1
|
Oliveira RN, Carvalhinho-Lopes PS, Carvalho CPF, Hirata RYS, Vaz SH, Sebastião AM, Armada-Moreira A, Rosário BA, Lemes JA, Soares-Silva B, de Andrade JS, Santos JR, Ribeiro AM, Viana MB. Neuroprotective effects of platinum nanoparticle-based microreactors in bicuculline-induced seizures. Behav Brain Res 2024; 465:114956. [PMID: 38479475 DOI: 10.1016/j.bbr.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Epilepsy designates a group of chronic brain disorders, characterized by the recurrence of hypersynchronous, repetitive activity, of neuronal clusters. Epileptic seizures are the hallmark of epilepsy. The primary goal of epilepsy treatment is to eliminate seizures with minimal side effects. Nevertheless, approximately 30% of patients do not respond to the available drugs. An imbalance between excitatory/inhibitory neurotransmission, that leads to excitotoxicity, seizures, and cell death, has been proposed as an important mechanism regarding epileptogenesis. Recently, it has been shown that microreactors composed of platinum nanoparticles (Pt-NP) and glutamate dehydrogenase possess in vitro and in vivo activity against excitotoxicity. This study investigates the in vivo effects of these microreactors in an animal model of epilepsy induced by the administration of the GABAergic antagonist bicuculline. Male Wistar rats were administered intracerebroventricularly (i.c.v.) with the microreactors or saline and, five days later, injected with bicuculline or saline. Seizure severity was evaluated in an open field. Thirty min after behavioral measurements, animals were euthanized, and their brains processed for neurodegeneration evaluation and for neurogenesis. Treatment with the microreactors significantly increased the time taken for the onset of seizures and for the first tonic-clonic seizure, when compared to the bicuculline group that did not receive the microreactor. The administration of the microreactors also increased the time spent in total exploration and grooming. Treatment with the microreactors decreased bicuculline-induced neurodegeneration and increased neurogenesis in the dorsal and ventral hippocampus. These observations suggest that treatment with Pt-NP-based microreactors attenuates the behavioral and neurobiological consequences of epileptiform seizure activity.
Collapse
Affiliation(s)
- Roberto N Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Patrícia S Carvalhinho-Lopes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Carolina P F Carvalho
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Rafael Y S Hirata
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa 1649-028, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa 1649-028, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Adam Armada-Moreira
- Neuronal Dynamics Laboratory, Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, Trieste 265 - 34136, Italy
| | - Bárbara A Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Jéssica A Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Beatriz Soares-Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - José S de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - José Ronaldo Santos
- Departamento de Biociências, Universidade Federal de Sergipe, Rua Cláudio Batista, s/n, Cidade Nova Aracaju, Aracaju, Sergipe 49060-108, Brazil
| | - Alessandra M Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil.
| |
Collapse
|
2
|
Hadtstein F, Vrolijk M. Vitamin B-6-Induced Neuropathy: Exploring the Mechanisms of Pyridoxine Toxicity. Adv Nutr 2021; 12:1911-1929. [PMID: 33912895 PMCID: PMC8483950 DOI: 10.1093/advances/nmab033] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Vitamin B-6 in the form of pyridoxine (PN) is commonly used by the general population. The use of PN-containing supplements has gained lots of attention over the past years as they have been related to the development of peripheral neuropathy. In light of this, the number of reported cases of adverse health effects due to the use of vitamin B-6 have increased. Despite a long history of study, the pathogenic mechanisms associated with PN toxicity remain elusive. Therefore, the present review is focused on investigating the mechanistic link between PN supplementation and sensory peripheral neuropathy. Excessive PN intake induces neuropathy through the preferential injury of sensory neurons. Recent reports on hereditary neuropathy due to pyridoxal kinase (PDXK) mutations may provide some insight into the mechanism, as genetic deficiencies in PDXK lead to the development of axonal sensory neuropathy. High circulating concentrations of PN may lead to a similar condition via the inhibition of PDXK. The mechanism behind PDXK-induced neuropathy is unknown; however, there is reason to believe that it may be related to γ-aminobutyric acid (GABA) neurotransmission. Compounds that inhibit PDXK lead to convulsions and reductions in GABA biosynthesis. The absence of central nervous system-related symptoms in PDXK deficiency could be due to differences in the regulation of PDXK, where PDXK activity is preserved in the brain but not in peripheral tissues. As PN is relatively impermeable to the blood-brain barrier, PDXK inhibition would similarly be confined to the peripheries and, as a result, GABA signaling may be perturbed within peripheral tissues, such as sensory neurons. Perturbed GABA signaling within sensory neurons may lead to excitotoxicity, neurodegeneration, and ultimately, the development of peripheral neuropathy. For several reasons, we conclude that PDXK inhibition and consequently disrupted GABA neurotransmission is the most plausible mechanism of toxicity.
Collapse
Affiliation(s)
- Felix Hadtstein
- University College Venlo, Campus Venlo, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
3
|
Colín E, Ramírez-Jarquín UN, Tapia R. Early motor deficits in the phalangeal fine movements induced by chronic AMPA infusion in the rat spinal cord assessed by a novel method: Phalangeal tension recording test. Neurosci Lett 2020; 739:135411. [PMID: 33086093 DOI: 10.1016/j.neulet.2020.135411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 09/02/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022]
Abstract
Motor behavior alterations are a shared hallmark of neurodegenerative diseases affecting motor circuits, such as amyotrophic lateral sclerosis (ALS), Parkinson's, and Huntington's diseases. In patients and transgenic animal models of amyotrophic lateral sclerosis fine movements controlled by distal muscles are the first to be affected, but its study and knowledge remain poorly understood, mainly because most of the tests used for describing the motor alterations are focused on the function of proximal muscles and gross movements. In this study we demonstrate that alterations of phalangeal fine movements can be quantitatively evaluated using a novel procedure designed by us, phalangeal tension recording test, which showed high sensitivity to detect such alterations. The evaluation was carried out during the motor neuron (MN) degenerative process induced by the acute and chronic overactivation of AMPA receptors in the lumbar rat spinal cord, using previously described models. The new method allowed the quantification of significant alterations of the fine movements of the hindpaws phalanges when AMPA was infused in the lumbar segment controlling the distal muscles, but not when a more rostral spinal segment was infused, and these alterations were not detected by the rotarod or the stride tests. These changes occurred before the paralysis of the hindlimbs. Studying the early distal motor alterations before the total paralysis at late stages is essential for understanding the initial consequences of MN degeneration and therefore for designing new strategies for the control, treatment and prevention of MN diseases.
Collapse
Affiliation(s)
- Elizabeth Colín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Uri Nimrod Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
4
|
D'Alessandro R, Meldolesi J. News about non-secretory exocytosis: mechanisms, properties, and functions. J Mol Cell Biol 2020; 11:736-746. [PMID: 30605539 PMCID: PMC6821209 DOI: 10.1093/jmcb/mjy084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
The fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.
Collapse
Affiliation(s)
| | - Jacopo Meldolesi
- Scientific Institute San Raffaele and Vita Salute San Raffaele University, Via Olgettina 58, Milan, Italy
| |
Collapse
|
5
|
Ramírez-Jarquín UN, Tapia R. Excitatory and Inhibitory Neuronal Circuits in the Spinal Cord and Their Role in the Control of Motor Neuron Function and Degeneration. ACS Chem Neurosci 2018; 9:211-216. [PMID: 29350907 DOI: 10.1021/acschemneuro.7b00503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complex neuronal networks of the spinal cord coordinate a wide variety of motor functions, including walking, running, and voluntary and involuntary movements. This is accomplished by different groups of neurons, called center pattern generators, which control left-right alternation and flexor-extensor patterns. These spinal circuits, located in the ventral horns, are formed by several neuronal types, and the specific function of most of them has been identified by means of studies in vivo and in the isolated spinal cord of mice harboring genetically induced ablation of specific neuronal populations. These studies have shown that the coordinated activity of several interneuron types, mainly GABAergic and glycinergic inhibitory neurons, have a crucial role in the modulation of motor neurons activity that finally excites the corresponding muscles. A pharmacological experimental approach by administering in the spinal cord agonists and antagonists of glutamate, GABA, glycine, and acetylcholine receptors to alter their synaptic action has also produced important results, linking the deficits in the synaptic function with the resulting motor alterations. These results have also increased the knowledge of the mechanisms of motor neuron degeneration, which is characteristic of diseases such as amyotrophic lateral sclerosis, and therefore open the possibility of designing new strategies for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, México
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, México
| |
Collapse
|