1
|
Li XT. The involvement of K + channels in depression and pharmacological effects of antidepressants on these channels. Transl Psychiatry 2024; 14:411. [PMID: 39358318 PMCID: PMC11447029 DOI: 10.1038/s41398-024-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Depression is a common and complex psychiatric illness with multiple clinical symptoms, even leading to the disability and suicide. Owing to the partial understanding of the pathogenesis of depressive-like disorders, available pharmacotherapeutic strategies are developed mainly based on the "monoamine hypothesis", resulting in a limited effectiveness and a number of adverse effects in the clinical practice. The concept of multiple pathogenic factors be helpful for clarifying the etiology of depression and developing the antidepressants. It is well documented that K+ channels serve crucial roles in modulating the neuronal excitability and neurotransmitter release in the brain, and abnormality of these channels participated in the pathogenic process of diverse central nervous system (CNS) pathologies, such as seizure and Alzheimer's disease (AD). The clinical and preclinical evidence also delineates that the involvement of several types of K+ channels in depressive-like behaviors appear to be evident, suggesting these channels being one of the multiple factors in the etiology of this debilitating disorder. Emerging data manifest that diverse antidepressants impact distinct K+ channels, such as Kv, Kir and K2P, meaning the functioning of these drug via a "multi-target" manner. On the other hand, the scenario of antidepressants impinging K+ channels could render an alternative interpretation for the pharmacological effectiveness and numerous side effects in clinical trials. Furthermore, these channels serve to be considered as a "druggable target" to develop novel therapeutic compound to antagonize this psychiatry.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Jingchu University of Technology, Jingmen, China.
- Research group of Neurological and Metabolic Disease, School of Medicine, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
2
|
Zhou YS, Tao HB, Lv SS, Liang KQ, Shi WY, Liu KY, Li YY, Chen LY, Zhou L, Yin SJ, Zhao QR. Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice. Acta Pharmacol Sin 2024; 45:2045-2060. [PMID: 38862816 PMCID: PMC11420205 DOI: 10.1038/s41401-024-01275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/24/2024] [Indexed: 06/13/2024] Open
Abstract
Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hao-Bo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Si-Si Lv
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Qin Liang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wen-Yi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Yun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lv-Yi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ling Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shi-Jin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Qian-Ru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
3
|
Zhang Y, Wang H, Sun Y, Huang Z, Tao Y, Wang Y, Jiang X, Tao J. Trace amine-associated receptor 1 regulation of Kv1.4 channels in trigeminal ganglion neurons contributes to nociceptive behaviors. J Headache Pain 2023; 24:49. [PMID: 37158881 PMCID: PMC10165857 DOI: 10.1186/s10194-023-01582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Trace amines, such as tyramine, are endogenous amino acid metabolites that have been hypothesized to promote headache. However, the underlying cellular and molecular mechanisms remain unknown. METHODS Using patch-clamp recording, immunostaining, molecular biological approaches and behaviour tests, we elucidated a critically functional role of tyramine in regulating membrane excitability and pain sensitivity by manipulating Kv1.4 channels in trigeminal ganglion (TG) neurons. RESULTS Application of tyramine to TG neurons decreased the A-type K+ current (IA) in a manner dependent on trace amine-associated receptor 1 (TAAR1). Either siRNA knockdown of Gαo or chemical inhibition of βγ subunit (Gβγ) signaling abrogated the response to tyramine. Antagonism of protein kinase C (PKC) prevented the tyramine-induced IA response, while inhibition of conventional PKC isoforms or protein kinase A elicited no such effect. Tyramine increased the membrane abundance of PKCθ in TG neurons, and either pharmacological or genetic inhibition of PKCθ blocked the TAAR1-mediated IA decrease. Furthermore, PKCθ-dependent IA suppression was mediated by Kv1.4 channels. Knockdown of Kv1.4 abrogated the TAAR1-induced IA decrease, neuronal hyperexcitability, and pain hypersensitivity. In a mouse model of migraine induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus, blockade of TAAR1 signaling attenuated mechanical allodynia; this effect was occluded by lentiviral overexpression of Kv1.4 in TG neurons. CONCLUSION These results suggest that tyramine induces Kv1.4-mediated IA suppression through stimulation of TAAR1 coupled to the Gβγ-dependent PKCθ signaling cascade, thereby enhancing TG neuronal excitability and mechanical pain sensitivity. Insight into TAAR1 signaling in sensory neurons provides attractive targets for the treatment of headache disorders such as migraine.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Geriatrics & Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, P.R. China.
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, P.R. China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, P.R. China.
| | - Hua Wang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P.R. China
| | - Yufang Sun
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, P.R. China
| | - Zitong Huang
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, P.R. China
| | - Yu Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, P.R. China
| | - Yiru Wang
- Department of Geriatrics & Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, P.R. China
| | - Xinghong Jiang
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, P.R. China
| | - Jin Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, P.R. China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, P.R. China.
| |
Collapse
|
4
|
Labbaf A, Dellin M, Komadowski M, Chetkovich DM, Decher N, Pape HC, Seebohm G, Budde T, Zobeiri M. Characterization of Kv1.2-mediated outward current in TRIP8b-deficient mice. Biol Chem 2023; 404:291-302. [PMID: 36852869 DOI: 10.1515/hsz-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Tonic current through hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels is influencing neuronal firing properties and channel function is strongly influenced by the brain-specific auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Since Kv1.2 channels and TRIP8b were also suggested to interact, we assessed brain Kv1.2 mRNA and protein expression as well as the reduction of K+ outward currents by Kv1.2-blocking compounds (Psora-4; tityustoxin-Kα, TsTX-Kα) in different brain areas of TRIP8b-deficient (TRIP8b -/- ) compared to wildtype (WT) mice. We found that transcription levels of Kv1.2 channels were not different between genotypes. Furthermore, Kv1.2 current amplitude was not affected upon co-expression with TRIP8b in oocytes. However, Kv1.2 immunofluorescence was stronger in dendritic areas of cortical and hippocampal neurons. Furthermore, the peak net outward current was increased and the inactivation of the Psora-4-sensitive current component was less pronounced in cortical neurons in TRIP8b -/- mice. In current clamp recordings, application of TsTX increased the excitability of thalamocortical (TC) neurons with increased number of elicited action potentials upon step depolarization. We conclude that TRIP8b may not preferentially influence the amplitude of current through Kv1.2 channels but seems to affect current inactivation and channel localization. In TRIP8b -/- a compensatory upregulation of other Kv channels was observed.
Collapse
Affiliation(s)
- Afsaneh Labbaf
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Maurice Dellin
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Marlene Komadowski
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Dane M Chetkovich
- Medical Center, Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Hans-Chrisitian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Mehrnoush Zobeiri
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| |
Collapse
|
5
|
Zhou L, Wang K, Xu Y, Dong BB, Wu DC, Wang ZX, Wang XT, Cai XY, Yang JT, Zheng R, Chen W, Shen Y, Wei JS. A patient-derived mutation of epilepsy-linked LGI1 increases seizure susceptibility through regulating K v1.1. Cell Biosci 2023; 13:34. [PMID: 36804022 PMCID: PMC9940402 DOI: 10.1186/s13578-023-00983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/04/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Autosomal dominant lateral temporal epilepsy (ADLTE) is an inherited syndrome caused by mutations in the leucine-rich glioma inactivated 1 (LGI1) gene. It is known that functional LGI1 is secreted by excitatory neurons, GABAergic interneurons, and astrocytes, and regulates AMPA-type glutamate receptor-mediated synaptic transmission by binding ADAM22 and ADAM23. However, > 40 LGI1 mutations have been reported in familial ADLTE patients, more than half of which are secretion-defective. How these secretion-defective LGI1 mutations lead to epilepsy is unknown. RESULTS We identified a novel secretion-defective LGI1 mutation from a Chinese ADLTE family, LGI1-W183R. We specifically expressed mutant LGI1W183R in excitatory neurons lacking natural LGI1, and found that this mutation downregulated Kv1.1 activity, led to neuronal hyperexcitability and irregular spiking, and increased epilepsy susceptibility in mice. Further analysis revealed that restoring Kv1.1 in excitatory neurons rescued the defect of spiking capacity, improved epilepsy susceptibility, and prolonged the life-span of mice. CONCLUSIONS These results describe a role of secretion-defective LGI1 in maintaining neuronal excitability and reveal a new mechanism in the pathology of LGI1 mutation-related epilepsy.
Collapse
Affiliation(s)
- Lin Zhou
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Kang Wang
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Yuxiang Xu
- grid.256922.80000 0000 9139 560XSchool of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Bin-Bin Dong
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Deng-Chang Wu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Zhao-Xiang Wang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Xin-Tai Wang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Xin-Yu Cai
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Jin-Tao Yang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Rui Zheng
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Jian-She Wei
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Ledonne A, Massaro Cenere M, Paldino E, D'Angelo V, D'Addario SL, Casadei N, Nobili A, Berretta N, Fusco FR, Ventura R, Sancesario G, Guatteo E, Mercuri NB. Morpho-Functional Changes of Nigral Dopamine Neurons in an α-Synuclein Model of Parkinson's Disease. Mov Disord 2023; 38:256-266. [PMID: 36350188 DOI: 10.1002/mds.29269] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The accumulation of α-synuclein (α-syn) fibrils in intraneuronal inclusions called Lewy bodies and Lewy neurites is a pathological signature of Parkinson's disease (PD). Although several aspects linked to α-syn-dependent pathology (concerning its spreading, aggregation, and activation of inflammatory and neurodegenerative processes) have been under intense investigation, less attention has been devoted to the real impact of α-syn overexpression on structural and functional properties of substantia nigra pars compacta (SNpc) dopamine (DA) neurons, particularly at tardive stages of α-syn buildup, despite this has obvious relevance to comprehending mechanisms beyond PD progression. OBJECTIVES We aimed to determine the consequences of a prolonged α-syn overexpression on somatodendritic morphology and functions of SNpc DA neurons. METHODS We performed immunohistochemistry, stereological DA cell counts, analyses of dendritic arborization, ex vivo patch-clamp recordings, and in vivo DA microdialysis measurements in a 12- to 13-month-old transgenic rat model overexpressing the full-length human α-syn (Snca+/+ ) and age-matched wild-type rats. RESULTS Aged Snca+/+ rats have mild loss of SNpc DA neurons and decreased basal DA levels in the SN. Residual nigral DA neurons display smaller soma and compromised dendritic arborization and, in parallel, increased firing activity, switch in firing mode, and hyperexcitability associated with hypofunction of fast activating/inactivating voltage-gated K+ channels and Ca2+ - and voltage-activated large conductance K+ channels. These intrinsic currents underlie the repolarization/afterhyperpolarization phase of action potentials, thus affecting neuronal excitability. CONCLUSIONS Besides clarifying α-syn-induced pathological landmarks, such evidence reveals compensatory functional mechanisms that nigral DA neurons could adopt during PD progression to counteract neurodegeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Mariangela Massaro Cenere
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Paldino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Vincenza D'Angelo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sebastian Luca D'Addario
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Psychology and Center "Daniel Bovet, University of Rome La Sapienza, Rome, Italy
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Annalisa Nobili
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
| | - Nicola Berretta
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Rossella Ventura
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Psychology and Center "Daniel Bovet, University of Rome La Sapienza, Rome, Italy
| | | | - Ezia Guatteo
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Motor Science and Wellness, Parthenope University, Naples, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Wang Y, Song Y, Dai Y, Li X, Xie J, Luo J, Yang C, Fan P, Xiao G, Luo Y, Wang Y, Li Y, Cai X. The burst of electrophysiological signals in the suprachiasmatic nucleus of mouse during the arousal detected by microelectrode arrays. Front Bioeng Biotechnol 2022; 10:970726. [PMID: 36110317 PMCID: PMC9468547 DOI: 10.3389/fbioe.2022.970726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
The neural mechanisms of torpor have essential reference significance for medical methods and long-term manned space. Changes in electrophysiology of suprachiasmatic nucleus (SCN) conduce to revealing the neural mechanisms from the torpor to arousal. Due to the lower physiology state during the torpor, it is a challenge to detect neural activities in vivo on freely behaving mice. Here, we introduced a multichannel microelectrode array (MEA) for real-time detection of local field potential (LFP) and action potential (spike) in the SCN in induced torpor mice. Meanwhile, core body temperature and behaviors of mice were recorded for further analysis. Platinum nanoparticles (PtNPs) and Nafion membrane modified MEA has a lower impedance (16.58 ± 3.93 kΩ) and higher signal-to-noise ratio (S/N = 6.1). We found that from torpor to arousal, the proportion of theta frequency bands of LFPs increased, spike firing rates rapidly increased. These results could all be characteristic information of arousal, supported by the microscopic neural activity promoting arousal in mice. MEA displayed real-time dynamic changes of neuronal activities in the SCN, which was more helpful to analyze and understand neural mechanisms of torpor and arousal. Our study provided a factual basis for the neural state in SCN of induced non-hibernating animals, which was helpful for the application of clinics and spaceflight.
Collapse
Affiliation(s)
- Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinrong Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yang
- China Astronaut Research and Training Center, Beijing, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xinxia Cai, ; Yinghui Li, ; Ying Wang,
| | - Yinghui Li
- China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Xinxia Cai, ; Yinghui Li, ; Ying Wang,
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xinxia Cai, ; Yinghui Li, ; Ying Wang,
| |
Collapse
|
8
|
Yee JX, Rastani A, Soden ME. The potassium channel auxiliary subunit Kvβ2 ( Kcnab2) regulates Kv1 channels and dopamine neuron firing. J Neurophysiol 2022; 128:62-72. [PMID: 35788155 PMCID: PMC9273274 DOI: 10.1152/jn.00194.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channel complexes typically consist of both pore-forming subunits and auxiliary subunits that do not directly conduct current but can regulate trafficking or alter channel properties. Isolating the role of these auxiliary subunits in neurons has proved difficult due to a lack of specific pharmacological agents and the potential for developmental compensation in constitutive knockout models. Here, we use cell-type-specific viral-mediated CRISPR/Cas9 mutagenesis to target the potassium channel auxiliary subunit Kvβ2 (Kcnab2) in dopamine neurons in the adult mouse brain. We find that mutagenesis of Kcnab2 reduces surface expression of Kv1.2, the primary Kv1 pore-forming subunit expressed in dopamine neurons, and shifts the voltage dependence of inactivation of potassium channel currents toward more hyperpolarized potentials. Loss of Kcnab2 broadens the action potential waveform in spontaneously firing dopamine neurons recorded in slice, reduces the afterhyperpolarization amplitude, and increases spike timing irregularity and excitability, all of which is consistent with a reduction in potassium channel current. Similar effects were observed with mutagenesis of the pore-forming subunit Kv1.2 (Kcna2). These results identify Kv1 currents as important contributors to dopamine neuron firing and demonstrate a role for Kvβ2 subunits in regulating the trafficking and gating properties of these ion channels. Furthermore, they demonstrate the utility of CRISPR-mediated mutagenesis in the study of previously difficult to isolate ion channel subunits.NEW & NOTEWORTHY Here, we utilize CRISPR/Cas9-mediated mutagenesis in dopamine neurons in mice to target the gene encoding Kvβ2, an auxiliary subunit that forms a part of Kv1 channel complexes. We find that the absence of Kvβ2 alters action potential properties by reducing surface expression of pore-forming subunits and shifting the voltage dependence of channel inactivation. This work establishes a new function for Kvβ2 subunits and Kv1 complexes in regulating dopamine neuron activity.
Collapse
Affiliation(s)
- Joshua X. Yee
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Ariana Rastani
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Marta E. Soden
- Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Ji X, Zeng Y, Wu J. The CB 2 Receptor as a Novel Therapeutic Target for Epilepsy Treatment. Int J Mol Sci 2021; 22:ijms22168961. [PMID: 34445666 PMCID: PMC8396521 DOI: 10.3390/ijms22168961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
Epilepsy is characterized by repeated spontaneous bursts of neuronal hyperactivity and high synchronization in the central nervous system. It seriously affects the quality of life of epileptic patients, and nearly 30% of individuals are refractory to treatment of antiseizure drugs. Therefore, there is an urgent need to develop new drugs to manage and control refractory epilepsy. Cannabinoid ligands, including selective cannabinoid receptor subtype (CB1 or CB2 receptor) ligands and non-selective cannabinoid (synthetic and endogenous) ligands, may serve as novel candidates for this need. Cannabinoid appears to regulate seizure activity in the brain through the activation of CB1 and CB2 cannabinoid receptors (CB1R and CB2R). An abundant series of cannabinoid analogues have been tested in various animal models, including the rat pilocarpine model of acquired epilepsy, a pentylenetetrazol model of myoclonic seizures in mice, and a penicillin-induced model of epileptiform activity in the rats. The accumulating lines of evidence show that cannabinoid ligands exhibit significant benefits to control seizure activity in different epileptic models. In this review, we summarize the relationship between brain CB2 receptors and seizures and emphasize the potential mechanisms of their therapeutic effects involving the influences of neurons, astrocytes, and microglia cells. The unique features of CB2Rs, such as lower expression levels under physiological conditions and high inducibility under epileptic conditions, make it an important target for future research on drug-resistant epilepsy.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
| | - Yang Zeng
- Medical Education Assessment and Research Center, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
- Correspondence: or
| |
Collapse
|