1
|
Zhang W, Jiao B, Yu S, Zhang K, Sun J, Liu B, Zhang X. Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia. Free Radic Biol Med 2024; 227:143-156. [PMID: 39638264 DOI: 10.1016/j.freeradbiomed.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Microglia-mediated neuroinflammation demonstrates a crucial act in the progression of neuropathic pain. Oxidative damage induced by reactive oxygen species (ROS) derived from NADPH oxidase (NOX) in microglia drives proinflammatory microglia activation. Recent evidence points to the central renin angiotensin system (RAS) is involved in oxidative stress and neuroinflammation, with the angiotensin converting enzyme/angiotensin II/angiotensin receptor-1 (ACE/Ang II/AT1R) axis promoting inflammation through increased ROS production, counteracted by the ACE2/Ang (1-7)/Mas receptor (MasR) axis. While interventions targeting spinal AT1R have been shown to alleviate nociceptive hypersensitivity; yet the mechanisms remain elusive. Here, we discovered that spared nerve injury (SNI)-induced mechanical allodynia in rats were associated with M1-like microglia activation, oxidative stress and overactivity of ACE/Ang II/AT1R axis in the spinal cord. Increased AT1R and NOX2 expression were observed in activated dorsal horn microglia following SNI. Blockade of AT1R with losartan potassium (LOP) suppressed NOX2-mediated oxidative stress, and promoted a shift in microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype in LPS-treated BV-2 cells. Additionally, NOX2 overexpression triggered the activation of the high-mobility group box 1/nuclear factor-kappa B (HMGB1/NF-κB) signaling pathway. Intrathecal administration of LOP effectively inhibited SNI-induced NOX2 overactivation in microglia and suppressed the HMGB1/NF-kB pathway, reducing oxidative stress and shifting the microglia polarization from M1 to M2 in the spinal cord, thereby attenuating neuroinflammation and pain hypersensitivity. Collectively, these findings underscore the neuroimmune-modulating effects of spinal AT1R in neuropathic pain, highlighting the regulation of redox homeostasis in microglia via a NOX2 dependent mechanism.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jiaoli Sun
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
2
|
Elsayed HRH, Ali EMT, Rabei MR, El Nashar EM, Alghamdi MA, Al-Zahrani NS, Alshehri SH, Aldahhan RA, Morsy AI. Angiotensin II Type 1 receptor blockade attenuates the neuropathological changes in the spinal cords of diabetic rats with modulation of nuclear factor erythroid 2-related factor 2/ heme oxygenase 1 system. Tissue Cell 2024; 88:102420. [PMID: 38795506 DOI: 10.1016/j.tice.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.
Collapse
Affiliation(s)
- Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy and Neurobiology, College of Medicine & Health Sciences, National University of Science and Technology, Sohar, Oman.
| | - Eyad Mohamed Tolba Ali
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Mohammed Rami Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman, Jordan
| | | | - Mansour Abdullah Alghamdi
- Department of Anatomy, College Medicine, King Khalid University, Abha, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Shaker Hassan Alshehri
- Department of Orthopedics, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amira Ibrahim Morsy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Wu W, Zhang X, Wang S, Li T, Hao Q, Li S, Yao W, Sun R. Pharmacological inhibition of the cGAS-STING signaling pathway suppresses microglial M1-polarization in the spinal cord and attenuates neuropathic pain. Neuropharmacology 2022; 217:109206. [PMID: 35926582 DOI: 10.1016/j.neuropharm.2022.109206] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammation plays a vital role in the development of neuropathic pain and is mediated mainly by microglia. Suppressing microglial M1-polarization attenuates neuropathic pain. Recently, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a key mediator of inflammation and shows potential in modulating microglial polarization. In this study, we evaluated whether cGAS-STING is a potential therapeutic target. Spared nerve injury (SNI) surgery was conducted in adult male rats to establish a neuropathic pain model. We showed that SNI promoted microglial M1-polarization and induced cGAS-STING pathway activation in the spinal cord. Double-label immunofluorescence assays showed that cGAS-STING activation mainly occurred in neurons and microglia but not astrocytes. We further conducted in vitro experiments using BV-2 microglial cells. The results showed that LPS-induced microglial M1-polarization was accompanied by cGAS-STING pathway activation, but cGAS-STING inhibition by antagonists suppressed LPS-induced microglial M1-polarization. In vivo, we also showed that a cGAS antagonist and a STING antagonist suppressed the microglial M1-polarization and ameliorated the mechanical allodynia induced by SNI. These findings suggested that the cGAS-STING pathway might be a potential therapeutic target for treating neuropathic pain. However, further research is warranted to verify our findings in female rodents.
Collapse
Affiliation(s)
- Wenyao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanshui Hao
- Department of Anesthesiology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Yang S, Xu K, Xu X, Zhu J, Jin Y, Liu Q, Xu R, Gu X, Liu Y, Huang Y, Ma Z. S-Ketamine Pretreatment Alleviates Anxiety-Like Behaviors and Mechanical Allodynia and Blocks the Pro-inflammatory Response in Striatum and Periaqueductal Gray From a Post-traumatic Stress Disorder Model. Front Behav Neurosci 2022; 16:848232. [PMID: 35493953 PMCID: PMC9047507 DOI: 10.3389/fnbeh.2022.848232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
This study aims to explore the regulatory effect of S-ketamine on the mechanical allodynia, anxiety-like behaviors and microglia activation in adult male rats exposed to an animal model of post-traumatic stress disorder (PTSD). The rat PTSD model was established by the exposure to single-prolonged stress (SPS), and 1 day later, rats were intraperitoneally injected with 5 mg/kg S-ketamine or normal saline, respectively. Paw withdrawal mechanical threshold was measured 2 days before, and 1, 3, 5, 7, 10, 14, 21 and 28 days after injection to assess mechanical allodynia in the SPS-exposed rats. For anxiety-like behaviors, the open field test and elevated plus maze test were performed at 7 and 14 days after S-ketamine treatment in the SPS-exposed rats, respectively. SPS-induced rats presented pronounced mechanical allodynia and anxiety-like behaviors, which were alleviated by S-ketamine treatment. After behavioral tests, rats were sacrificed for collecting the anterior cingulate cortex (ACC), prefrontal cortex (PFC), dorsal striatum, and periaqueductal gray (PAG). Protein levels of TNF-α, IL-1β, p-NF-κB, and NF-κB in brain regions were examined by Western blot. In addition, microglia activation in each brain region was determined by immunofluorescence staining of the microglia-specific biomarker Iba-1. Interestingly, pro-inflammatory cytokines were significantly upregulated in the dorsal striatum and PAG, rather than ACC and PFC. Activated microglia was observed in the dorsal striatum and PAG as well, and upregulated p-NF-κB was detected in the dorsal striatum. Inflammatory response, phosphorylation of NF-κB and microglia activation in certain brain regions were significantly alleviated by S-ketamine treatment. Collectively, S-ketamine is a promising drug in alleviating mechanical allodynia, anxiety-like behaviors, and pro-inflammatory responses in discrete brain regions in a model of PTSD.
Collapse
|