1
|
Babu N, Gadepalli A, Akhilesh, Sharma D, Singh AK, Chouhan D, Agrawal S, Tiwari V. TLR-4: a promising target for chemotherapy-induced peripheral neuropathy. Mol Biol Rep 2024; 51:1099. [PMID: 39466456 DOI: 10.1007/s11033-024-10038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.
Collapse
Affiliation(s)
- Nagendra Babu
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Dilip Sharma
- Amity Institute of Pharmacy, Amity University of Haryana, Gurgaon, India
| | - Anurag Kumar Singh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Somesh Agrawal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
2
|
Spicarova D, Palecek J. Anandamide-Mediated Modulation of Nociceptive Transmission at the Spinal Cord Level. Physiol Res 2024; 73:S435-S448. [PMID: 38957948 PMCID: PMC11412359 DOI: 10.33549/physiolres.935371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Three decades ago, the first endocannabinoid, anandamide (AEA), was identified, and its analgesic effect was recognized in humans and preclinical models. However, clinical trial failures pointed out the complexity of the AEA-induced analgesia. The first synapses in the superficial laminae of the spinal cord dorsal horn represent an important modulatory site in nociceptive transmission and subsequent pain perception. The glutamatergic synaptic transmission at these synapses is strongly modulated by two primary AEA-activated receptors, cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1), both highly expressed on the presynaptic side formed by the endings of primary nociceptive neurons. Activation of these receptors can have predominantly inhibitory (CB1) and excitatory (TRPV1) effects that are further modulated under pathological conditions. In addition, dual AEA-mediated signaling and action may occur in primary sensory neurons and dorsal horn synapses. AEA application causes balanced inhibition and excitation of primary afferent synaptic input on superficial dorsal horn neurons in normal conditions, whereas peripheral inflammation promotes AEA-mediated inhibition. This review focuses mainly on the modulation of synaptic transmission at the spinal cord level and signaling in primary nociceptive neurons by AEA via CB1 and TRPV1 receptors. Furthermore, the spinal analgesic effect in preclinical studies and clinical aspects of AEA-mediated analgesia are considered.
Collapse
Affiliation(s)
- D Spicarova
- Laboratory of Pain Research, Institute of Physiology CAS, Praha 4, Czech Republic.
| | | |
Collapse
|
3
|
Wu S, Xiong T, Guo S, Zhu C, He J, Wang S. An up-to-date view of paclitaxel-induced peripheral neuropathy. J Cancer Res Ther 2023; 19:1501-1508. [PMID: 38156915 DOI: 10.4103/jcrt.jcrt_1982_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/12/2023] [Indexed: 01/03/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN),referring to the damage to the peripheral nerves caused by exposure to a neurotoxic chemotherapeutic agent, is a common side effect amongst patients undergoing chemotherapy. Paclitaxel-induced peripheral neuropathy (PIPN) can lead to dose reduction or early cessation of chemotherapy, which is not conducive to patients'survival. Even after treatment is discontinued, PIPN symptoms carried a greater risk of worsening and plagued the patient's life, leading to long-term morbidity in survivors. Here, we summarize the research progress for clinical manifestations, risk factors, pathogenesis, prevention and treatment of PIPN, so as to embark on the path of preventing PIPN with prolongation of patient's life quality on a long-term basis.
Collapse
Affiliation(s)
- Shan Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Tu Xiong
- Department of Radiology, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shenglan Guo
- Department of Pharmacy, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiyi Zhu
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Jing He
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shurong Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Hsieh MC, Lai CY, Cho WL, Lin LT, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. Phosphate NIMA-Related Kinase 2-Dependent Epigenetic Pathways in Dorsal Root Ganglion Neurons Mediates Paclitaxel-Induced Neuropathic Pain. Anesth Analg 2023; 137:1289-1301. [PMID: 36753440 DOI: 10.1213/ane.0000000000006397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Long Cho
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Po-Sheng Yang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Departments of Surgery
| | - Jen-Kun Cheng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
5
|
Spicarova D, Nerandzic V, Muzik D, Pontearso M, Bhattacharyya A, Nagy I, Palecek J. Inhibition of synaptic transmission by anandamide precursor 20:4-NAPE is mediated by TRPV1 receptors under inflammatory conditions. Front Mol Neurosci 2023; 16:1188503. [PMID: 37426071 PMCID: PMC10325575 DOI: 10.3389/fnmol.2023.1188503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Transient receptor potential ion channel, vanilloid subfamily, type 1 (TRPV1) cation channel, and cannabinoid receptor 1 (CB1) are essential in the modulation of nociceptive signaling in the spinal cord dorsal horn that underlies different pathological pain states. TRPV1 and CB1 receptors share the endogenous agonist anandamide (AEA), produced from N-arachidonoylphosphatidylethanolamine (20:4-NAPE). We investigated the effect of the anandamide precursor 20:4-NAPE on synaptic activity in naive and inflammatory conditions. Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) from superficial dorsal horn neurons in rat acute spinal cord slices were used. Peripheral inflammation was induced by subcutaneous injection of carrageenan. Under naive conditions, mEPSCs frequency (0.96 ± 0.11 Hz) was significantly decreased after 20 μM 20:4-NAPE application (55.3 ± 7.4%). This 20:4-NAPE-induced inhibition was blocked by anandamide-synthesizing enzyme N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor LEI-401. In addition, the inhibition was prevented by the CB1 receptor antagonist PF 514273 (0.2 μM) but not by the TRPV1 receptor antagonist SB 366791 (10 μM). Under inflammatory conditions, 20:4-NAPE (20 μM) also exhibited a significant inhibitory effect (74.5 ± 8.9%) on the mEPSCs frequency that was prevented by the TRPV1 receptor antagonist SB 366791 but not by PF 514273 application. Our results show that 20:4-NAPE application has a significant modulatory effect on spinal cord nociceptive signaling that is mediated by both TRPV1 and CB1 presynaptic receptors, whereas peripheral inflammation changes the underlying mechanism. The switch between TRPV1 and CB1 receptor activation by the AEA precursor 20:4-NAPE during inflammation may play an important role in nociceptive processing, hence the development of pathological pain.
Collapse
Affiliation(s)
- Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimir Nerandzic
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - David Muzik
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Monica Pontearso
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anirban Bhattacharyya
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Peng Z, Yang F, Huang S, Tang Y, Wan L. Targeting Vascular endothelial growth factor A with soluble vascular endothelial growth factor receptor 1 ameliorates nerve injury-induced neuropathic pain. Mol Pain 2022; 18:17448069221094528. [PMID: 35354377 PMCID: PMC9706061 DOI: 10.1177/17448069221094528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuropathic pain is a distressing medical condition with few effective treatments. The role of Vascular endothelial growth factor A (VEGFA) in inflammation pain has been confirmed in many researches. However, the mechanism of VEGFA affects neuropathic pain remains unclear. In this study, we demonstrated that VEGFA plays an important role in spare nerve injury (SNI)-induced neuropathic pain, which is mediated by enhanced expression and colocalized of VEGFA, p-AKT and TRPV1 in SNI-induced neuropathic pain model. Soluble VEGFR1 (sFlt1) not only relieved mechanical hyperalgesia and the expression of inflammatory markers, but ameliorated the expression of VEGFA, VEGFR2, p-AKT, and TRPV1 in spinal cord. However, these effects of sFlt1 can be blocked by rpVEGFA and by 740 Y-P. Therefore, our study indication that targeting VEGFA with sFlt1 reduces neuropathic pain development via the AKT/TRPV1 pathway in SNI-induced nerve injury. This study elucidates a new therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Zhe Peng
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China,Stem Cell Translational Medicine
Center, The Second Affiliated Hospital, Guangzhou Medical
University, Guangzhou, P. R. of China
| | - Fan Yang
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China,Stem Cell Translational Medicine
Center, The Second Affiliated Hospital, Guangzhou Medical
University, Guangzhou, P. R. of China
| | - Siting Huang
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China
| | - Yang Tang
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China,Stem Cell Translational Medicine
Center, The Second Affiliated Hospital, Guangzhou Medical
University, Guangzhou, P. R. of China
| | - Li Wan
- Department of Pain Medicine, The
State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital,
Guangzhou
Medical University, Guangzhou, P.R.
China,Stem Cell Translational Medicine
Center, The Second Affiliated Hospital, Guangzhou Medical
University, Guangzhou, P. R. of China,Li Wan, Department of Pain management, The
Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang Dong Lu,
Guangzhou 510260, P.R. China.
| |
Collapse
|
7
|
Rehmanniae Radix Preparata (RRP) improves pain sensitization and suppresses PI3K/Akt/TRPV1 signaling pathway in estrogen deficient rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Chen Y, Lu R, Wang Y, Gan P. Shaoyao Gancao Decoction Ameliorates Paclitaxel-Induced Peripheral Neuropathy via Suppressing TRPV1 and TLR4 Signaling Expression in Rats. Drug Des Devel Ther 2022; 16:2067-2081. [PMID: 35795847 PMCID: PMC9252300 DOI: 10.2147/dddt.s357638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Paclitaxel-induced peripheral neuropathy (PIPN) is increasingly becoming one of the most widespread adverse effects in the treatment of cancer patients, and further precipitate neuroinflammation in the nervous system. Interestingly, Shaoyao Gancao Decoction (SGD), a traditional Chinese analgesic prescription, has emerged as a primary adjuvant to chemotherapy in relieving side effects, especially in the case of PIPN. However, the underlying mechanism of SGD functioning in PIPN remains elusive. Accordingly, the current study set out to explore the potential axis implicated in the functioning of SGD in PIPN. Methods First, network pharmacology was adopted to predict the role of the transient receptor potential vanilloid type 1 (TRPV1) protein in treating PIPN with SGD. Subsequently, the effects of SGD treatment on mechanical allodynia and thermal hyperalgesia were evaluated in rat PIPN models. Based on the bioinformatics information and current literature, paclitaxel activates toll-like receptor 4 (TLR4) induces the sensitization of TRPV1 mechanistically. Thereafter, TLR4-myeloid-differentiation response gene 88 (MyD88) signaling and TRPV1 expression patterns in dorsal root ganglias (DRGs) were measured by means of Western blotting, qPCR and immunofluorescence. Results Initial bioinformatics reared a total of 105 bioactive compounds and 1075 target genes from SGD. In addition, 40 target genes intersected with PIPN were considered as potential therapeutic genes. Based on the network analysis, SGD was found to exert its analgesic effect by reducing the expression of TRPV1. Further experimentation validated that SGD exerted an analgesic effect on thermal hyperalgesia in PIPN models, such that this protective effect was associated with the suppression of TRPV1 and TLR4-MyD88 Signaling over-expression. Conclusion Collectively, our findings indicated that SGD ameliorates PIPN by inhibiting the over-expression of TLR4-MyD88 Signaling and TRPV1, and further highlights the use of SGD as a potential alternative treatment for PIPN.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ruohuang Lu
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Correspondence: Pingping Gan, Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China, Tel +86 13874975101, Email
| |
Collapse
|
9
|
Heles M, Mrozkova P, Sulcova D, Adamek P, Spicarova D, Palecek J. Chemokine CCL2 prevents opioid-induced inhibition of nociceptive synaptic transmission in spinal cord dorsal horn. J Neuroinflammation 2021; 18:279. [PMID: 34857006 PMCID: PMC8638248 DOI: 10.1186/s12974-021-02335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/28/2021] [Indexed: 01/25/2023] Open
Abstract
Background Opioid analgesics remain widely used for pain treatment despite the related serious side effects. Some of those, such as opioid tolerance and opioid-induced hyperalgesia may be at least partially due to modulation of opioid receptors (OR) function at nociceptive synapses in the spinal cord dorsal horn. It was suggested that increased release of different chemokines under pathological conditions may play a role in this process. The goal of this study was to investigate the crosstalk between the µOR, transient receptor potential vanilloid 1 (TRPV1) receptor and C–C motif ligand 2 (CCL2) chemokine and the involvement of spinal microglia in the modulation of opioid analgesia. Methods Patch-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and dorsal root evoked currents (eEPSC) in spinal cord slices superficial dorsal horn neurons were used to evaluate the effect of µOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), CCL2, TRPV1 antagonist SB366791 and minocycline. Paw withdrawal test to thermal stimuli was combined with intrathecal (i.t.) delivery of CCL2 and DAMGO to investigate the modulation in vivo. Results Application of DAMGO induced a rapid decrease of mEPSC frequency and eEPSC amplitude, followed by a delayed increase of the eESPC amplitude, which was prevented by SB366791. Chemokine CCL2 treatment significantly diminished all the DAMGO-induced changes. Minocycline treatment prevented the CCL2 effects on the DAMGO-induced eEPSC depression, while mEPSC changes were unaffected. In behavioral experiments, i.t. injection of CCL2 completely blocked DAMGO-induced thermal hypoalgesia and intraperitoneal pre-treatment with minocycline prevented the CCL2 effect. Conclusions Our results indicate that opioid-induced inhibition of the excitatory synaptic transmission could be severely attenuated by increased CCL2 levels most likely through a microglia activation-dependent mechanism. Delayed potentiation of neurotransmission after µOR activation is dependent on TRPV1 receptors activation. Targeting CCL2 and its receptors and TRPV1 receptors in combination with opioid therapy could significantly improve the analgesic properties of opioids, especially during pathological states.
Collapse
Affiliation(s)
- Mario Heles
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Petra Mrozkova
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Dominika Sulcova
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Pavel Adamek
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, 142 20, Praha 4, Czech Republic.
| |
Collapse
|
10
|
Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22168733. [PMID: 34445439 PMCID: PMC8396047 DOI: 10.3390/ijms22168733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel is an essential drug in the chemotherapy of ovarian, non-small cell lung, breast, gastric, endometrial, and pancreatic cancers. However, it frequently causes peripheral neuropathy as a dose-limiting factor. Animal models of paclitaxel-induced peripheral neuropathy (PIPN) have been established. The mechanisms of PIPN development have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory PIPN effects. This review summarizes the basic and clinical evidence for therapeutic or prophylactic effects for PIPN. In pre-clinical research, many reports exist of neuropathy inhibitors that target oxidative stress, inflammatory response, ion channels, transient receptor potential (TRP) channels, cannabinoid receptors, and the monoamine nervous system. Alternatively, very few drugs have demonstrated PIPN efficacy in clinical trials. Thus, enhancing translational research to translate pre-clinical research into clinical research is important.
Collapse
|
11
|
Uchytilova E, Spicarova D, Palecek J. Hypersensitivity Induced by Intrathecal Bradykinin Administration Is Enhanced by N-oleoyldopamine (OLDA) and Prevented by TRPV1 Antagonist. Int J Mol Sci 2021; 22:3712. [PMID: 33918267 PMCID: PMC8038144 DOI: 10.3390/ijms22073712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal cord. Here, we investigated the involvement of spinal TRPV1 in thermal and mechanical hypersensitivity, evoked by intrathecal (i.t.) administration of BK and an endogenous agonist of TRPV1, N-oleoyldopamine (OLDA), using behavioral tests and i.t. catheter implantation, and administration of BK-induced transient thermal and mechanical hyperalgesia and mechanical allodynia. All these hypersensitive states were enhanced by co-administration of a low dose of OLDA (0.42 µg i.t.), which was ineffective only under the control conditions. Intrathecal pretreatment with TRPV1 selective antagonist SB366791 prevented hypersensitivity induced by i.t. co-administration of BK and OLDA. Our results demonstrate that both thermal and mechanical hypersensitivity evoked by co-administration of BK and OLDA is mediated by the activation of spinal TRPV1 channels.
Collapse
Affiliation(s)
- Eva Uchytilova
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
- Department of Anaesthesiology, Resuscitation and Critical Care, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic;
| |
Collapse
|
12
|
Su W, Cui H, Wu D, Yu J, Ma L, Zhang X, Huang Y, Ma C. Suppression of TLR4-MyD88 signaling pathway attenuated chronic mechanical pain in a rat model of endometriosis. J Neuroinflammation 2021; 18:65. [PMID: 33673857 PMCID: PMC7934423 DOI: 10.1186/s12974-020-02066-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a classic innate immunity pathway, Toll-like receptor 4 (TLR4) signaling has been intensively investigated for its function of pathogen recognition. The receptor is located not only on immune cells but also on sensory neurons and spinal glia. Recent studies revealed the involvement of neuronal TLR4 in different types of pain. However, the specific role of TLR4 signaling in the pain symptom of endometriosis (EM) remains obscure. METHODS The rat endometriosis model was established by transplanting uterine horn tissue into gastrocnemius. Western blotting and/or immunofluorescent staining were applied to detect high mobility group box 1 (HMGB1), TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) and MyD88 homodimerization inhibitory peptide (MIP) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on endometriosis-related pain. RESULTS Mechanical hyperalgesia was observed at the graft site, while HMGB1 was upregulated in the implanted uterine tissue, dorsal root ganglion (DRG), and spinal dorsal horn (SDH). Compared with sham group, upregulated TLR4, MyD88, and phosphorylated NF-κB-p65 were detected in the DRG and SDH in EM rats. The activation of astrocytes and microglia in the SDH was also confirmed in EM rats. Intrathecal application of LRU and MIP alleviated mechanical pain on the graft site of EM rats, with decreased phosphorylation of NF-κB-p65 in the DRG and reduced activation of glia in the SDH. CONCLUSIONS HMGB1-TLR4-MyD88 signaling pathway in the DRG and SDH may involve in endometriosis-related hyperpathia. Blockade of TLR4 and MyD88 might serve as a potential treatment for pain in endometriosis.
Collapse
Affiliation(s)
- Wenliang Su
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Cui
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Danning Wu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiawen Yu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lulu Ma
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuhua Zhang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Gabapentin and Duloxetine Prevent Oxaliplatin- and Paclitaxel-Induced Peripheral Neuropathy by Inhibiting Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Phosphorylation in Spinal Cords of Mice. Pharmaceuticals (Basel) 2020; 14:ph14010030. [PMID: 33396362 PMCID: PMC7824557 DOI: 10.3390/ph14010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a common factor in limiting therapy which can result in therapy cessation or dose reduction. Gabapentin, a calcium channel inhibitor, and duloxetine, a serotonin noradrenaline reuptake inhibitor, are used to treat a variety of pain conditions such as chronic low back pain, postherpetic neuralgia, and diabetic neuropathy. It has been reported that administration of gabapentin suppressed oxaliplatin- and paclitaxel-induced mechanical hyperalgesia in rats. Moreover, duloxetine has been shown to suppress oxaliplatin-induced cold allodynia in rats. However, the mechanisms by which these drugs prevent oxaliplatin- and paclitaxel-induced neuropathy remain unknown. Behavioral assays were performed using cold plate and the von Frey test. The expression levels of proteins were examined using western blot analysis. In this study, we investigated the mechanisms by which gabapentin and duloxetine prevent oxaliplatin- and paclitaxel-induced neuropathy in mice. We found that gabapentin and duloxetine prevented the development of oxaliplatin- and paclitaxel-induced cold and mechanical allodynia. In addition, our results revealed that gabapentin and duloxetine suppressed extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation in the spinal cord of mice. Moreover, PD0325901 prevented the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 activation in the spinal cord of mice. In summary, our findings suggest that gabapentin, duloxetine, and PD0325901 prevent the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 phosphorylation in mice. Therefore, inhibiting ERK1/2 phosphorylation could be an effective preventive strategy against oxaliplatin- and paclitaxel-induced neuropathy.
Collapse
|
14
|
Rapid quantitative detection of capsaicinoids in serum based on an electrochemical immunosensor with a dual-signal amplification strategy. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Huang J, Chen D, Yan F, Wu S, Kang S, Xing W, Zeng W, Xie J. JTC-801 alleviates mechanical allodynia in paclitaxel-induced neuropathic pain through the PI3K/Akt pathway. Eur J Pharmacol 2020; 883:173306. [PMID: 32603693 DOI: 10.1016/j.ejphar.2020.173306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
Abstract
Chemotherapy-induced peripheral neuropathy is a serious adverse effect of chemotherapeutic agents such as paclitaxel. JTC-801, a nociceptin/orphanin FQ opioid peptide (NOP) receptor antagonist, has been reported to attenuate neuropathic pain in several pain models. However, the therapeutic significance and function of JTC-801 in chemotherapy-induced peripheral neuropathy remain unclear. In this study, we determined the effect of JTC-801 on neuropathic pain induced by paclitaxel, and we explored the potential mechanism in the dorsal root ganglion (DRG). The behavioral test showed that single or multiple systemic administrations of JTC-801 significantly alleviated mechanical allodynia in paclitaxel-treated rats. Using Western blot analysis and immunohistochemistry, we found that paclitaxel increased the expression of phosphatidylinositol 3-kinase (PI3K) and phospho-Akt (p-Akt) in the DRG. Double immunofluorescence staining indicated that p-Akt was expressed in neurons in the DRG. Multiple injections of JTC-801 significantly inhibited the activation of Akt and decreased the expression of inflammatory cytokines. The data suggest that JTC-801 alleviates mechanical allodynia associated with paclitaxel-induced neuropathic pain via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jingxiu Huang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Fang Yan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Shaoyong Wu
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Shiyang Kang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China.
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
16
|
Kalynovska N, Diallo M, Sotakova-Kasparova D, Palecek J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J Cell Mol Med 2020; 24:7949-7958. [PMID: 32485058 PMCID: PMC7348151 DOI: 10.1111/jcmm.15427] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/15/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Paclitaxel-induced peripheral neuropathy (PIPN) is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous system. Antihypertensive drug losartan, an angiotensin II receptor type 1 (AT1R) blocker, was shown to have anti-inflammatory and neuroprotective effects in disease models, predominantly via activation of peroxisome proliferator-activated receptor gamma (PPARγ). Here, the effect of systemic losartan treatment (100 mg/kg/d) on mechanical allodynia and neuroinflammation was evaluated in rat PIPN model. The expression of pro-inflammatory markers protein and mRNA levels in dorsal root ganglia (DRGs) and spinal cord dorsal horn (SCDH) were measured with Western blot, ELISA and qPCR 10 and 21 days after PIPN induction. Losartan treatment attenuated mechanical allodynia significantly. Paclitaxel induced overexpression of C-C motif chemokine ligand 2 (CCL2), tumour necrosis alpha (TNFα) and interleukin-6 (IL-6) in DRGs, where the presence of macrophages was demonstrated. Neuroinflammatory changes in DRGs were accompanied with glial activation and pro-nociceptive modulators production in SCDH. Losartan significantly attenuated paclitaxel-induced neuroinflammatory changes and induced expression of pro-resolving markers (Arginase 1 and IL-10) indicating a possible shift in macrophage polarization. Considering the safety profile of losartan, acting also as partial PPARγ agonist, it may be considered as a novel treatment strategy for PIPN patients.
Collapse
Affiliation(s)
- Nataliia Kalynovska
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Mickael Diallo
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Dita Sotakova-Kasparova
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Palecek
- Department of Functional Morphology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Zhang M, Jin F, Zhu Y, Qi F. Peripheral FGFR1 Regulates Myofascial Pain in Rats via the PI3K/AKT Pathway. Neuroscience 2020; 436:1-10. [PMID: 32278061 DOI: 10.1016/j.neuroscience.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Myofascial pain syndrome (MPS) is a type of skeletal pain identified by myofascial trigger points (MTrPs). The formation of MTrPs is linked to muscle damage. The fibroblast growth factor receptor (FGFR1) has been found to cause pain sensitivity while repairing tissue damage. The aim of the current study was to explore the mechanism of FGFR1 in MTrPs. We used a RayBio human phosphorylation array kit to measure p-FGFR1 levels in human control subjects and patients with MTrPs. P-FGFR1 was upregulated in the patients with MTrPs. Then a rat model of MPS was established by a blunt strike on the left gastrocnemius muscles (GM) and eccentric-exercise for 8 weeks with 4 weeks of recovery. After establishing the MPS model, the morphology of the GM changed, and the differently augmented sizes of round fibers (contracture knots) in the transverse section and fusiform shapes in the longitudinal section were clearly seen in the rats with myofascial pain. The expression of p-FGFR1 was upregulated on the peripheral nerves and dorsal root ganglion neurons in the MTrPs group. The spinal Fos protein expression was increased in the MTrPs group. Additionally, the mechanical pain threshold was reduced, and the expression of FGF2, p-FGFR1, PI3K-p110γ, and p-AKT increased in the MTrPs group. PD173074 increased the mechanical pain threshold of the MTrPs group, and inhibited the expression of p-FGFR1, PI3K-p110γ, and p-AKT. Moreover, LY294002 increased the mechanical pain threshold of the MTrPs group. These findings suggest that FGFR1 may regulate myofascial pain in rats through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Mingyang Zhang
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Ji'nan, Shandong 250012, China; Department of Anesthesiology, Tengzhou Central People's Hospital, 181 Xingtan Road, Tengzhou, Shandong 277500, China
| | - Feihong Jin
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Ji'nan, Shandong 250012, China
| | - Yuchang Zhu
- Department of Anesthesiology, Tai'an City Central Hospital, 29 Longtan Road, Tai'an, Shandong 271000, China
| | - Feng Qi
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Ji'nan, Shandong 250012, China.
| |
Collapse
|
18
|
Manjavachi MN, Passos GF, Trevisan G, Araújo SB, Pontes JP, Fernandes ES, Costa R, Calixto JB. Spinal blockage of CXCL1 and its receptor CXCR2 inhibits paclitaxel-induced peripheral neuropathy in mice. Neuropharmacology 2019; 151:136-143. [PMID: 30991054 DOI: 10.1016/j.neuropharm.2019.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
Painful peripheral neuropathy is the most dose-limiting side effect of paclitaxel (PTX), a widely used anti-cancer drug to treat solid tumours. The understanding of the mechanisms involved in this side effect is crucial to the development of new therapeutic approaches. CXCL1 chemokine and its receptor CXCR2 have been pointed as promising targets to treat chronic pain. Herein, we sought to evaluate the possible involvement of CXCL1 and CXCR2 in the pathogenesis of PTX-induced neuropathic pain in mice. PTX treatment led to increased levels of CXCL1 in both dorsal root ganglion and spinal cord samples. Systemic treatment with the anti-CXCL1 antibody (10 μg/kg, i.v.) or the selective CXCR2 antagonist (SB225002, 3 mg/kg, i.p.) had minor effect on PTX-induced mechanical hypersensitivity. On the other hand, the intrathecal (i.t.) treatment with anti-CXCL1 (1 ng/site) or SB225002 (10 μg/site) consistently inhibited the nociceptive responses of PTX-treated mice. Similar results were obtained by inhibiting the PI3Kγ enzyme a downstream pathway of CXCL1/CXCR2 signalling with either the selective AS605240 (5 μg/site, i.t.) or the non-selective wortmannin PI3K inhibitor (0.4 μg/site, i.t.). Overall, the data indicates that the up-regulation of CXCL1 is important for the development and maintenance of PTX-induced neuropathic pain in mice. Therefore, the spinal blockage of CXCL1/CXCR2 signalling might be a new innovative therapeutic approach to treat this clinical side effect of PTX.
Collapse
Affiliation(s)
- Marianne N Manjavachi
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Giselle F Passos
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriela Trevisan
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Suzana B Araújo
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Robson Costa
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joao B Calixto
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centro de Inovação e Ensaios Pre-Clínicos - CIEnP, Florianópolis, SC, Brazil.
| |
Collapse
|