1
|
Maria SA, Kumar A, Wilfred PM, Shanthi M, Peedicayil J. Inhibition of Contractility of Isolated Caprine Detrusor by the Calcium Channel Blocker Cilnidipine and Reversal by Calcium Channel Openers. CURRENT THERAPEUTIC RESEARCH 2023; 99:100717. [PMID: 37869401 PMCID: PMC10589763 DOI: 10.1016/j.curtheres.2023.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Background Cilnidipine is a fourth-generation calcium channel blocker that is clinically used to treat hypertension. It is a dihydropyridine that blocks L- and N-type calcium channels. The inhibitory effect of cilnidipine on isolated detrusor muscle contractility has not been studied. This study investigated the inhibitory effect of cilnidipine on isolated caprine (goat) detrusor muscle contractility and the reversal of the inhibition by calcium channel openers. Methods Fourteen caprine detrusor strips were made to contract using 80 mM potassium chloride before and after addition of three concentrations (20, 40, and 60 µM) of cilnidipine. Two reversal agents, the L-type calcium channel opener FPL64716, and the N-type calcium channel opener GV-58, were investigated for their ability to reverse the inhibitory effect of 40 µΜ cilnidipine on potassium chloride-induced detrusor contractility. Results Cilnidipine caused a dose-dependent and statistically significant inhibition of detrusor contractility at all concentrations of cilnidipine used (20, 40, and 60 µΜ). The inhibitory effect of 40 µM cilnidipine on detrusor contractility was significantly reversed by the addition of FPL64716 and GV-58. Conclusions Cilnidipine inhibits the contractility of the isolated detrusor by blocking L- and N-type calcium channels. Cilnidipine could be evaluated for treating clinical conditions requiring relaxation of the detrusor such as overactive bladder.
Collapse
Affiliation(s)
- Steffi A. Maria
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Aniket Kumar
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Premila M. Wilfred
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Margaret Shanthi
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Inhibition of NMDA receptors through a membrane-to-channel path. Nat Commun 2022; 13:4114. [PMID: 35840593 PMCID: PMC9287434 DOI: 10.1038/s41467-022-31817-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are transmembrane proteins that are activated by the neurotransmitter glutamate and are found at most excitatory vertebrate synapses. NMDAR channel blockers, an antagonist class of broad pharmacological and clinical significance, inhibit by occluding the NMDAR ion channel. A vast literature demonstrates that NMDAR channel blockers, including MK-801, phencyclidine, ketamine, and the Alzheimer’s disease drug memantine, can bind and unbind only when the NMDAR channel is open. Here we use electrophysiological recordings from transfected tsA201 cells and cultured neurons, NMDAR structural modeling, and custom-synthesized compounds to show that NMDAR channel blockers can enter the channel through two routes: the well-known hydrophilic path from extracellular solution to channel through the open channel gate, and also a hydrophobic path from plasma membrane to channel through a gated fenestration (“membrane-to-channel inhibition” (MCI)). Our demonstration that ligand-gated channels are subject to MCI, as are voltage-gated channels, highlights the broad expression of this inhibitory mechanism. Wilcox et al. (2022) show that NMDA receptor channel blockers, some of which are clinically important drugs, can access their binding site via 2 routes: a well-known path from the extracellular solution, and another path through the plasma membrane.
Collapse
|
3
|
Cho HY, Chen PC, Chuang TH, Yu MC, Wu SN. Activation of Voltage-Gated Na+ Current by GV-58, a Known Activator of CaV Channels. Biomedicines 2022; 10:biomedicines10030721. [PMID: 35327523 PMCID: PMC8945347 DOI: 10.3390/biomedicines10030721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
GV-58 ((2R)-2-[(6-{[(5-methylthiophen-2-yl)methyl]amino}-9-propyl-9H-purin-2-yl)amino]butan-1-ol) is recognized to be an activator of N- and P/Q-type Ca2+ currents. However, its modulatory actions on other types of ionic currents in electrically excitable cells remain largely unanswered. This study was undertaken to explore the possible modifications caused by GV-58 in ionic currents (e.g., voltage-gated Na+ current [INa], A-type K+ current [IK(A)], and erg-mediated K+ current [IK(erg)]) identified from pituitary GH3 lactotrophs. GH3 cell exposure to GV-58 enhanced the transient and late components of INa with varying potencies; consequently, the EC50 values of GV-58 required for its differential increase in peak and late INa in GH3 cells were estimated to be 8.9 and 2.6 μM, respectively. The INa in response to brief depolarizing pulse was respectively stimulated or suppressed by GV-58 or tetrodotoxin, but it failed to be altered by ω-conotoxin MVIID. Cell exposure to this compound increased the recovery of INa inactivation evoked by two-pulse protocol based on a geometrics progression; however, in its presence, there was a slowing in the inactivation rate of current decay evoked by a train of depolarizing pulses. The existence of GV-58 also resulted in an increase in the amplitude of ramp-induced resurgent and window INa. The presence of this compound inhibited IK(A) magnitude, accompanied by a shortening in inactivation time course of the current; however, it mildly decreased IK(erg). Under current-clamp conditions, GV-58 increased the frequency of spontaneous action potentials in GH3 cells. Moreover, in NSC-34 motor neuron-like cells, the presence of GV-58 not only raised INa amplitude but also reduced current inactivation. Taken together, the overall work provides a noticeable yet unidentified finding which implies that, in addition to its agonistic effect on Ca2+ currents, GV-58 may concertedly modify the amplitude and gating kinetics of INa in electrically excitable cells, hence modifiying functional activities in these cells.
Collapse
Affiliation(s)
- Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
| | - Pei-Chun Chen
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
| | - Tzu-Hsien Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City 70101, Taiwan; (H.-Y.C.); (P.-C.C.); (T.-H.C.); (M.-C.Y.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City 70101, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334; Fax: +886-6-2362780
| |
Collapse
|
4
|
Angelini M, Pezhouman A, Savalli N, Chang MG, Steccanella F, Scranton K, Calmettes G, Ottolia M, Pantazis A, Karagueuzian HS, Weiss JN, Olcese R. Suppression of ventricular arrhythmias by targeting late L-type Ca2+ current. J Gen Physiol 2021; 153:212725. [PMID: 34698805 PMCID: PMC8552156 DOI: 10.1085/jgp.202012584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Ventricular arrhythmias, a leading cause of sudden cardiac death, can be triggered by cardiomyocyte early afterdepolarizations (EADs). EADs can result from an abnormal late activation of L-type Ca2+ channels (LTCCs). Current LTCC blockers (class IV antiarrhythmics), while effective at suppressing EADs, block both early and late components of ICa,L, compromising inotropy. However, computational studies have recently demonstrated that selective reduction of late ICa,L (Ca2+ influx during late phases of the action potential) is sufficient to potently suppress EADs, suggesting that effective antiarrhythmic action can be achieved without blocking the early peak ICa,L, which is essential for proper excitation–contraction coupling. We tested this new strategy using a purine analogue, roscovitine, which reduces late ICa,L with minimal effect on peak current. Scaling our investigation from a human CaV1.2 channel clone to rabbit ventricular myocytes and rat and rabbit perfused hearts, we demonstrate that (1) roscovitine selectively reduces ICa,L noninactivating component in a human CaV1.2 channel clone and in ventricular myocytes native current, (2) the pharmacological reduction of late ICa,L suppresses EADs and EATs (early after Ca2+ transients) induced by oxidative stress and hypokalemia in isolated myocytes, largely preserving cell shortening and normal Ca2+ transient, and (3) late ICa,L reduction prevents/suppresses ventricular tachycardia/fibrillation in ex vivo rabbit and rat hearts subjected to hypokalemia and/or oxidative stress. These results support the value of an antiarrhythmic strategy based on the selective reduction of late ICa,L to suppress EAD-mediated arrhythmias. Antiarrhythmic therapies based on this idea would modify the gating properties of CaV1.2 channels rather than blocking their pore, largely preserving contractility.
Collapse
Affiliation(s)
- Marina Angelini
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Arash Pezhouman
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Nicoletta Savalli
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marvin G Chang
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Federica Steccanella
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kyle Scranton
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Guillaume Calmettes
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Michela Ottolia
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,University of California, Los Angeles Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Antonios Pantazis
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Hrayr S Karagueuzian
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - James N Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Riccardo Olcese
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,University of California, Los Angeles Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
5
|
Ojala KS, Ginebaugh SP, Wu M, Miller EW, Ortiz G, Covarrubias M, Meriney SD. A high-affinity, partial antagonist effect of 3,4-diaminopyridine mediates action potential broadening and enhancement of transmitter release at NMJs. J Biol Chem 2021; 296:100302. [PMID: 33465376 PMCID: PMC7949096 DOI: 10.1016/j.jbc.2021.100302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
3,4-Diaminopyridine (3,4-DAP) increases transmitter release from neuromuscular junctions (NMJs), and low doses of 3,4-DAP (estimated to reach ∼1 μM in serum) are the Food and Drug Administration (FDA)-approved treatment for neuromuscular weakness caused by Lambert–Eaton myasthenic syndrome. Canonically, 3,4-DAP is thought to block voltage-gated potassium (Kv) channels, resulting in prolongation of the presynaptic action potential (AP). However, recent reports have shown that low millimolar concentrations of 3,4-DAP have an off-target agonist effect on the Cav1 subtype (“L-type”) of voltage-gated calcium (Cav) channels and have speculated that this agonist effect might contribute to 3,4-DAP effects on transmitter release at the NMJ. To address 3,4-DAP’s mechanism(s) of action, we first used the patch-clamp electrophysiology to characterize the concentration-dependent block of 3,4-DAP on the predominant presynaptic Kv channel subtypes found at the mammalian NMJ (Kv3.3 and Kv3.4). We identified a previously unreported high-affinity (1–10 μM) partial antagonist effect of 3,4-DAP in addition to the well-known low-affinity (0.1–1 mM) antagonist activity. We also showed that 1.5-μM DAP had no effects on Cav1.2 or Cav2.1 current. Next, we used voltage imaging to show that 1.5- or 100-μM 3,4-DAP broadened the AP waveform in a dose-dependent manner, independent of Cav1 calcium channels. Finally, we demonstrated that 1.5- or 100-μM 3,4-DAP augmented transmitter release in a dose-dependent manner and this effect was also independent of Cav1 channels. From these results, we conclude that low micromolar concentrations of 3,4-DAP act solely on Kv channels to mediate AP broadening and enhance transmitter release at the NMJ.
Collapse
Affiliation(s)
- Kristine S Ojala
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott P Ginebaugh
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Man Wu
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Gloria Ortiz
- Departments of Chemistry and Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Rare CACNA1A mutations leading to congenital ataxia. Pflugers Arch 2020; 472:791-809. [DOI: 10.1007/s00424-020-02396-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023]
|
7
|
Tyagi S, Ribera AB, Bannister RA. Zebrafish as a Model System for the Study of Severe Ca V2.1 (α 1A) Channelopathies. Front Mol Neurosci 2020; 12:329. [PMID: 32116539 PMCID: PMC7018710 DOI: 10.3389/fnmol.2019.00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in a wide spectrum of neurological, neuromuscular, and movement disorders, such as familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a more recently discovered class of more severe disorders, which are characterized by ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous expression of CaV2.1 channels has allowed for an understanding of the consequences of CACNA1A missense mutations on channel function. In contrast, a mechanistic understanding of how specific CACNA1A mutations lead in vivo to the resultant phenotypes is lacking. In this review, we present the zebrafish as a model to both study in vivo mechanisms of CACNA1A mutations that result in synaptic and behavioral defects and to screen for effective drug therapies to combat these and other CaV2.1 channelopathies.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, United States
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roger A Bannister
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Tyagi S, Bendrick TR, Filipova D, Papadopoulos S, Bannister RA. A mutation in Ca V2.1 linked to a severe neurodevelopmental disorder impairs channel gating. J Gen Physiol 2019; 151:850-859. [PMID: 31015257 PMCID: PMC6571999 DOI: 10.1085/jgp.201812237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Ca2+ flux into axon terminals via P-/Q-type CaV2.1 channels is the trigger for neurotransmitter vesicle release at neuromuscular junctions (NMJs) and many central synapses. Recently, an arginine to proline substitution (R1673P) in the S4 voltage-sensing helix of the fourth membrane-bound repeat of CaV2.1 was linked to a severe neurological disorder characterized by generalized hypotonia, ataxia, cerebellar atrophy, and global developmental delay. The R1673P mutation was proposed to cause a gain of function in CaV2.1 leading to neuronal Ca2+ toxicity based on the ability of the mutant channel to rescue the photoreceptor response in CaV2.1-deficient Drosophila cacophony larvae. Here, we show that the corresponding mutation in rat CaV2.1 (R1624P) causes a profound loss of channel function; voltage-clamp analysis of tsA-201 cells expressing this mutant channel revealed an ∼25-mV depolarizing shift in the voltage dependence of activation. This alteration in activation implies that a significant fraction of CaV2.1 channels resident in presynaptic terminals are unlikely to open in response to an action potential, thereby increasing the probability of synaptic failure at both NMJs and central synapses. Indeed, the mutant channel supported only minimal Ca2+ flux in response to an action potential-like waveform. Application of GV-58, a compound previously shown to stabilize the open state of wild-type CaV2.1 channels, partially restored Ca2+ current by shifting mutant activation to more hyperpolarizing potentials and slowing deactivation. Consequently, GV-58 also rescued a portion of Ca2+ flux during action potential-like stimuli. Thus, our data raise the possibility that therapeutic agents that increase channel open probability or prolong action potential duration may be effective in combatting this and other severe neurodevelopmental disorders caused by loss-of-function mutations in CaV2.1.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, Aurora, CO
| | - Tyler R Bendrick
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, Aurora, CO
| | - Dilyana Filipova
- Department of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Symeon Papadopoulos
- Department of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Roger A Bannister
- Department of Medicine-Cardiology Division, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
9
|
A synthesis of new 7-amino-substituted 4-aminopyrazolo[1,5-a][1,3,5]triazines via a selective three-component triazine ring annulation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|