1
|
Innate immune tolerance against adolescent intermittent alcohol exposure-induced behavioral abnormalities in adult mice. Int Immunopharmacol 2022; 113:109250. [DOI: 10.1016/j.intimp.2022.109250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
|
2
|
Basilico B, Ferrucci L, Khan A, Di Angelantonio S, Ragozzino D, Reverte I. What microglia depletion approaches tell us about the role of microglia on synaptic function and behavior. Front Cell Neurosci 2022; 16:1022431. [PMID: 36406752 PMCID: PMC9673171 DOI: 10.3389/fncel.2022.1022431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia are dynamic cells, constantly surveying their surroundings and interacting with neurons and synapses. Indeed, a wealth of knowledge has revealed a critical role of microglia in modulating synaptic transmission and plasticity in the developing brain. In the past decade, novel pharmacological and genetic strategies have allowed the acute removal of microglia, opening the possibility to explore and understand the role of microglia also in the adult brain. In this review, we summarized and discussed the contribution of microglia depletion strategies to the current understanding of the role of microglia on synaptic function, learning and memory, and behavior both in physiological and pathological conditions. We first described the available microglia depletion methods highlighting their main strengths and weaknesses. We then reviewed the impact of microglia depletion on structural and functional synaptic plasticity. Next, we focused our analysis on the effects of microglia depletion on behavior, including general locomotor activity, sensory perception, motor function, sociability, learning and memory both in healthy animals and animal models of disease. Finally, we integrated the findings from the reviewed studies and discussed the emerging roles of microglia on the maintenance of synaptic function, learning, memory strength and forgetfulness, and the implications of microglia depletion in models of brain disease.
Collapse
Affiliation(s)
| | - Laura Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Azka Khan
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Davide Ragozzino
- Laboratory Affiliated to Institute Pasteur Italia – Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- *Correspondence: Davide Ragozzino,
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- Ingrid Reverte,
| |
Collapse
|
3
|
Lu X, Liu H, Cai Z, Hu Z, Ye M, Gu Y, Wang Y, Wang D, Lu Q, Shen Z, Shen X, Huang C. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation. Brain Behav Immun 2022; 106:147-160. [PMID: 35995236 DOI: 10.1016/j.bbi.2022.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 10/31/2022] Open
Abstract
Depressed mice have lower numbers of microglia in the dentate gyrus (DG). Reversal of this decline by a single low dose of lipopolysaccharide (LPS) may have antidepressant effects, but there is little information on the molecular mechanisms underlying this effect. It is known that impairment of brain-derived neurotrophic factor (BDNF) signaling is involved in the development of depression. Here, we used a combination of neutralizing antibodies, mutant mice, and pharmacological approaches to test the role of BDNF-tyrosine kinase receptor B (TrkB) signaling in the DG in the effect of microglial stimulation. Our results suggest that inhibition of BDNF signaling by infusion of an anti-BDNF antibody, the BDNF receptor antagonist K252a, or knock-in of the mutant BDNF Val68Met allele abolished the antidepressant effect of LPS in chronically stressed mice. Increased BDNF synthesis in DG, mediated by extracellular signal-regulated kinase1/2 (ERK1/2) signaling but not protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling, was essential for the antidepressant effect of microglial stimulation. These results suggest that increased BDNF synthesis through activation of ERK1/2 caused by a single LPS injection and subsequent TrkB signaling are required for the antidepressant effect of hippocampal microglial stimulation.
Collapse
Affiliation(s)
- Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hospital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224006, Jiangsu, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhichao Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yue Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Zhongxia Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xinhua Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
4
|
Lu J, Huang C, Lu Q, Lu X. Therapeutic and Prophylactic Effects of Amphotericin B Liposomes on Chronic Social Defeat Stress-Induced Behavioral Abnormalities in Mice. Front Pharmacol 2022; 13:918177. [PMID: 35910388 PMCID: PMC9335357 DOI: 10.3389/fphar.2022.918177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, innate immune system stimulants, such as lipopolysaccharide (LPS) and macrophage-colony stimulating factor (M-CSF), were reported to prevent and reverse chronic stress-induced behavioral abnormalities, suggesting that innate immune stimulation could be a potential strategy for the treatment and prevention of mental disorders. Amphotericin B liposome is a clinically available antifungal medication that can stimulate macrophages and microglia. We hypothesize that amphotericin B liposome may be used to prevent and reverse behavioral abnormalities triggered by chronic stress. As expected, our results showed that a single injection of amphotericin B liposome (1 mg/kg) immediately after stress cessation reversed the decrease in time spent in the interaction zone in the social interaction test (SIT) and the increase in immobility time in the tail suspension test (TST) and forced swimming test (FST) in mice caused by chronic social defeat stress (CSDS). In addition, a single injection of amphotericin B liposomes (1 mg/kg) 1 day before stress exposure was found to prevent the CSDS-induced decrease in time spent in the interaction zone in the SIT and the increase in immobility time in the TST and FST in mice. Pretreatment with minocycline to inhibit the innate immune response was able to abolish the reversal effect of post-stress injection of amphotericin B liposomes on CSDS-induced behavioral abnormalities and the prophylactic effect of pre-stress injection of amphotericin B liposomes on CSDS-induced behavioral abnormalities. These results demonstrate that amphotericin B liposomes have both therapeutic and prophylactic effects on chronic stress-induced behavioral abnormalities in mice by mobilizing the innate immune response.
Collapse
Affiliation(s)
- Jiashu Lu
- Department of Pharmacy, The People’s Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
- *Correspondence: Jiashu Lu,
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
5
|
Cheiran Pereira G, Piton E, Moreira Dos Santos B, Ramanzini LG, Muniz Camargo LF, Menezes da Silva R, Bochi GV. Microglia and HPA axis in depression: An overview of participation and relationship. World J Biol Psychiatry 2022; 23:165-182. [PMID: 34100334 DOI: 10.1080/15622975.2021.1939154] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives: This narrative review article provides an overview on the involvement of microglia and the hypothalamic-pituitary-adrenal (HPA) axis in the pathophysiology of depression, as well investigates the mutual relationship between these two entities: how microglial activation can contribute to the dysregulation of the HPA axis, and vice versa.Methods: Relevant studies and reviews already published in the Pubmed electronic database involving the themes microglia, HPA axis and depression were used to meet the objectives.Results: Exposition to stressful events is considered a common factor in the mechanisms proposed to explain the depressive disorder. Stress can activate microglial cells, important immune components of the central nervous system (CNS). Moreover, another system involved in the physiological response to stressors is the hypothalamic-pituitary-adrenal (HPA) axis, the main stress response system responsible for the production of the glucocorticoid hormone (GC). Also, mediators released after microglial activation can stimulate the HPA axis, inducing production of GC. Likewise, high levels of GCs are also capable of activating microglia, generating a vicious cycle.Conclusion: Immune and neuroendocrine systems seems to work in a coordinated manner and that their dysregulation may be involved in the pathophysiology of depression since neuroinflammation and hypercortisolism are often observed in this disorder.
Collapse
Affiliation(s)
- Gabriele Cheiran Pereira
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Elisa Piton
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Brenda Moreira Dos Santos
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Guilherme Ramanzini
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis Fernando Muniz Camargo
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Rossano Menezes da Silva
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
6
|
Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway. J Ginseng Res 2022; 46:62-70. [PMID: 35035240 PMCID: PMC8753429 DOI: 10.1016/j.jgr.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. Methods We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. Results We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). Conclusion This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.
Collapse
|
7
|
Gu Y, Ye T, Tan P, Tong L, Ji J, Gu Y, Shen Z, Shen X, Lu X, Huang C. Tolerance-inducing effect and properties of innate immune stimulation on chronic stress-induced behavioral abnormalities in mice. Brain Behav Immun 2021; 91:451-471. [PMID: 33157258 DOI: 10.1016/j.bbi.2020.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Over-activation of the innate immune system constitutes a risk factor for the development of nervous system disorders but may reduce the severity of these disorders by inducing tolerance effect. Here, we studied the tolerance-inducing effect and properties of innate immune stimulation on chronic social defeat stress (CSDS)-induced behavioral abnormalities in mice. A single injection of the innate immune enhancer lipopolysaccharide (LPS) one day before stress exposure prevented CSDS-induced impairment in social interaction and increased immobility time in the tail suspension test and forced swimming test. This effect was observed at varying doses (100, 500, and 1000 μg/kg) and peaked at 100 μg/kg. A single LPS injection (100 μg/kg) either one or five but not ten days before stress exposure prevented CSDS-induced behavioral abnormalities. A second LPS injection ten days after the first LPS injection, or a 2 × or 4 × LPS injections ten days before stress exposure also induced tolerance against stress-induced behavioral abnormalities. Our results furthermore showed that a single LPS injection one day before stress exposure skewed the neuroinflammatory response in the hippocampus and prefrontal cortex of CSDS-exposed mice toward an anti-inflammatory phenotype. Inhibiting the central innate immune response by pretreatment with minocycline or PLX3397 abrogated the tolerance-inducing effect of LPS preconditioning on CSDS-induced behavioral abnormalities and neuroinflammatory responses in the brain. These results provide evidence for a prophylactic effect of innate immune stimulation on stress-induced behavioral abnormalities via changes in microglial activation, which may help develop novel strategies for the prevention of stress-induced psychological disorders.
Collapse
Affiliation(s)
- Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Pingping Tan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jianlin Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yiming Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhongxia Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital Huzhou, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xinhua Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital Huzhou, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
8
|
Xu X, Piao HN, Aosai F, Zeng XY, Cheng JH, Cui YX, Li J, Ma J, Piao HR, Jin X, Piao LX. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol 2020; 177:5224-5245. [PMID: 32964428 DOI: 10.1111/bph.15261] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Arctigenin, a major bioactive component of Fructus arctii, has been reported to have antidepressant-like effects. However, the mechanisms underlying these effects are still unclear. Neuroinflammation can be caused by excessive production of proinflammatory cytokines in microglia via high-mobility group box 1 (HMGB1)/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways, leading to depression. In this study, we have investigated the antidepressant mechanism of arctigenin by conducting in vitro and in vivo studies. EXPERIMENTAL APPROACH The effects of chronic unpredictable mild stress (CUMS) on wild-type (WT) and TLR4-/- mice were examined. Antidepressant-like effects of arctigenin were tested using the CUMS-induced model of depression in WT mice. The effects of arctigenin were assessed on the HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways in the prefrontal cortex (PFC) of mouse brain and HMGB1- or TNF-α-stimulated primary cultured microglia. The interaction between HMGB1 and TLR4 or TNF-α and TNFR1 with or without arctigenin was examined by localized surface plasmon resonance (LSPR) and co-immunoprecipitation assays. KEY RESULTS The immobility times in the tail suspension test (TST) and forced swimming test (FST) were reduced in TLR4-/- mice, compared with WT mice. Arctigenin exhibited antidepressant-like effects. Arctigenin also inhibited microglia activation and inflammatory responses in the PFC of mouse brain. Arctigenin inhibited HMGB1 and TLR4 or TNF-α and TNFR1 interactions, and suppressed both HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways. CONCLUSIONS AND IMPLICATIONS Arctigenin has antidepressant-like effects by attenuating excessive microglial activation and neuroinflammation through the HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways. This suggests that arctigenin has potential as a new drug candidate suitable for clinical trials to treat depression.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Fumie Aosai
- Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, Matsumoto, Japan
| | - Xiao-Yu Zeng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Jia-Hui Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Yue-Xian Cui
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jing Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hu-Ri Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
9
|
Chronic minocycline treatment exerts antidepressant effect, inhibits neuroinflammation, and modulates gut microbiota in mice. Psychopharmacology (Berl) 2020; 237:3201-3213. [PMID: 32671421 DOI: 10.1007/s00213-020-05604-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
RATIONAL Minocycline is a second-generation, semi-synthetic tetracycline, and has broad spectrum-antibacterial activity. Interestingly, many studies have demonstrated that minocycline is beneficial for depression, which may be due to its effects on neuroinflammation modulation. Recently, gut microbiota imbalance has been found in depression patient and animal models. OBJECTIVES Based on the fact of minocycline usually acting as an antibiotic and the relationship between depression, gut microbiota, and neuroinflammation, we designed this study to detect the effects of chronic minocycline treatment on antidepression, neuroinflammation, and gut microbiota modulation. RESULTS Our results showed that minocycline treatment for 4 weeks, not acute treatment, exerted antidepressant effect in mice exposed to unpredictable chronic mild stress (CUMS). Further results suggested that chronic minocycline treatment inhibited neuroinflammation of hippocampus and altered species abundance and metabolites of gut microbiota. Meantime, we found that chronic minocycline treatment ameliorated intestinal barrier disruption and reduced the bacteriological indexes, such as diamine oxidase, C-reaction protein, and endotoxin in peripheral blood of CUMS mice. CONCLUSIONS To sum up, our findings confirm that chronic minocycline treatment exerts the antidepressant effect, inhibits neuroinflammation, and modulates gut microbiota. All of these imply that the antidepressant mechanism of chronic minocycline treatment is maybe due to the combined action of neuroinflammation and gut microbiota modulation, which need further prospective studies.
Collapse
|
10
|
Xu X, Zeng XY, Cui YX, Li YB, Cheng JH, Zhao XD, Xu GH, Ma J, Piao HN, Jin X, Piao LX. Antidepressive Effect of Arctiin by Attenuating Neuroinflammation via HMGB1/TLR4- and TNF-α/TNFR1-Mediated NF-κB Activation. ACS Chem Neurosci 2020; 11:2214-2230. [PMID: 32609480 DOI: 10.1021/acschemneuro.0c00120] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a potential factor in the pathophysiology of depression. A traditional Chinese herbal medicine, arctiin, and its aglycone, arctigenin, are the major bioactive components in Fructus arctii and exhibit neuroprotective and anti-inflammatory activities. Arctigenin has been reported to have antidepressant-like effects. However, the antidepressant-like effects of arctiin, its precursor, remain unknown. In this study, we investigated the antidepressant-like effects of arctiin and its underlying mechanisms by in vivo and in vitro experiments in mice. Our results showed that arctiin significantly attenuated sucrose consumption and increased the immobility time in tail suspension and forced swimming tests. Arctiin decreased neuronal damage in the prefrontal cortex (PFC) of the brain. Arctiin also attenuated the levels of three inflammatory mediators, indoleamine 2,3-dioxygenase, 5-hydroxytryptamine, and dopamine, that were elevated in the PFC or serum of chronic unpredictable mild stress (CUMS)-exposed mice. Arctiin reduced excessive activation of microglia and neuroinflammation by reducing high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)- and tumor necrosis factor-α (TNF-α)/TNF receptor 1 (TNFR1)-mediated nuclear factor-kappa B (NF-κB) activation in the PFC of CUMS-exposed mice and HMGB1- or TNF-α-stimulated primary cultured microglia. These findings demonstrate that arctiin ameliorates depression by inhibiting the activation of microglia and inflammation via the HMGB1/TLR4 and TNF-α/TNFR1 signaling pathways.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiao-Yu Zeng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Yue-Xian Cui
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Ying-Biao Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Jia-Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| |
Collapse
|
11
|
Abstract
Microglia are the major immune cells in the central nervous system and play a key role in the normal function of the brain. Microglia exhibit functional diversity, and they control the inflammation in central nervous system through releasing inflammatory cytokine, clearing apoptotic cells via phagocytosis, regulating synaptic plasticity and the formation of neural network by synapse pruning. Recent studies have strongly indicated that the microglial dysfunction is associated with a variety of neuropsychiatric diseases such as depression, which have been termed as "microgliopathy". The emergency of advanced technologies and tools has enabled us to comprehensively understand the role of microglia in physiology and pathology, and growing studies have targetted microglia to explore the treatment of neuropsychiatric diseases. Here, we describe the key progress of microglia research, and review the recent developments in the understanding of the role of microglia in physiology and etiology of depression.
Collapse
|
12
|
Cai Z, Ye T, Xu X, Gao M, Zhang Y, Wang D, Gu Y, Zhu H, Tong L, Lu J, Chen Z, Huang C. Antidepressive properties of microglial stimulation in a mouse model of depression induced by chronic unpredictable stress. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109931. [PMID: 32201112 DOI: 10.1016/j.pnpbp.2020.109931] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022]
Abstract
The decrease of microglia in the hippocampus is a novel mechanism for depression onset. Reversal of this decrease can ameliorate stress-induced depression-like behaviors in rodents. However, the property of this therapeutic strategy remains unclear. We addressed this issue by designing a series of behavioral experiments. Results showed that a single lipopolysaccharide (LPS) injection at the dose of 75 and 100 μg/kg, but not at 30 or 50 μg/kg, produced obvious antidepressant effects in chronic unpredictable stress (CUS) mice at 5 h after the drug administration. In the time-dependent experiment, a single LPS injection (100 μg/kg) ameliorated the CUS-induced depression-like behaviors in mice at 5 and 8 h, but not at 3 h, after the drug administration. The antidepressant effect of a single LPS injection persisted at least 10 days and disappeared at 14 days after the drug administration. 14 days after the first injection, a second LPS injection (100 μg/kg) still produced antidepressant effects in chronically-stressed mice who re-displayed depression-like behaviors at 5 h after the drug administration. The antidepressant effect of LPS appears to be dependent on microglia, as at 5 h after LPS administration (100 μg/kg), the CUS-induced decrease in microglial numbers and Iba-1 mRNA levels in the hippocampus was reversed markedly, and inhibition of microglia by minocycline (40 mg/kg) or PLX33297 (290 mg/kg) prevented the antidepressant effect of LPS in CUS mice. These results indicate that a single LPS injection displays rapid and sustained antidepressant effects in chronically stressed mice likely through stimulating hippocampal microglia.
Collapse
Affiliation(s)
- Zixuan Cai
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Ting Ye
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Xing Xu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Minhui Gao
- Department of Pharmacology, Nantong Health College of Jiangsu Province, #288 Zhenxing East Road, Nantong 226010, Jiangsu Province, China
| | - Yaru Zhang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Dan Wang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Yiming Gu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Haojie Zhu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Lijuan Tong
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Jiashu Lu
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, #210 Yingchun Road, Taizhou 225300, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Chao Huang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
13
|
Ye T, Wang D, Cai Z, Tong L, Chen Z, Lu J, Lu X, Huang C, Yuan X. Antidepressive properties of macrophage-colony stimulating factor in a mouse model of depression induced by chronic unpredictable stress. Neuropharmacology 2020; 172:108132. [PMID: 32407925 DOI: 10.1016/j.neuropharm.2020.108132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have reported that macrophage-colony stimulating factor (M-CSF), a drug that is used to treat hematological system disease, can ameliorate chronic stress-induced depressive-like behaviors in mice. This indicates that M-CSF could be developed into a novel antidepressant. Here, we investigated the antidepressive properties of M-CSF, aiming to explore its potential values in depression treatment. Our results showed that a single M-CSF injection at the dose of 75 and 100 μg/kg, but not at 25 or 50 μg/kg, ameliorated chronic unpredictable stress (CUS)-induced depressive-like behaviors in mice at 5 h after the drug treatment. In a time-dependent experiment, a single M-CSF injection (100 μg/kg) was found to ameliorate the CUS-induced depressive-like behaviors in mice at 5 and 8 h, but not at 3 h, after the drug treatment. The antidepressant effect of the single M-CSF injection (100 μg/kg) in chronically-stressed mice persisted at least 10 days and disappeared at 14 days after the drug treatment. Moreover, 14 days after the first injection, a second M-CSF injection (100 μg/kg) still produced antidepressant effects at 5 h after the drug treatment in chronically-stressed mice who re-displayed depressive-like phenotypes. The antidepressant effect of M-CSF appeared to be mediated by the activation of the hippocampal microglia, as pre-inhibition of microglia by minocycline (40 mg/kg) or PLX3397 (290 mg/kg) pretreatment prevented the antidepressant effect of M-CSF in CUS mice. These results demonstrate that M-CSF produces rapid and sustained antidepressant effects via the activation of the microglia in the hippocampus in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jiashu Lu
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, #210 Yingchun Road, Taizhou, 225300, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Xiaomei Yuan
- Heart Failure Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
14
|
Hu P, Wang D, Zhang Y, Cai Z, Ye T, Tong L, Xu X, Lu J, Liu F, Lu X, Huang C. Apoptosis-triggered decline in hippocampal microglia mediates adolescent intermittent alcohol exposure-induced depression-like behaviors in mice. Neuropharmacology 2020; 170:108054. [PMID: 32217088 DOI: 10.1016/j.neuropharm.2020.108054] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Depression-alcohol addiction comorbidity is a common clinical phenomenon. Alcohol exposure in adolescence has been shown to induce depression-like behaviors in rodents. However, the mechanism of action for this type of depression remains unclear. Previous studies have reported that several different types of stress, such as chronic unpredictable stress and early social isolation, trigger depression-like symptoms in mice by inducing hippocampal microglial decline, which is mediated by the initial activation of the microglial cells. Since alcohol also activates microglia, we evaluated the dynamic changes in hippocampal microglia in mice receiving adolescent intermittent alcohol exposure (AIE). Our results showed that 14 days of AIE, followed by 21 days period of no treatment, induced behavioral abnormalities as well as a significant loss and dystrophy of hippocampal microglia in mice. We found that this AIE-induced decline in hippocampal microglia was mediated by both microglial activation and apoptosis, as (i) 1 day of alcohol exposure induced a distinct activation of hippocampal microglia followed by their apoptosis, and (ii) blocking the initial activation of hippocampal microglia by pretreatment with minocycline suppressed the AIE-induced apoptosis and loss of hippocampal microglia as well as the AIE-induced depression-like symptoms. Lipopolysaccharide (LPS), a classical activator of microglia, ameliorated the AIE-induced depression-like symptoms by reversing the decline in the hippocampal microglia. These results reveal a possible mechanism for AIE-induced depression and demonstrate that the restoration of hippocampal microglial homeostasis may be a therapeutic strategy for depression induced by alcohol intake and withdrawal.
Collapse
Affiliation(s)
- Peili Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Yaru Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xing Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Jiashu Lu
- Department of Pharmacology, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, #210 Yingchun Road, Taizhou, Jiangsu, 226001, China
| | - Fengguo Liu
- Department of Neurology, Danyang People's Hospital, #2 Xinmin Western Road, Danyang, 212300, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|