11302-021-09792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Extracellular purines are important signaling molecules involved in numerous physiological and pathological processes via the activation of P2 receptors. Information about the spatial and temporal P2 receptor (P2R) expression and its regulation remains crucial for the understanding of the role of P2Rs in health and disease. To identify cells carrying P2X2Rs in situ, we have generated BAC transgenic mice that express the P2X2R subunits as fluorescent fusion protein (P2X2-TagRFP). In addition, we generated a BAC P2Y1R TagRFP reporter mouse expressing a TagRFP reporter for the P2RY1 gene expression. We demonstrate expression of the P2X2R in a subset of DRG neurons, the brain stem, the hippocampus, as well as on Purkinje neurons of the cerebellum. However, the weak fluorescence intensity in our P2X2R-TagRFP mouse precluded tracking of living cells. Our P2Y1R reporter mice confirmed the widespread expression of the P2RY1 gene in the CNS and indicate for the first time P2RY1 gene expression in mouse Purkinje cells, which so far has only been described in rats and humans. Our P2R transgenic models have advanced the understanding of purinergic transmission, but BAC transgenic models appeared not always to be straightforward and permanent reliable. We noticed a loss of fluorescence intensity, which depended on the number of progeny generations. These problems are discussed and may help to provide more successful animal models, even if in future more versatile and adaptable nuclease-mediated genome-editing techniques will be the methods of choice.
Collapse
|
6
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
7
|
Zhong K, Wang RX, Qian XD, Yu P, Zhu XY, Zhang Q, Ye YL. Neuroprotective effects of saffron on the late cerebral ischemia injury through inhibiting astrogliosis and glial scar formation in rats. Biomed Pharmacother 2020; 126:110041. [PMID: 32113053 DOI: 10.1016/j.biopha.2020.110041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
This study is to explore the neuroprotective effects and involved glial scar of saffron (Crocus sativus L.) on the late cerebral ischemia in rats. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in Sprague Dawley rats that were randomly divided into sham group, MCAO group, edaravone group (as a positive control) and saffron groups (saffron extract 30, 100, 300 mg/kg). Saffron was administered orally at 2 h at the first day and once daily from day 2 to 42 after ischemia. Behavioral changes were detected from day 43 to 46 after ischemia to evaluate the effects of saffron. Infarct volume, survival neuron density, activated astrocyte, and the thickness of glial scar were also detected. GFAP, neurocan, phosphocan, neurofilament expressions and inflammatory cytokine contents were detected by Western-blotting and ELISA methods, respectively. Saffron improved the body weight loss, neurological deficit and spontaneous activity. It also ameliorated anxiety-like state and cognitive dysfunction, which were detected by elevated plus maze (EPM), marble burying test (MBT) and novel object recognition test (NORT). Toluidine blue staining found that saffron treatment decreased the infarct volume and increased the neuron density in cortex in the ischemic boundary zone. The activated astrocyte number and the thickness of glial scar in the penumbra zone reduced after saffron treatment. Additionally, saffron decreased the contents of IL-6 and IL-1β, increased the content of IL-10 in the ischemic boundary zone. GFAP, neurocan, and phosphocan expressions in ischemic boundary zone and ischemic core zone all decreased after saffron treatment. Saffron exerted neuroprotective effects on late cerebral ischemia, associating with attenuating astrogliosis and glial scar formation after ischemic injury.
Collapse
Affiliation(s)
- Kai Zhong
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Rou-Xin Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Ping Yu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin-Ying Zhu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Lu Ye
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development. Semin Cell Dev Biol 2019; 95:34-41. [DOI: 10.1016/j.semcdb.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
|
9
|
Huang G, Cao X, Li Y, Zhou C, Li L, Wang K, Li H, Yu P, Jin Y, Gao L. Gene expression profile of the hippocampus of rats subjected to traumatic brain injury. J Cell Biochem 2019; 120:15776-15789. [PMID: 31074048 DOI: 10.1002/jcb.28848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Guo‐Hui Huang
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Xiang‐Yuan Cao
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Yuan‐Yuan Li
- Department of Endocrinology Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Cheng‐Cheng Zhou
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Lei Li
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Ke Wang
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Hong Li
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Peng Yu
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Yi Jin
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| | - Liang Gao
- Department of Neurosurgery Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai China
| |
Collapse
|
10
|
Grković I, Drakulić D, Martinović J, Mitrović N. Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications. Curr Neuropharmacol 2019; 17:84-98. [PMID: 28521702 PMCID: PMC6341498 DOI: 10.2174/1570159x15666170518151541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'- nucleotidase (eN). METHODS Studies related to the expression patterns of ectonucleotidases and their known features during brain development are reviewed, highlighting involvement of these enzymes in synapse formation and maturation in physiological as well as in pathological states. RESULTS During brain development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. NPPs are expressed at early embryonic days, but the expression of NPP3 is reduced and restricted to ependymal area in adult brain. NTPDase2 is dominant ectonucleotidase existing in the progenitor cells as well as main astrocytic NTPDase in the adult brain, while NTPDase3 is fully expressed after third postnatal week, almost exclusively on varicose fibers. Specific brain AP is functionally associated with synapse formation and this enzyme is sufficient for adenosine production during neurite growth and peak of synaptogenesis. eN is transiently associated with synapses during synaptogenesis, however in adult brain it is more glial than neuronal enzyme. CONCLUSION Control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
11
|
Su WF, Wu F, Jin ZH, Gu Y, Chen YT, Fei Y, Chen H, Wang YX, Xing LY, Zhao YY, Yuan Y, Tang X, Chen G. Overexpression of P2X4 receptor in Schwann cells promotes motor and sensory functional recovery and remyelination via BDNF secretion after nerve injury. Glia 2018; 67:78-90. [DOI: 10.1002/glia.23527] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Fan Wu
- Medical School of Nantong University; Nantong China
| | - Zi-Han Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying-Ting Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Hui Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ling-Yan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
- Affiliated Hospital of Nantong University; Nantong China
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
- Department of Anesthesiology; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
12
|
Xiao Y, Zhang E, Fu A. Promotion of SH-SY5Y Cell Growth by Gold Nanoparticles Modified with 6-Mercaptopurine and a Neuron-Penetrating Peptide. NANOSCALE RESEARCH LETTERS 2017; 12:641. [PMID: 29288282 PMCID: PMC5747560 DOI: 10.1186/s11671-017-2417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/15/2017] [Indexed: 06/01/2023]
Abstract
Much effort has been devoted to the discovery of effective biomaterials for nerve regeneration. Here, we reported a novel application of gold nanoparticles (AuNPs) modified with 6-mercaptopurine (6MP) and a neuron-penetrating peptide (RDP) as a neurophic agent to promote proliferation and neurite growth of human neuroblastoma (SH-SY5Y) cells. When the cells were treated with 6MP-AuNPs-RDP conjugates, they showed higher metabolic activity than the control. Moreover, SH-SY5Y cells were transplanted onto the surface coated with 6MP-AuNPs-RDP to examine the effect of neurite development. It can be concluded that 6MP-AuNPs-RDP attached to the cell surface and then internalized into cells, leading to a significant increase of neurite growth. Even though 6MP-AuNPs-RDP-treated cells were recovered from frozen storage, the cells still maintained constant growth, indicating that the cells have excellent tolerance to 6MP-AuNPs-RDP. The results suggested that the 6MP-AuNPs-RDP had promising potential to be developed as a neurophic nanomaterial for neuronal growth.
Collapse
Affiliation(s)
- Yaruo Xiao
- College of Bioengineering, Chongqing University, Chongqing, 400044 People’s Republic of China
| | - Enqi Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
13
|
Fumagalli M, Lecca D, Abbracchio MP, Ceruti S. Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: Unveiling New Pharmacological Approaches to Congenital Brain Diseases. Front Pharmacol 2017; 8:941. [PMID: 29375373 PMCID: PMC5770749 DOI: 10.3389/fphar.2017.00941] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, a substantial body of evidence has emerged demonstrating that purine and pyrimidine synthesis and metabolism play major roles in controlling embryonic and fetal development and organogenesis. Dynamic and time-dependent changes in the expression of purine metabolizing enzymes (such as ectonucleotidases and adenosine deaminase) represent a key checkpoint for the correct sequential generation of the different signaling molecules, that in turn activate their specific membrane receptors. In neurodevelopment, Ca2+ release from radial glia mediated by P2Y1 purinergic receptors is fundamental to allow neuroblast migration along radial glia processes, and their correct positioning in the different layers of the developing neocortex. Moreover, ATP is involved in the development of synaptic transmission and contributes to the establishment of functional neuronal networks in the developing brain. Additionally, several purinergic receptors (spanning from adenosine to P2X and P2Y receptor subtypes) are differentially expressed by neural stem cells, depending on their maturation stage, and their activation tightly regulates cell proliferation and differentiation to either neurons or glial cells, as well as their correct colonization of the developing telencephalon. The purinergic control of neurodevelopment is not limited to prenatal life, but is maintained in postnatal life, when it plays fundamental roles in controlling oligodendrocyte maturation from precursors and their terminal differentiation to fully myelinating cells. Based on the above-mentioned and other literature evidence, it is now increasingly clear that any defect altering the tight regulation of purinergic transmission and of purine and pyrimidine metabolism during pre- and post-natal brain development may translate into functional deficits, which could be at the basis of severe pathologies characterized by mental retardation or other disturbances. This can occur either at the level of the recruitment and/or signaling of specific nucleotide or nucleoside receptors or through genetic alterations in key steps of the purine salvage pathway. In this review, we have provided a critical analysis of what is currently known on the pathophysiological role of purines and pyrimidines during brain development with the aim of unveiling new future strategies for pharmacological intervention in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Gao P, Ding X, Khan TM, Rong W, Franke H, Illes P. P2X7 receptor-sensitivity of astrocytes and neurons in the substantia gelatinosa of organotypic spinal cord slices of the mouse depends on the length of the culture period. Neuroscience 2017; 349:195-207. [PMID: 28237817 DOI: 10.1016/j.neuroscience.2017.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
The whole-cell patch-clamp technique was used to record current responses to AMPA, N-methyl-d-aspartate (NMDA), muscimol and dibenzoyl-ATP (Bz-ATP) in superficial (reactive/gliotic) substantia gelatinosa (SG) astrocytes and neurons of spinal cord slices kept for different periods of time in organotypic culture. Currents induced by AMPA, NMDA and muscimol confirmed the existence of their specific receptors in 2-week-old neurons; astrocytes cultured for the same period of time responded to AMPA and muscimol, but not to NMDA. AMPA had a larger effect on 2-week-old astrocytes than on the 1-week-old ones, in spite of a similar sensitivity of the age-matched neurons to this amino acid. The effect of the prototypic P2X7 receptor agonist Bz-ATP on superficial astrocytes and neurons depended on the drug concentration applied and increased in parallel with the lengthening of the culture period. The amplitudes of Bz-ATP currents of deep (resting) astrocytes were age-independent. Neurons located in deep layers exhibited after 1week of culturing much larger Bz-ATP currents than the superficial ones of the same age. In conclusion, whereas resting astrocytes had culture period-independent P2X7 receptor-sensitivity, reactive/gliotic astrocytes exhibited P2X7 receptor-sensitivity increasing in parallel with the prolongation of the time spent in culture. The results with Bz-ATP agree with the facilitation of AMPA-induced currents in reactive astrocytes during development, and with the hypothesis that extracellular ATP is an ontogenetically early transmitter/signaling molecule in the CNS.
Collapse
Affiliation(s)
- Po Gao
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Xiaowei Ding
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Tahir Muhammad Khan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Weifang Rong
- Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.
| |
Collapse
|
15
|
Illes P, Verkhratsky A, Burnstock G, Sperlagh B. Purines in neurodegeneration and neuroregeneration. Neuropharmacology 2016; 104:1-3. [PMID: 26775822 DOI: 10.1016/j.neuropharm.2016.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| | | | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|