1
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
2
|
Löscher W, White HS. Animal Models of Drug-Resistant Epilepsy as Tools for Deciphering the Cellular and Molecular Mechanisms of Pharmacoresistance and Discovering More Effective Treatments. Cells 2023; 12:cells12091233. [PMID: 37174633 PMCID: PMC10177106 DOI: 10.3390/cells12091233] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In the last 30 years, over 20 new anti-seizure medicines (ASMs) have been introduced into the market for the treatment of epilepsy using well-established preclinical seizure and epilepsy models. Despite this success, approximately 20-30% of patients with epilepsy have drug-resistant epilepsy (DRE). The current approach to ASM discovery for DRE relies largely on drug testing in various preclinical model systems that display varying degrees of ASM drug resistance. In recent years, attempts have been made to include more etiologically relevant models in the preclinical evaluation of a new investigational drug. Such models have played an important role in advancing a greater understanding of DRE at a mechanistic level and for hypothesis testing as new experimental evidence becomes available. This review provides a critical discussion of the pharmacology of models of adult focal epilepsy that allow for the selection of ASM responders and nonresponders and those models that display a pharmacoresistance per se to two or more ASMs. In addition, the pharmacology of animal models of major genetic epilepsies is discussed. Importantly, in addition to testing chemical compounds, several of the models discussed here can be used to evaluate other potential therapies for epilepsy such as neurostimulation, dietary treatments, gene therapy, or cell transplantation. This review also discusses the challenges associated with identifying novel therapies in the absence of a greater understanding of the mechanisms that contribute to DRE. Finally, this review discusses the lessons learned from the profile of the recently approved highly efficacious and broad-spectrum ASM cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Jiang J, Yu Y. Pharmacologically targeting transient receptor potential channels for seizures and epilepsy: Emerging preclinical evidence of druggability. Pharmacol Ther 2023; 244:108384. [PMID: 36933703 PMCID: PMC10124570 DOI: 10.1016/j.pharmthera.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
As one of the most prevalent and disabling brain disorders, epilepsy is characterized by spontaneous seizures that result from aberrant, excessive hyperactivity of a group of highly synchronized brain neurons. Remarkable progress in epilepsy research and treatment over the first two decades of this century led to a dramatical expansion in the third-generation antiseizure drugs (ASDs). However, there are still over 30% of patients suffering from seizures resistant to the current medications, and the broad unbearable adversative effects of ASDs significantly impair the quality of life in about 40% of individuals affected by the disease. Prevention of epilepsy in those who are at high risks is another major unmet medical need, given that up to 40% of epilepsy patients are believed to have acquired causes. Therefore, it is important to identify novel drug targets that can facilitate the discovery and development of new therapies engaging unprecedented mechanisms of action that might overcome these significant limitations. Also over the last two decades, calcium signaling has been increasingly recognized as a key contributory factor in epileptogenesis of many aspects. The intracellular calcium homeostasis involves a variety of calcium-permeable cation channels, the most important of which perhaps are the transient receptor potential (TRP) ion channels. This review focuses on recent exciting advances in understanding of TRP channels in preclinical models of seizure disorders. We also provide emerging insights into the molecular and cellular mechanisms of TRP channels-engaged epileptogenesis that might lead to new antiseizure therapies, epilepsy prevention and modification, and even a cure.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
4
|
Yu Y, Li W, Jiang J. TRPC channels as emerging targets for seizure disorders. Trends Pharmacol Sci 2022; 43:787-798. [PMID: 35840362 PMCID: PMC9378536 DOI: 10.1016/j.tips.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is characterized by seizures of diverse types that affect about 1-2% of the population worldwide. Current antiseizure medications are unsatisfactory, as they merely provide symptomatic relief, are ineffective in about one-third of patients, and cause unbearable adverse effects. Transient receptor potential canonical (TRPC) channels are a group of nonselective cation channels involved in many physiological functions. In this review, we provide an overview of recent preclinical studies using both genetic and pharmacological strategies that reveal these receptor-operated calcium-permeable channels may also play fundamental roles in many aspects of epileptic seizures. We also propose that TRPC channels represent appealing targets for epilepsy treatment, with a goal of helping to advance the discovery and development of new antiseizure and/or antiepileptogenic therapies.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
5
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
6
|
Nagib MM, Zhang S, Yasmen N, Li L, Hou R, Yu Y, Boda VK, Wu Z, Li W, Jiang J. Inhibition of TRPC3 channels by a novel pyrazole compound confers antiseizure effects. Epilepsia 2022; 63:1003-1015. [PMID: 35179226 PMCID: PMC9007831 DOI: 10.1111/epi.17190] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/02/2023]
Abstract
OBJECTIVE As a key member of the transient receptor potential (TRP) superfamily, TRP canonical 3 (TRPC3) regulates calcium homeostasis and contributes to neuronal excitability. Ablation of TRPC3 lessens pilocarpine-induced seizures in mice, suggesting that TRPC3 inhibition might represent a novel antiseizure strategy. Among current TRPC3 inhibitors, pyrazole 3 (Pyr3) is most selective and potent. However, Pyr3 only provides limited benefits in pilocarpine-treated mice, likely due to its low metabolic stability and potential toxicity. We recently reported a modified pyrazole compound 20 (or JW-65) that has improved stability and safety. The objective of this study was to explore the effects of TRPC3 inhibition by our current lead compound JW-65 on seizure susceptibility. METHODS We first examined the pharmacokinetic properties including plasma half-life and brain to plasma ratio of JW-65 after systemic administration in mice. We then investigated the effects of TRPC3 inhibition by JW-65 on behavioral and electrographic seizures in mice treated with pilocarpine. To ensure our findings are not model specific, we assessed the susceptibility of JW-65-treated mice to pentylenetetrazole (PTZ)-induced seizures with phenytoin as a comparator. RESULTS JW-65 showed adequate half-life and brain penetration in mice, justifying its use for central nervous system conditions. Systemic treatment with JW-65 before pilocarpine injection in mice markedly impaired the initiation of behavioral seizures. This antiseizure action was recapitulated when JW-65 was administered after pilocarpine-induced behavioral seizures were well established and was confirmed by time-locked electroencephalographic monitoring and synchronized video. Moreover, JW-65-treated mice showed substantially decreased susceptibility to PTZ-induced seizures in a dose-dependent manner. SIGNIFICANCE These results suggest that pharmacological inhibition of the TRPC3 channels by our novel compound JW-65 might represent a new antiseizure strategy engaging a previously undrugged mechanism of action. Hence, this proof-of-concept study establishes TRPC3 as a novel feasible therapeutic target for the treatment of some forms of epilepsy.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ruida Hou
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Vijay K Boda
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wei Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Whitlock JH, Soelter TM, Williams AS, Hardigan AA, Lasseigne BN. Liquid biopsies in epilepsy: biomarkers for etiology, diagnosis, prognosis, and therapeutics. Hum Cell 2022; 35:15-22. [PMID: 34694568 PMCID: PMC8732818 DOI: 10.1007/s13577-021-00624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system, impacting nearly 50 million people around the world. Heterogeneous in nature, epilepsy presents in children and adults alike. Currently, surgery is one treatment approach that can completely cure epilepsy. However, not all individuals are eligible for surgical procedures or have successful outcomes. In addition to surgical approaches, antiepileptic drugs (AEDs) have also allowed individuals with epilepsy to achieve freedom from seizures. Others have found treatment through nonpharmacologic approaches such as vagus nerve stimulation, or responsive neurostimulation. Difficulty in accessing samples of human brain tissue along with advances in sequencing technology have driven researchers to investigate sampling liquid biopsies in blood, serum, plasma, and cerebrospinal fluid within the context of epilepsy. Liquid biopsies provide minimal or non-invasive sample collection approaches and can be assayed relatively easily across multiple time points, unlike tissue-based sampling. Various efforts have investigated circulating nucleic acids from these samples including microRNAs, cell-free DNA, transfer RNAs, and long non-coding RNAs. Here, we review nucleic acid-based liquid biopsies in epilepsy to improve understanding of etiology, diagnosis, prediction, and therapeutic monitoring.
Collapse
Affiliation(s)
- Jordan H Whitlock
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tabea M Soelter
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avery S Williams
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew A Hardigan
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N Lasseigne
- Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Hamavar R, Asl BM. Seizure onset detection based on detection of changes in brain activity quantified by evolutionary game theory model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 199:105899. [PMID: 33360360 DOI: 10.1016/j.cmpb.2020.105899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is one of the most common diseases of the nervous system, affecting about 1% of the world's population. The unpredictable nature of the epilepsy seizures deprives the patients and those around them of living a normal life. Therefore, the development of new methods that can help these patients will increase the life quality of these people and can bring a lot of economic savings in the health sector. METHODS In this study, we introduced a new framework for seizure onset detection. Our framework provides a new modelling for brain activity using evolutionary game theory and Kalman filter. If the patterns in the electroencephalogram (EEG) signal violate the predicted patterns by the proposed model, using a novel detection algorithm that has been also introduced in this paper, it can be determined whether the observed violation is the result of the onset of an epileptic seizure or not. RESULTS The proposed approach was able to detect the onset of all the seizures in CHB-MIT dataset with an average delay of -0.8 s and a false alarm of 0.39 per hour. Also, our proposed approach is about 20 times faster compared to recent studies. CONCLUSIONS The experimental results of applying the proposed framework on the CHB-MIT dataset show that our framework not only performed well with respect to the sensitivity, delay, and false alarm metrics but also performed much better in terms of run time compared to recent studies. This appropriate run time, along with other suitable metrics, makes it possible to use this framework in many cases where processing power or energy is limited and to think about creating new and inexpensive solutions for the treatment and care of people diagnosed with epilepsy.
Collapse
Affiliation(s)
- Ramtin Hamavar
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Babak Mohammadzadeh Asl
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Löscher W, Klein P. The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs 2021; 35:935-963. [PMID: 34145528 PMCID: PMC8408078 DOI: 10.1007/s40263-021-00827-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological disorders. Antiseizure medications (ASMs), previously referred to as anticonvulsant or antiepileptic drugs, are the mainstay of symptomatic epilepsy treatment. Epilepsy is a multifaceted complex disease and so is its treatment. Currently, about 30 ASMs are available for epilepsy therapy. Furthermore, several ASMs are approved therapies in nonepileptic conditions, including neuropathic pain, migraine, bipolar disorder, and generalized anxiety disorder. Because of this wide spectrum of therapeutic activity, ASMs are among the most often prescribed centrally active agents. Most ASMs act by modulation of voltage-gated ion channels; by enhancement of gamma aminobutyric acid-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. Because of differences in their mechanisms of action, most ASMs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures; however, this is not achievable in about one-third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASMs that are more effective in patients with continued drug-resistant seizures. Furthermore, therapies that are specific to epilepsy etiology are being developed. Currently, ~ 30 new compounds with diverse antiseizure mechanisms are in the preclinical or clinical drug development pipeline. Moreover, therapies with potential antiepileptogenic or disease-modifying effects are in preclinical and clinical development. Overall, the world of epilepsy therapy development is changing and evolving in many exciting and important ways. However, while new epilepsy therapies are developed, knowledge of the pharmacokinetics, antiseizure efficacy and spectrum, and adverse effect profiles of currently used ASMs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- grid.429576.bMid-Atlantic Epilepsy and Sleep Center, Bethesda, MD USA
| |
Collapse
|
10
|
Debs A, Gedela S, Patel AD. Continued Gap in Seizure Frequency Documentation. JOURNAL OF PEDIATRIC EPILEPSY 2020. [DOI: 10.1055/s-0040-1715461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractProper documentation during neurology clinic visits is essential. Medical providers that document precise and standardized findings aid other providers, nurses, and research personnel. The American Academy of Neurology (AAN) created standardized quality measures in order to improve delivery of care for patients with epilepsy, providers, and systems. In this article, we reviewed a total of 777 charts in order to find documentation on seizure frequency from the most recent clinical visit. Data was collected from electronic healthcare records. During initial chart review, the following information was noted: age, gender, seizure type(s), etiology type(s), provider (neurologist or epileptologist), whether seizure frequency was noted, and the reason for no documentation. The data review represented a sample of the epilepsy population seen at our institution. Of the 734 individuals, 475 patients had seizure frequency documented (65%). Two hundred and fifty-nine (259) people (35%) were missing seizure frequency data. For those individuals, we determined the reasoning behind why this data was not present in the chart note. Of those 259 charts, there were 65 (25%) charts missing seizure frequency, 161 (62%) charts that were vague, and 33 (13%) charts where seizure frequency could not be determined. Based on our findings, the documentation of seizure frequency is a gap in care.
Collapse
Affiliation(s)
- Andrea Debs
- Department of Neurology and Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Sravya Gedela
- Department of Neurology and Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Anup D. Patel
- Department of Neurology and Pediatrics, Ohio State University Medical Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| |
Collapse
|
11
|
Löscher W, Klein P. The feast and famine: Epilepsy treatment and treatment gaps in early 21st century. Neuropharmacology 2020; 170:108055. [PMID: 32199986 DOI: 10.1016/j.neuropharm.2020.108055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
12
|
Traynelis SF, Dlugos D, Henshall D, Mefford HC, Rogawski MA, Staley KJ, Dacks PA, Whittemore V, Poduri A. Epilepsy Benchmarks Area III: Improved Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects. Epilepsy Curr 2020; 20:23S-30S. [PMID: 31965829 PMCID: PMC7031805 DOI: 10.1177/1535759719895279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The goals of Epilepsy Benchmark Area III involve identifying areas that are ripe for progress in terms of controlling seizures and patient symptoms in light of the most recent advances in both basic and clinical research. These goals were developed with an emphasis on potential new therapeutic strategies that will reduce seizure burden and improve quality of life for patients with epilepsy. In particular, we continue to support the proposition that a better understanding of how seizures are initiated, propagated, and terminated in different forms of epilepsy is central to enabling new approaches to treatment, including pharmacological as well as surgical and device-oriented approaches. The stubbornly high rate of treatment-resistant epilepsy—one-third of patients—emphasizes the urgent need for new therapeutic strategies, including pharmacological, procedural, device linked, and genetic. The development of new approaches can be advanced by better animal models of seizure initiation that represent salient features of human epilepsy, as well as humanized models such as induced pluripotent stem cells and organoids. The rapid advances in genetic understanding of a subset of epilepsies provide a path to new and direct patient-relevant cellular and animal models, which could catalyze conceptualization of new treatments that may be broadly applicable across multiple forms of epilepsies beyond those arising from variation in a single gene. Remarkable advances in machine learning algorithms and miniaturization of devices and increases in computational power together provide an enhanced opportunity to detect and mitigate seizures in real time via devices that interrupt electrical activity directly or administer effective pharmaceuticals. Each of these potential areas for advance will be discussed in turn.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dennis Dlugos
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael A Rogawski
- Departments of Neurology and Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Kevin J Staley
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|