1
|
Liu JC, Lei SY, Zhang DH, He QY, Sun YY, Zhu HJ, Qu Y, Zhou SY, Yang Y, Li C, Guo ZN. The pleiotropic effects of statins: a comprehensive exploration of neurovascular unit modulation and blood-brain barrier protection. Mol Med 2024; 30:256. [PMID: 39707228 DOI: 10.1186/s10020-024-01025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The blood-brain barrier (BBB) is the most central component of the neurovascular unit (NVU) and is crucial for the maintenance of the internal environment of the central nervous system and the regulation of homeostasis. A multitude of neuroprotective agents have been developed to exert neuroprotective effects and improve the prognosis of patients with ischemic stroke. These agents have been designed to maintain integrity and promote BBB repair. Statins are widely used as pharmacological agents for the treatment and prevention of ischemic stroke, making them a cornerstone in the pharmacological armamentarium for this condition. The primary mechanism of action is the reduction of serum cholesterol through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which results in a decrease in low-density lipoprotein cholesterol (LDL-C) and an increase in cholesterol clearance. Nevertheless, basic and clinical research has indicated that statins may exert additional pleiotropic effects beyond LDL-C reduction. Previous studies on ischemic stroke have demonstrated that statins can enhance neurological function, reduce inflammation, and promote angiogenic and synaptic processes following ischemic stroke. The BBB has been increasingly recognized for its role in the development and progression of ischemic stroke. Statins have also been found to play a potential BBB protective role by affecting members of the NVU. This review aimed to provide a comprehensive theoretical basis for the clinical application of statins by systematically detailing how statins influence the BBB, particularly focusing on the regulation of the function of each member of the NVU.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China
| | - Chao Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China.
- Neuroscience Research Center, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| |
Collapse
|
2
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Yang M, Zhao Y, Li X, Li H, Cheng F, Liu Y, Jia Z, He Y, Lin J, Guan L. Conditioned medium of human menstrual blood-derived endometrial stem cells protects against cell inflammation and apoptosis of Npc1 KO N2a cells. Metab Brain Dis 2023; 38:2301-2313. [PMID: 37261632 DOI: 10.1007/s11011-023-01243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Niemann-Pick disease type C1 (NPC1) is a hereditary neurodegenerative disorder caused by a mutation in the NPC1 gene. This gene encodes a transmembrane protein found in lysosomes. This disease characterized by hepatosplenomegaly, neurological impairments and premature death. Recent preclinical studies have shown promising results in using mesenchymal stem cells (MSCs) to alleviate the symptoms of NPC1. One type of MSCs, known as human menstrual blood-derived endometrial stem cells (MenSCs), has attracted attention due to its accessibility, abundant supply, and strong proliferation and regeneration capabilities. However, it remains uncertain whether the conditioned medium of MenSCs (MenSCs-CM) can effectively relieve the symptoms of NPC1. To investigate this further, we employed the CRISPR-Cas9 technique to successfully create a Npc1 gene knockout N2a cell line (Npc1KO N2a). Sanger sequencing confirmed the occurrence of Npc1 gene mutation in these cells, while western blotting revealed a lack of NPC1 protein expression. Filipin staining provided visual evidence of unesterified cholesterol accumulation in Npc1KO N2a cells. Moreover, Npc1KO N2a cells exhibited significantly decreased viability, increased inflammation, and heightened cell apoptosis. Notably, our study demonstrated that the viability of Npc1KO N2a cells was most significantly improved after being cultured by 36 h-collected MenSCs-CM for 0.5 days. Additionally, MenSCs-CM exhibited the ability to effectively reduce inflammation, counteract cell apoptosis, and ameliorate unesterified cholesterol accumulation in Npc1KO N2a cells. This groundbreaking finding establishes, for the first time, the protective effect of MenSCs-CM on N2a cells with Npc1 gene deletion. These findings suggest that the potential of MenSCs-CM as a beneficial therapeutic approach for NPC1 and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanchun Zhao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fangfang Cheng
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang, Henan, 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
4
|
Mining of Potential Biomarkers and Pathway in Valvular Atrial Fibrillation (VAF) via Systematic Screening of Gene Coexpression Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3645402. [PMID: 36226239 PMCID: PMC9550484 DOI: 10.1155/2022/3645402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Purpose. We apply the bioinformatics method to excavate the potential genes and therapeutic targets associated with valvular atrial fibrillation (VAF). Methods. The downloaded gene expression files from the gene expression omnibus (GEO) included patients with primary severe mitral regurgitation complicated with sinus or atrial fibrillation rhythm. Subsequently, the differential gene expression in left and right atrium was analyzed by R software. Additionally, weighted correlation network analysis (WGCNA), principal component analysis (PCA), and linear model for microarray data (LIMMA) algorithm were used to determine hub genes. Then, Metascape database, DAVID database, and STRING database were used to annotate and visualize the gene ontology (GO) analysis, KEGG pathway enrichment analysis, and PPI network analysis of differentially expressed genes (DEGs). Finally, the TFs and miRNAs were predicted by using online tools, such as PASTAA and miRDB. Results. 20,484 differentially expressed genes related to atrial fibrillation were obtained through the analysis of left and right atrial tissue samples of GSE115574 gene chip, and 1,009 were with statistical significance, including 45 upregulated genes and 964 downregulated genes. And the hub genes implicated in AF of NPC2, ODC1, SNAP29, LAPTM5, ST8SIA5, and FCGR3B were screened. Finally, the main regulators of targeted candidate biomarkers and microRNAs, EIF5A2, HIF1A, ZIC2, ELF1, and STAT2, were found in this study. Conclusion. These hub genes, NPC2, ODC1, SNAP29, LAPTM5, ST8SIA5, and FCGR3B, are important for the development of VAF, and their enrichment pathways and TFs elucidate the involved molecular mechanisms and assist in the validation of drug targets.
Collapse
|
5
|
Lei T, Zhang X, Chen P, Li Q, Du H. Proteomic profile of human dental follicle stem cells and apical papilla stem cells. J Proteomics 2020; 231:103928. [PMID: 32800794 DOI: 10.1016/j.jprot.2020.103928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
Dental stem cells have great potential in clinical practice as an adult mesenchymal stem cell, such as dental follicle and the apical papilla, have strong proliferation and differentiation characteristics. The developmental relevance and discrimination of them in the niche is not clear, which limits their application scenarios. The aim of this study was to investigate the intrinsical differences in cellular contents of DFSCs and SCAP by Tandem mass tag (TMT) labeling quantitative proteomics. Cell lysates were labeled and tracked by the combined use of TMT and LC-MS/MS. A total of 1622 proteins were detected, of which 421 were different and 12 were significantly up-regulated and 4 were significantly down-regulated. The results of proteomics support the application of stem cells in the treatment of neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, Parkinson's disease and so on. The difference is related to cell proliferation and protection of neurons from inflammation and autophagy damage. Highly expressed proteins predict the special ability of DFSCs to stably proliferate and differentiate through CD13, MARCKS, and PAST1. The strong immune stability of SCAP is supported by NPC1.This study expands our understanding on the molecular mechanisms of tooth development and regeneration, and provide basic support for dental stem cells in clinical applications such as neurological and immune diseases.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 112 Lab, Beijing 100083, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 112 Lab, Beijing 100083, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Qihong Li
- Department of Stomatology, the Fifth Medical Centre, Chinese PLA General Hospital, Former 307th Hospital of the PLA, Dongda Street, Beijing 100071, China.
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 112 Lab, Beijing 100083, China.
| |
Collapse
|