1
|
Jia Q, Tan H, Li T, Duan X. Role of adenosine in the pathophysiology and treatment of attention deficit hyperactivity disorder. Purinergic Signal 2024:10.1007/s11302-024-10059-2. [PMID: 39480600 DOI: 10.1007/s11302-024-10059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental condition characterized by persistent inattention, hyperactivity, and impulsivity. Although its precise etiology remains unclear, current evidence suggests that dysregulation within the neurotransmitter system plays a key role in the pathogenesis of ADHD. Adenosine, an endogenous nucleoside widely distributed throughout the body, modulates various physiological processes, including neurotransmitter release, sleep regulation, and cognitive functions through its receptors. This review critically examines the role of the adenosine system in ADHD, focusing on the links between adenosine receptor function and ADHD-related symptoms. Additionally, it explores how adenosine interacts with dopamine and other neurotransmitter pathways, shedding light on its involvement in ADHD pathophysiology. This review aims to provide insights into the potential therapeutic implications of targeting the adenosine system for ADHD management.
Collapse
Affiliation(s)
- Qingxia Jia
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Hongwan Tan
- People's Hospital of Tongliang District, Chongqing, 402560, Tongliang, China
| | - Tingsong Li
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xiaoling Duan
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| |
Collapse
|
2
|
Perrotte G, Moreira MMG, de Vargas Junior A, Teixeira Filho A, Castaldelli-Maia JM. Effects of Caffeine on Main Symptoms in Children with ADHD: A Systematic Review and Meta-Analysis of Randomized Trials. Brain Sci 2023; 13:1304. [PMID: 37759905 PMCID: PMC10526204 DOI: 10.3390/brainsci13091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Attention-deficit/hyperactivity disorder (ADHD) is typically treated with stimulant medications, which may lead to several adverse effects. Recent animal studies have shown that caffeine can improve the symptoms of ADHD. This systematic review and meta-analysis sought to evaluate the effect of caffeine on ADHD symptoms in children. (2) Methods: PubMed, Embase, and Cochrane databases were searched for randomized controlled trials comparing caffeine with placebo in children, comparing overall symptoms of ADHD, inattention, hyperactivity, and impulsivity. (3) Results: We included seven RCTs in the systematic review for qualitative assessment, with 104 patients aged 5 to 15 years. Four of these studies (n = 76) were included in the meta-analysis. After qualitative analysis, four studies indicated no improvement in any of the ADHD symptoms compared with placebo. One study showed improvement in ADHD symptoms based on 1 of 5 scales applied. One study indicated significant improvement in general symptoms, inattention, and hyperactivity. One study indicated improvement in sustained attention but a worsening of impulsivity. In contrast, when using a quantitative analysis of the general symptoms of ADHD, the data showed no significant difference when comparing placebo with caffeine (standardized mean difference -0.12; 95% CI -0.44 to 0.20; p = 0.45; I2 = 0%). (4) Conclusion: overall, the totality of the evidence suggests no significant benefit of caffeine over placebo in the treatment of children with ADHD.
Collapse
Affiliation(s)
- Giuliana Perrotte
- Department of Neuroscience, Medical School, FMABC University Center, Santo André 09060-870, Brazil;
| | | | - Amauri de Vargas Junior
- Department of Medicine, School of Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 82590-300, Brazil;
| | - Alvaro Teixeira Filho
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA;
| | - João Mauricio Castaldelli-Maia
- Department of Neuroscience, Medical School, FMABC University Center, Santo André 09060-870, Brazil;
- Department of Psychiatry, Medical School, University of São Paulo, São Paulo 05403-903, Brazil
| |
Collapse
|
3
|
Marques DM, Almeida AS, Oliveira CBA, Machado ACL, Lara MVS, Porciúncula LO. Delayed Outgrowth in Response to the BDNF and Altered Synaptic Proteins in Neurons From SHR Rats. Neurochem Res 2023:10.1007/s11064-023-03917-9. [PMID: 36995561 DOI: 10.1007/s11064-023-03917-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity symptoms. Neuroimaging studies have revealed a delayed cortical and subcortical development pattern in children diagnosed with ADHD. This study followed up on the development in vitro of frontal cortical neurons from Spontaneously hypertensive rats (SHR), an ADHD rat model, and Wistar-Kyoto rats (WKY), control strain, over their time in culture, and in response to BDNF treatment at two different days in vitro (DIV). These neurons were also evaluated for synaptic proteins, brain-derived neurotrophic factor (BDNF), and related protein levels. Frontal cortical neurons from the ADHD rat model exhibited shorter dendrites and less dendritic branching over their time in culture. While pro- and mature BDNF levels were not altered, the cAMP-response element-binding (CREB) decreased at 1 DIV and SNAP-25 decreased at 5 DIV. Different from control cultures, exogenous BDNF promoted less dendritic branching in neurons from the ADHD model. Our data revealed that neurons from the ADHD model showed decreased levels of an important transcription factor at the beginning of their development, and their delayed outgrowth and maturation had consequences in the levels of SNAP-25 and may be associated with less response to BDNF. These findings provide an alternative tool for studies on synaptic dysfunctions in ADHD. They may also offer a valuable tool for investigating drug effects and new treatment opportunities.
Collapse
Affiliation(s)
- Daniela M Marques
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Amanda S Almeida
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Catiane B A Oliveira
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Ana Carolina L Machado
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Marcus Vinícius S Lara
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Lisiane O Porciúncula
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil.
| |
Collapse
|
4
|
Zhang D, Eguchi N, Okazaki S, Sora I, Hishimoto A. Telencephalon Organoids Derived from an Individual with ADHD Show Altered Neurodevelopment of Early Cortical Layer Structure. Stem Cell Rev Rep 2023:10.1007/s12015-023-10519-z. [PMID: 36872412 PMCID: PMC10366301 DOI: 10.1007/s12015-023-10519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in early childhood and can persist to adulthood. It can affect many aspects of a patient's daily life, so it is necessary to explore the mechanism and pathological alterations. For this purpose, we applied induced pluripotent stem cell (iPSC)-derived telencephalon organoids to recapitulate the alterations occurring in the early cerebral cortex of ADHD patients. We found that telencephalon organoids of ADHD showed less growth of layer structures than control-derived organoids. On day 35 of differentiation, the thinner cortex layer structures of ADHD-derived organoids contained more neurons than those of control-derived organoids. Furthermore, ADHD-derived organoids showed a decrease in cell proliferation during development from day 35 to 56. On day 56 of differentiation, there was a significant difference in the proportion of symmetric and asymmetric cell division between the ADHD and control groups. In addition, we observed increased cell apoptosis in ADHD during early development. These results show alterations in the characteristics of neural stem cells and the formation of layer structures, which might indicate key roles in the pathogenesis of ADHD. Our organoids exhibit the cortical developmental alterations observed in neuroimaging studies, providing an experimental foundation for understanding the pathological mechanisms of ADHD.
Collapse
Affiliation(s)
- Danmeng Zhang
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriomi Eguchi
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
Almeida AS, Nunes F, Marques DM, Machado ACL, Oliveira CB, Porciuncula LO. Sex differences in maternal odor preferences and brain levels of GAP-43 and sonic hedgehog proteins in infant SHR and Wistar Kyoto rats. Behav Brain Res 2023; 436:114102. [DOI: 10.1016/j.bbr.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
|
6
|
Noori T, Sahebgharani M, Sureda A, Sobarzo-Sanchez E, Fakhri S, Shirooie S. Targeting PI3K by Natural Products: A Potential Therapeutic Strategy for Attention-deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1564-1578. [PMID: 35043762 PMCID: PMC9881086 DOI: 10.2174/1570159x20666220119125040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood psychiatric disorder. In general, a child with ADHD has significant attention problems with difficulty concentrating on a subject and is generally associated with impulsivity and excessive activity. The etiology of ADHD in most patients is unknown, although it is considered to be a multifactorial disease caused by a combination of genetics and environmental factors. Diverse factors, such as the existence of mental, nutritional, or general health problems during childhood, as well as smoking and alcohol drinking during pregnancy, are related to an increased risk of ADHD. Behavioral and psychological characteristics of ADHD include anxiety, mood disorders, behavioral disorders, language disorders, and learning disabilities. These symptoms affect individuals, families, and communities, negatively altering educational and social results, strained parent-child relationships, and increased use of health services. ADHD may be associated with deficits in inhibitory frontostriatal noradrenergic neurons on lower striatal structures that are predominantly driven by dopaminergic neurons. Phosphoinositide 3-kinases (PI3Ks) are a conserved family of lipid kinases that control a number of cellular processes, including cell proliferation, differentiation, migration, insulin metabolism, and apoptosis. Since PI3K plays an important role in controlling the noradrenergic neuron, it opens up new insights into research on ADHD and other developmental brain diseases. This review presents evidence for the potential usefulness of PI3K and its modulators as a potential treatment for ADHD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mousa Sahebgharani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de MallorcaE-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
7
|
Vázquez JC, Martin de la Torre O, López Palomé J, Redolar-Ripoll D. Effects of Caffeine Consumption on Attention Deficit Hyperactivity Disorder (ADHD) Treatment: A Systematic Review of Animal Studies. Nutrients 2022; 14:nu14040739. [PMID: 35215389 PMCID: PMC8875377 DOI: 10.3390/nu14040739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by a persistent pattern of inattention and/or hyperactivity-impulsivity. ADHD impairments arise from irregularities primarily in dopamine (DA) and norepinephrine (NE) circuits within the prefrontal cortex. Due to ADHD medication’s controversial side effects and high rates of diagnosis, alternative/complementary pharmacological therapeutic approaches for ADHD are needed. Although the number of publications that study the potential effects of caffeine consumption on ADHD treatment have been accumulating over the last years, and caffeine has recently been used in ADHD research in the context of animal models, an updated evidence-based systematic review on the effects of caffeine on ADHD-like symptoms in animal studies is lacking. To provide insight and value at the preclinical level, a systematic review based on PRISMA guidelines was performed for all publications available up to 1 September 2021. Caffeine treatment increases attention and improves learning, memory, and olfactory discrimination without altering blood pressure and body weight. These results are supported at the neuronal/molecular level. Nonetheless, the role of caffeine in modulating ADHD-like symptoms of hyperactivity and impulsivity is contradictory, raising discrepancies that require further clarification. Our results strengthen the hypothesis that the cognitive effects of caffeine found in animal models could be translated to human ADHD, particularly during adolescence.
Collapse
Affiliation(s)
- Javier C. Vázquez
- Faculty of Psychology and Educational Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; (O.M.d.l.T.); (D.R.-R.)
- Neuromodulation Unit, Institut Brain 360, 08022 Barcelona, Spain
- Correspondence:
| | - Ona Martin de la Torre
- Faculty of Psychology and Educational Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; (O.M.d.l.T.); (D.R.-R.)
- Neuromodulation Unit, Institut Brain 360, 08022 Barcelona, Spain
| | - Júdit López Palomé
- Consorci d’Educació de Barcelona, Centre de Màxima Complexitat Elisenda de Montcada, Generalitat de Catalunya, 08010 Barcelona, Spain;
| | - Diego Redolar-Ripoll
- Faculty of Psychology and Educational Sciences, Cognitive NeuroLab, Universitat Oberta de Catalunya, 08018 Barcelona, Spain; (O.M.d.l.T.); (D.R.-R.)
- Neuromodulation Unit, Institut Brain 360, 08022 Barcelona, Spain
| |
Collapse
|
8
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Chen ZH, Han YY, Shang YJ, Zhuang SY, Huang JN, Wu BY, Li CH. Cordycepin Ameliorates Synaptic Dysfunction and Dendrite Morphology Damage of Hippocampal CA1 via A1R in Cerebral Ischemia. Front Cell Neurosci 2022; 15:783478. [PMID: 35002628 PMCID: PMC8740211 DOI: 10.3389/fncel.2021.783478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Cordycepin exerted significant neuroprotective effects and protected against cerebral ischemic damage. Learning and memory impairments after cerebral ischemia are common. Cordycepin has been proved to improve memory impairments induced by cerebral ischemia, but its underlying mechanism has not been revealed yet. The plasticity of synaptic structure and function is considered to be one of the neural mechanisms of learning and memory. Therefore, we investigated how cordycepin benefits dendritic morphology and synaptic transmission after cerebral ischemia and traced the related molecular mechanisms. The effects of cordycepin on the protection against ischemia were studied by using global cerebral ischemia (GCI) and oxygen-glucose deprivation (OGD) models. Behavioral long-term potentiation (LTP) and synaptic transmission were observed with electrophysiological recordings. The dendritic morphology and histological assessment were assessed by Golgi staining and hematoxylin-eosin (HE) staining, respectively. Adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR) were evaluated with western blotting. The results showed that cordycepin reduced the GCI-induced dendritic morphology scathing and behavioral LTP impairment in the hippocampal CA1 area, improved the learning and memory abilities, and up-regulated the level of A1R but not A2AR. In the in vitro experiments, cordycepin pre-perfusion could alleviate the hippocampal slices injury and synaptic transmission cripple induced by OGD, accompanied by increased adenosine content. In addition, the protective effect of cordycepin on OGD-induced synaptic transmission damage was eliminated by using an A1R antagonist instead of A2AR. These findings revealed that cordycepin alleviated synaptic dysfunction and dendritic injury in ischemic models by modulating A1R, which provides new insights into the pharmacological mechanisms of cordycepin for ameliorating cognitive impairment induced by cerebral ischemia.
Collapse
Affiliation(s)
- Zhao-Hui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China.,Panyu Central Hospital, Guangzhou, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Si-Yi Zhuang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jun-Ni Huang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Bao-Yan Wu
- Ministry of Education (MOE) Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
10
|
Zhang S, Duangjan C, Tencomnao T, Liu J, Lin J, Wink M. Neuroprotective effects of oolong tea extracts against glutamate-induced toxicity in cultured neuronal cells and β-amyloid-induced toxicity in Caenorhabditis elegans. Food Funct 2021; 11:8179-8192. [PMID: 32966472 DOI: 10.1039/d0fo01072c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oolong tea, a traditional Chinese tea, is especially popular in south China and has a variety of health benefits. However, studies about its neuroprotective and neuroregenerative properties are still limited. This study explored the neuroprotective and neurite outgrowth-promoting properties of oolong tea in cultured neuronal cells (Neuro-2a and HT22) and Caenorhabditis elegans models. Ultra performance liquid chromatography was applied to identify the main natural bioactive compounds in oolong tea. Using Neuro-2a and HT22 cells, we found that oolong tea extracts had a protective effect against glutamate-induced cell death. The extracts reduced intracellular reactive oxygen species accumulation and induced gene expression of cellular antioxidant enzymes such as GPx, GSTs and SODs. These extracts also increased the average neurite length, and GAP-43 and Ten-4 mRNA expression in Neuro-2a cells. Moreover, they had protective effects against Aβ-induced paralysis, chemotaxis deficiency and α-synuclein aggregation in C. elegans. This is the first study showing the neuroregenerative and neuroprotective potential of the oolong tea extracts against glutamate/Aβ/α-synuclein-induced toxicity in vitro and in vivo. Our study may support oolong tea extracts as potential candidates for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shaoxiong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China and Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand and Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 329, Heidelberg University, Heidelberg, 69120, Germany.
| | - Chatrawee Duangjan
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand and Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 329, Heidelberg University, Heidelberg, 69120, Germany. and Leonard Davis School of Gerontology, University of Southern California, Los Angeles, 90089, USA
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jianghong Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China and Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 329, Heidelberg University, Heidelberg, 69120, Germany.
| |
Collapse
|
11
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
12
|
Caffeine Consumption plus Physical Exercise Improves Behavioral Impairments and Stimulates Neuroplasticity in Spontaneously Hypertensive Rats (SHR): an Animal Model of Attention Deficit Hyperactivity Disorder. Mol Neurobiol 2020; 57:3902-3919. [PMID: 32621279 DOI: 10.1007/s12035-020-02002-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a prevalent and disabling disorder, mainly characterized by hyperactivity, inattention, and impulsivity, but also by olfactory and memory impairments that frequently persist throughout lifetime. The pathophysiology of ADHD is complex, involving several brain regions and neural pathways including alterations in adenosine neuromodulation. The administration of caffeine (a non-selective adenosine receptor antagonist) and physical exercise have been independently pointed as effective approaches for the management of ADHD symptoms. Here, we evaluated the effects of caffeine consumption (0.3 mg/mL in drinking water) plus physical exercise in running wheels during 6 weeks-starting during either adolescence (30 days old) or adulthood (4-5 months old)-on behavioral performance (including olfactory discrimination, open field, object recognition, and water maze tests) on the brain levels of monoamines (by high-performance liquid chromatography), on proteins related to synaptic plasticity and on brain-derived neurotrophic factor signaling (by Western blot analysis) in spontaneously hypertensive rats (SHRs), a validated animal model of ADHD. SHRs displayed persistent impairments of olfactory and short-term recognition memory from adolescence to adulthood, which were accompanied by lower levels of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex and hippocampus. The association of caffeine plus physical exercise during adolescence or adulthood restored the olfactory discrimination ability and, in an independent manner, improved short-term recognition memory of SHRs. These benefits were not associated to alterations in locomotor activity or in the hypertensive phenotype. The association of caffeine consumption plus physical exercise during adolescence increased the levels of SNAP-25, syntaxin, and serotonin in the hippocampus and prefrontal cortex, and striatal dopamine levels in SHRs. These results provide new evidence of the potential of caffeine and physical exercise, starting at adolescence or adult life, to improve behavioral impairments and stimulate neuroplasticity in ADHD.
Collapse
|