1
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Wei H. Intranasal Lithium Chloride Nanoparticles Inhibit Inflammatory Pyroptosis in Brains and Ameliorate Memory Loss and Depression Behavior in 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613794. [PMID: 39345574 PMCID: PMC11430220 DOI: 10.1101/2024.09.18.613794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This study compares the changes in lithium concentrations in the brain and blood following the administration of intranasal or oral lithium chloride (LiCl) dissolved in either Ryanodex Formulation Vehicle (RFV) or water, as well as the therapeutic effectiveness and side effects of intranasal versus oral lithium chloride (LiCl) in RFV, and their mechanisms for inhibiting inflammation and pyroptosis in 5xFAD Alzheimer's Disease (AD) mice brains. In comparison to oral LiCl in RFV, intranasal LiCl in RFV decreased lithium blood concentrations but increased brain concentrations and duration, resulting in a significantly higher brain/blood lithium concentration ratio than intranasal LiCl in water or oral LiCl in RFV in young adult mice. Intranasal LiCl in RFV robustly protects both memory loss and depressive behavior in both young and old 5xFAD mice, with no side effects or thyroid/kidney toxicity. In fact, intranasal LiCl in RFV protects against age-dependent kidney function impairment in 5xFAD mice. This lithium mediated neuroprotection was associated with its potent effects on the inhibition of InsP3R-1 Ca 2+ channel receptor increase, ameliorating pathological inflammation and activation of the pyroptosis pathway, and the associated loss of synapse proteins. Intranasal LiCl in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and treat both dementia and depression with no or minimal side effects/organ toxicity, particular in AD.
Collapse
|
2
|
Zhao Q, Hu Y, Yan Y, Song X, Yu J, Wang W, Zhou S, Su X, Bloch MH, Leckman JF, Chen Y, Sun H. The effects of Shaoma Zhijing granules and its main components on Tourette syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155686. [PMID: 38759346 DOI: 10.1016/j.phymed.2024.155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Tourette syndrome (TS) represents a neurodevelopmental disorder characterized by an uncertain etiology and influencing factors. Frequently, it co-occurs with conditions such as attention deficit hyperactivity disorder, obsessive-compulsive disorder, and sleep disturbances, which have garnered substantial attention from the research community in recent years. Clinical trials have demonstrated that Shaoma Zhijing Granules (SMZJG, 5-ling granule, also known as TSupport or T92 under U.S. development), a traditional Chinese medicine compound, is an effective treatment for TS. PURPOSE To conduct scientometric analysis on developing trends, research countries and institutions, current status, hot spots of TS and discuss the underlying mechanisms of SMZJG and its main components on TS. The aim is to provide valuable reference for ongoing clinical and basic research on TS and SMZJG. STUDY DESIGN & METHODS Using Tourette syndrome, SMZJG and its main components along with their synonyms as keywords, we conducted a comprehensive search across major scientific databases including the Web of Science Core Collection, PubMed and China National Knowledge Infrastructure (CNKI) databases. A total of 5952 references and 99 patents were obtained. Among these, 5039 articles and reviews, as well as 54 patents were analyzed by Citespace and VOSviewer software. RESULTS The available evidence indicates that the SMZJG's components likely exert their mechanisms in treating TS by regulating the dopaminergic pathway system, neurotransmitter imbalances, reducing neuroinflammation, promoting the repair of nerve damage and improving sleep disorders. CONCLUSION This comprehensive analysis lays the foundation for an extensive exploration of the feasibility and clinical applications of SMZJG in TS treatment.
Collapse
Affiliation(s)
- Qian Zhao
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Yunhui Hu
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Yiman Yan
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Xujiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jie Yu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenjia Wang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Shuiping Zhou
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China
| | - Xuefeng Su
- Tasly Pharmaceuticals Inc., Rockville, MD 20850, USA
| | - Michael H Bloch
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James F Leckman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yibing Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - He Sun
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization. Tianjin 300193, China; Tasly Pharmaceuticals Inc., Rockville, MD 20850, USA.
| |
Collapse
|
3
|
von Maydell D, Wright S, Bonner JM, Staab C, Spitaleri A, Liu L, Pao PC, Yu CJ, Scannail AN, Li M, Boix CA, Mathys H, Leclerc G, Menchaca GS, Welch G, Graziosi A, Leary N, Samaan G, Kellis M, Tsai LH. Single-cell atlas of ABCA7 loss-of-function reveals impaired neuronal respiration via choline-dependent lipid imbalances. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556135. [PMID: 38979214 PMCID: PMC11230156 DOI: 10.1101/2023.09.05.556135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid β -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.
Collapse
|
4
|
Li MQ, Chen C, Ma YQ, Ding HM. Effect of terahertz waves on the aggregation behavior of neurotransmitters. Phys Chem Chem Phys 2024; 26:13751-13761. [PMID: 38683175 DOI: 10.1039/d4cp00556b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.
Collapse
Affiliation(s)
- Meng-Qiu Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Chen Chen
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
5
|
Murphy EA, Kleiner FH, Helliwell KE, Wheeler GL. Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca 2+ Signalling. PLANTS (BASEL, SWITZERLAND) 2024; 13:1207. [PMID: 38732422 PMCID: PMC11085791 DOI: 10.3390/plants13091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range of Ca2+-permeable ion channels to facilitate the movement of Ca2+ across cellular membranes. We investigated the distribution of different families of Ca2+ channels in diatom genomes, with comparison to other members of the stramenopile lineage. The four-domain voltage-gated Ca2+ channels (Cav) are present in some centric diatoms but almost completely absent in pennate diatoms, whereas single-domain voltage-gated EukCatA channels were found in all diatoms. Glutamate receptors (GLRs) and pentameric ligand-gated ion channels (pLGICs) also appear to have been lost in several pennate species. Transient receptor potential (TRP) channels are present in all diatoms, but have not undergone the significant expansion seen in brown algae. All diatom species analysed lacked the mitochondrial uniporter (MCU), a highly conserved channel type found in many eukaryotes, including several stramenopile lineages. These results highlight the unique Ca2+-signalling toolkit of diatoms and indicate that evolutionary gains or losses of different Ca2+ channels may contribute to differences in cellular-signalling mechanisms between species.
Collapse
Affiliation(s)
- Eleanor A. Murphy
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Katherine E. Helliwell
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Glen L. Wheeler
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
| |
Collapse
|
6
|
Chen S, Wang K, Wang H, Gao Y, Nie K, Jiang X, Su H, Tang Y, Lu F, Dong H, Wang Z. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol Res 2024; 201:107090. [PMID: 38309381 DOI: 10.1016/j.phrs.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
White TL, Gonsalves MA, Harris AD, Walsh EG, Joyce HE. Brain Glutamate Dynamics Predict Positive Agency in Healthy Women: Insights from Combined Application of Pharmacological Challenge, Comprehensive Affective Assessment, and Magnetic Resonance Spectroscopy. ACS Chem Neurosci 2024; 15:491-502. [PMID: 38237555 DOI: 10.1021/acschemneuro.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Contributions of brain glutamate (Glu) to conscious emotion are not well understood. Here, we evaluate the relationship of experimentally induced change in neocortical Glu (ΔGlu) and subjective states in well individuals, using combined application of pharmacological challenge, magnetic resonance spectroscopy (MRS), and comprehensive affective assessment. Drug challenge with d-amphetamine (AMP) (20 mg oral), methamphetamine (MA) (Desoxyn, 20 mg oral), and placebo (PBO) was conducted on three separate test days in a within-subjects double blind design. Proton MRS quantified neurometabolites in the right dorsal anterior cingulate cortex 140-150 min post-drug and PBO. Subjective states were assessed at half hour intervals over 5.5 h on each session, yielding 3792 responses per participant (91,008 responses overall, N = 24 participants), with self-reports reduced by principal components analysis (PCA). PCA produced a primary factor score of AMP- and MA-induced positive agency (ΔPA). MRS indicated drug-induced ΔGlu related positively to ΔPA (ΔGluMA r = +0.44, p < 0.05, N = 21), with large effects in females (ΔGluMA r = +0.52, p < 0.05; ΔGluAMP r = +0.61, p < 0.05, N = 11). Subjective states related to ΔGlu included rise in subjective stimulation, vigor, friendliness, elation, positive mood, positive affect (r's = +0.51 to +0.74, p < 0.05), and alleviation of anxiety in females (r = -0.61, p < 0.05, N = 11). These self-reports correlated with ΔGlu to the extent they loaded on ΔPA (r = 0.95 AMP, p = 5 × 10-10; r = 0.63 MA, p = 0.0015, N = 11), indicating the coherence of ΔGlu effects on emotional states. Timing data indicated Glu shaped positive emotion both concurrently and prospectively, with no relationship with pre-MRS emotion (ΔGluAMP r = +0.59 to +0.65, p's < 0.05; ΔGluMA r = +0.53, p < 0.05, N = 11). Together these findings indicate substantive, mechanistic contributions of neocortical Glu to positive agentic states in healthy individuals, which are most readily observed in women. The findings illustrate the promise of combined application of pharmacological challenge, comprehensive affective assessment, and MRS neuroimaging techniques in basic and clinical studies.
Collapse
Affiliation(s)
- Tara L White
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912. United States
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island 02912. United States
- Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island 02912. United States
- Center for Human Rights and Humanitarian Studies, Watson Institute, Brown University, Providence, Rhode Island 02912. United States
- University of Cambridge, Clare Hall, Cambridge CB3 9AL England. U.K
| | - Meghan A Gonsalves
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912. United States
| | - Ashley D Harris
- Department of Radiology, CAIR Program, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Edward G Walsh
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912. United States
| | - Hannah E Joyce
- Undergraduate Program in Cognitive Neuroscience, Brown University, Providence, Rhode Island 02912. United States
| |
Collapse
|
8
|
Taormina B, Escobar-Lux RH, Legrand E, Parsons AE, Kutti T, Husa V, Hannisdal R, Samuelsen OB, Agnalt AL. Effects of the sea lice chemotherapeutant, emamectin benzoate, on metabolism and behaviour of the sea-pen Pennatula phosphorea. MARINE POLLUTION BULLETIN 2024; 198:115903. [PMID: 38091631 DOI: 10.1016/j.marpolbul.2023.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Chemotherapeutants used to control infestations by sea lice can be released into the marine environment surrounding aquaculture farms. Among these therapeutic agents, emamectin benzoate is extensively utilized even though its impact on non-target taxa has not been thoroughly examined. In this context, we explored the effects of emamectin benzoate on a common Norwegian habitat-forming species: the phosphorescent sea-pen Pennatula phosphorea. Specifically, we examined P. phosphorea metabolic and responses before, during and after exposure to emamectin benzoate. Results indicate that an 8-day emamectin benzoate exposure (0.8 mg/L) did not induce P. phosphorea mortality or significant behavioural or metabolic modifications. However, we highlighted the presence and persistence of emamectin benzoate in exposed P. phosphorea tissue. These results indicate that emamectin benzoate is unlikely to adversely impact P. phosphorea populations in the environment. However, persistence of emamectin benzoate in tissue constitutes a potential for bioaccumulation with repeated treatments and should be examined in further studies.
Collapse
Affiliation(s)
- Bastien Taormina
- Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway.
| | - Rosa Helena Escobar-Lux
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, Storebø 5392, Norway
| | - Erwann Legrand
- Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
| | | | - Tina Kutti
- Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
| | - Vivian Husa
- Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
| | - Rita Hannisdal
- Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
| | - Ole B Samuelsen
- Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway
| | | |
Collapse
|
9
|
Romanova DY, Varoqueaux F, Eitel M, Yoshida MA, Nikitin MA, Moroz LL. Long-Term Culturing of Placozoans (Trichoplax and Hoilungia). Methods Mol Biol 2024; 2757:509-529. [PMID: 38668981 DOI: 10.1007/978-1-0716-3642-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The phylum Placozoa remains one of the least explored among early-branching metazoan lineages. For over 130 years, this phylum had been represented by the single species Trichoplax adhaerens-an animal with the simplest known body plan (three cell layers without any organs) but complex behaviors. Recently, extensive sampling of placozoans across the globe and their subsequent genetic analysis have revealed incredible biodiversity with numerous cryptic species worldwide. However, only a few culture protocols are available to date, and all are for one species only. Here, we describe the breeding of four different species representing two placozoan genera: Trichoplax adhaerens, Trichoplax sp. H2, Hoilungia sp. H4, and Hoilungia hongkongensis originating from diverse biotopes. Our protocols allow to culture all species under comparable conditions. Next, we outlined various food sources and optimized strain-specific parameters enabling long-term culturing. These protocols can facilitate comparative analyses of placozoan biology and behaviors, which together will contribute to deciphering general principles of animal organization.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Michael Eitel
- Department of Earth and Environmental Sciences Palaeontology & Geobiology, LMU München, Munich, Germany
| | - Masa-Aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Oki, Shimane, Japan
| | - Mikhail A Nikitin
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Leonid L Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
10
|
Romanova DY, Moroz LL. Brief History of Placozoa. Methods Mol Biol 2024; 2757:103-122. [PMID: 38668963 DOI: 10.1007/978-1-0716-3642-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Placozoans are morphologically the simplest free-living animals. They represent a unique window of opportunities to understand both the origin of the animal organization and the rules of life for the system and synthetic biology of the future. However, despite more than 100 years of their investigations, we know little about their organization, natural habitats, and life strategies. Here, we introduce this unique animal phylum and highlight some directions vital to broadening the frontiers of the biomedical sciences. In particular, understanding the genomic bases of placozoan biodiversity, cell identity, connectivity, reproduction, and cellular bases of behavior are critical hot spots for future studies.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russian Federation.
| | - Leonid L Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Biosciences University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
11
|
Moroz LL. Brief History of Ctenophora. Methods Mol Biol 2024; 2757:1-26. [PMID: 38668961 DOI: 10.1007/978-1-0716-3642-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ctenophores are the descendants of the earliest surviving lineage of ancestral metazoans, predating the branch leading to sponges (Ctenophore-first phylogeny). Emerging genomic, ultrastructural, cellular, and systemic data indicate that virtually every aspect of ctenophore biology as well as ctenophore development are remarkably different from what is described in representatives of other 32 animal phyla. The outcome of this reconstruction is that most system-level components associated with the ctenophore organization result from convergent evolution. In other words, the ctenophore lineage independently evolved as high animal complexities with the astonishing diversity of cell types and structures as bilaterians and cnidarians. Specifically, neurons, synapses, muscles, mesoderm, through gut, sensory, and integrative systems evolved independently in Ctenophora. Rapid parallel evolution of complex traits is associated with a broad spectrum of unique ctenophore-specific molecular innovations, including alternative toolkits for making an animal. However, the systematic studies of ctenophores are in their infancy, and deciphering their remarkable morphological and functional diversity is one of the hot topics in biological research, with many anticipated surprises.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
12
|
Moroz LL, Romanova DY. Homologous vs. homocratic neurons: revisiting complex evolutionary trajectories. Front Cell Dev Biol 2023; 11:1336093. [PMID: 38178869 PMCID: PMC10764524 DOI: 10.3389/fcell.2023.1336093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
13
|
Moroz LL. Syncytial nets vs. chemical signaling: emerging properties of alternative integrative systems. Front Cell Dev Biol 2023; 11:1320209. [PMID: 38125877 PMCID: PMC10730927 DOI: 10.3389/fcell.2023.1320209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
14
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
15
|
Dyakonova VE. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1719-1731. [PMID: 38105193 DOI: 10.1134/s0006297923110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
In the last ten years, the discovery of neuronal DNA postmitotic instability has changed the theoretical landscape in neuroscience and, more broadly, biology. In 2003, A. M. Olovnikov suggested that neuronal DNA is the "initial substrate of aging". Recent experimental data have significantly increased the likelihood of this hypothesis. How does neuronal DNA accumulate damage and in what genome regions? What factors contribute to this process and how are they associated with aging and lifespan? These questions will be discussed in the review. In the course of Metazoan evolution, the instability of neuronal DNA has been accompanied by searching for the pathways to reduce the biological cost of brain activity. Various processes and activities, such as sleep, evolutionary increase in the number of neurons in the vertebrate brain, adult neurogenesis, distribution of neuronal activity, somatic polyploidy, and RNA editing in cephalopods, can be reconsidered in the light of the trade-off between neuronal plasticity and DNA instability in neurons. This topic is of considerable importance for both fundamental neuroscience and translational medicine.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
16
|
Moroz LL, Romanova DY. Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals. Anim Cogn 2023; 26:1851-1864. [PMID: 38015282 PMCID: PMC11106658 DOI: 10.1007/s10071-023-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, University of Florida, Gainesville, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
17
|
Zhang Z, Zhong Z, Xiong Y. Sailing in complex nutrient signaling networks: Where I am, where to go, and how to go? MOLECULAR PLANT 2023; 16:1635-1660. [PMID: 37740490 DOI: 10.1016/j.molp.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
To ensure survival and promote growth, sessile plants have developed intricate internal signaling networks tailored in diverse cells and organs with both shared and specialized functions that respond to various internal and external cues. A fascinating question arises: how can a plant cell or organ diagnose the spatial and temporal information it is experiencing to know "where I am," and then is able to make the accurate specific responses to decide "where to go" and "how to go," despite the absence of neuronal systems found in mammals. Drawing inspiration from recent comprehensive investigations into diverse nutrient signaling pathways in plants, this review focuses on the interactive nutrient signaling networks mediated by various nutrient sensors and transducers. We assess and illustrate examples of how cells and organs exhibit specific responses to changing spatial and temporal information within these interactive plant nutrient networks. In addition, we elucidate the underlying mechanisms by which plants employ posttranslational modification codes to integrate different upstream nutrient signals, thereby conferring response specificities to the signaling hub proteins. Furthermore, we discuss recent breakthrough studies that demonstrate the potential of modulating nutrient sensing and signaling as promising strategies to enhance crop yield, even with reduced fertilizer application.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Liu X, Bao X, Yang J, Zhu X, Li Z. Preliminary study on toxicological mechanism of golden cuttlefish (Sepia esculenta) larvae exposed to cd. BMC Genomics 2023; 24:503. [PMID: 37649007 PMCID: PMC10466719 DOI: 10.1186/s12864-023-09630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear. RESULTS In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure. CONCLUSIONS S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.
Collapse
Affiliation(s)
- Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xibo Zhu
- Fishery Technology Service Center of Lanshan District, Rizhao, 276800, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
19
|
Liu Z, Xu Y, Wang Y, Weng S, Xu H, Ren Y, Guo C, Liu L, Zhang Z, Han X. Immune-related interaction perturbation networks unravel biological peculiars and clinical significance of glioblastoma. IMETA 2023; 2:e127. [PMID: 38867932 PMCID: PMC10989959 DOI: 10.1002/imt2.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/16/2023] [Indexed: 06/14/2024]
Abstract
The immune system is an interacting network of plentiful molecules that could better characterize the relationship between immunity and cancer. This study aims to investigate the behavioral patterns of immune-related interaction perturbation networks in glioblastoma. An immune-related interaction-perturbation framework was introduced to characterize four heterogeneous subtypes using RNA-seq data of TCGA/CGGA glioblastoma tissues and GTEx normal brain tissues. The stability and robustness of the four subtypes were validated in public datasets and our in-house cohort. In the four subtypes, C1 was an inflammatory subtype with high immune infiltration, low tumor purity, and potential response to immunotherapy; C2, an invasive subtype, was featured with dismal prognosis, telomerase reverse transcriptase promoter mutations, moderate levels of immunity, and stromal constituents, as well as sensitivity to receptor tyrosine kinase signaling inhibitors; C3 was a proliferative subtype with high tumor purity, immune-desert microenvironment, sensitivity to phosphatidylinositol 3'-kinase signaling inhibitor and DNA replication inhibitors, and potential resistance to immunotherapy; C4, a synaptogenesis subtype with the best prognosis, exhibited high synaptogenesis-related gene expression, prevalent isocitrate dehydrogenase mutations, and potential sensitivity to radiotherapy and chemotherapy. Overall, this study provided an attractive platform from the perspective of immune-related interaction perturbation networks, which might advance the tailored management of glioblastoma.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Yudi Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhui Wang
- Department of Clinical LaboratoryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunguang Guo
- Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Long Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| |
Collapse
|
20
|
Shukla AK, Kumari A, Kumar A. Gut brain regulation using psychobiotics for improved neuropsychological illness. Dev Psychobiol 2023; 65:e22404. [PMID: 37338246 DOI: 10.1002/dev.22404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023]
Abstract
"Psychobiotics" are a novel class of probiotics that are beneficial to the health and functional efficiency of our brain and psychology. The main hold on command in ill conditions of the brain and psychology is overtaken by these psychobiotic bacteria (a dietary supplement) via the action/determined role of bacterial neurochemicals or neuroactive substances that are released by them in the intestinal epithelium after their ingestion. Although these psychobiotics flourish in the gut of the host consuming them, the effect is widely spread to the brain due to the communication between the gut and the brain via the bidirectional gut-brain axis. The nervous system involved in this directional process includes both the enteric nervous system and the central nervous system. With time, several corroborations have proved the effectiveness of psychobiotics in terms of mental illnesses and brain disorders. In the prevailing situation of the coronavirus pandemic, psychobiotics may serve as an aid because a majority of the population worldwide is already suffering from psychological issues due to changes in lifestyle and dietary habits, and in need of an immediate solution to cope with it. Moreover, the in silico approach is also vital for the development of biological relevance to neurosubstances.
Collapse
Affiliation(s)
- Adarsh Kumar Shukla
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Anita Kumari
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
21
|
Stratton JA, Nolte MJ, Payseur BA. Genetics of behavioural evolution in giant mice from Gough Island. Proc Biol Sci 2023; 290:20222603. [PMID: 37161324 PMCID: PMC10170209 DOI: 10.1098/rspb.2022.2603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
The evolution of behaviour on islands is a pervasive phenomenon that contributed to Darwin's theory of natural selection. Island populations frequently show increased boldness and exploration compared with their mainland counterparts. Despite the generality of this pattern, the genetic basis of island-associated behaviours remains a mystery. To address this gap in knowledge, we genetically dissected behaviour in 613 F2s generated by crossing inbred mouse strains from Gough Island (where they live without predators or human commensals) and a mainland conspecific. We used open field and light/dark box tests to measure seven behaviours related to boldness and exploration in juveniles and adults. Across all assays, we identified a total of 41 quantitative trait loci (QTL) influencing boldness and exploration. QTL have moderate effects and are often unique to specific behaviours or ages. Function-valued trait mapping revealed changes in estimated effects of QTL during assays, providing a rare dynamic window into the genetics of behaviour often missed by standard approaches. The genomic locations of QTL are distinct from those found in laboratory strains of mice, indicating different genetic paths to the evolution of similar behaviours. We combine our mapping results with extensive phenotypic and genetic information available for laboratory mice to nominate candidate genes for the evolution of behaviour on islands.
Collapse
Affiliation(s)
- Jered A. Stratton
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark J. Nolte
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
22
|
Nikitin MA, Romanova DY, Borman SI, Moroz LL. Amino acids integrate behaviors in nerveless placozoans. Front Neurosci 2023; 17:1125624. [PMID: 37123368 PMCID: PMC10133484 DOI: 10.3389/fnins.2023.1125624] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Placozoans are the simplest known free-living animals without recognized neurons and muscles but a complex behavioral repertoire. However, mechanisms and cellular bases of behavioral coordination are unknown. Here, using Trichoplax adhaerens as a model, we described 0.02-0.002 Hz oscillations in locomotory and feeding patterns as evidence of complex multicellular integration; and showed their dependence on the endogenous secretion of signal molecules. Evolutionary conserved low-molecular-weight transmitters (glutamate, aspartate, glycine, GABA, and ATP) acted as coordinators of distinct locomotory and feeding patterns. Specifically, L-glutamate induced and partially mimicked endogenous feeding cycles, whereas glycine and GABA suppressed feeding. ATP-modified feeding is complex, first causing feeding-like cycles and then suppressing feeding. Trichoplax locomotion was modulated by glycine, GABA, and, surprisingly, by animals' own mucus trails. Mucus triples locomotory speed compared to clean substrates. Glycine and GABA increased the frequency of turns. The effects of the amino acids are likely mediated by numerous receptors (R), including those from ionotropic GluRs, metabotropic GluRs, and GABA-BR families. Eighty-five of these receptors are encoded in the Trichoplax genome, more than in any other animal sequenced. Phylogenetic reconstructions illuminate massive lineage-specific expansions of amino acid receptors in Placozoa, Cnidaria, and Porifera and parallel evolution of nutritional sensing. Furthermore, we view the integration of feeding behaviors in nerveless animals by amino acids as ancestral exaptations that pave the way for co-options of glutamate, glycine, GABA, and ATP as classical neurotransmitters in eumetazoans.
Collapse
Affiliation(s)
- Mikhail A. Nikitin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Simkha I. Borman
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russia
| | - Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
23
|
Tang B, Hu Y, Chen J, Su C, Zhang Q, Huang C. Oral and fecal microbiota in patients with diarrheal irritable bowel syndrome. Heliyon 2023; 9:e13114. [PMID: 36711269 PMCID: PMC9880401 DOI: 10.1016/j.heliyon.2023.e13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Background This study aimed at investigating the characteristics and correlation between oral (tongue coating) and fecal microbiota in patients with diarrheal irritable bowel syndrome (IBS-D). Methods Fifty-two IBS-D patients were chosen, with ten healthy volunteers serving as the normal control group. Tongue coating samples and fecal samples of subjects were sequenced for the 16S rRNA gene (V4-V5). Bioinformatics analysis was done on the test data to investigate oral and fecal microbiota composition characteristics in IBS-D patients. Results The microbial richness of tongue coating in IBS-D group was lower than that in the normal control group (P < 0.05). The beta diversity of tongue coating microbiota and fecal microbiota was significantly different in the IBS-D group compared to the normal control group (P < 0.05). Pseudomonadales (Pseudomonadaceae and Pseudomonas), Moraxellaceae, Parvimonas, Peptostreptococcus, and Alloprevotella were considerably high in number the tongue coating samples of the IBS-D group in comparison to the normal control group. Similarly, the fecal samples from the IBS-D group were significantly enriched in Alphaproteobacteria, Pseudomonadales (Pseudomonadaceae and Pseudomonas), Acidaminococcaceae, Phascolarctobacterium, Alloprevotella, and Escherichia compared to the normal control group. Conclusions The oral and fecal microbiotas of IBS-D patients differ from those of the control group; hence studying IBS-D from the perspective of the oral-gut microbiome axis is an interesting research avenue.
Collapse
Affiliation(s)
- Binbin Tang
- Second Outpatient Department, Tongde Hospital of Zhejiang Province, Hangzhou, China,Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunlian Hu
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Jianhui Chen
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China,Corresponding author. Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
| | - Chengxia Su
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China,Corresponding author. First Clinical College, Hubei University of Chinese Medicine, Wuhan, China.
| | - Qian Zhang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Chaoqun Huang
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China,First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
24
|
Moroz LL, Romanova DY. Alternative neural systems: What is a neuron? (Ctenophores, sponges and placozoans). Front Cell Dev Biol 2022; 10:1071961. [PMID: 36619868 PMCID: PMC9816575 DOI: 10.3389/fcell.2022.1071961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
How to make a neuron, a synapse, and a neural circuit? Is there only one 'design' for a neural architecture with a universally shared genomic blueprint across species? The brief answer is "No." Four early divergent lineages from the nerveless common ancestor of all animals independently evolved distinct neuroid-type integrative systems. One of these is a subset of neural nets in comb jellies with unique synapses; the second lineage is the well-known Cnidaria + Bilateria; the two others are non-synaptic neuroid systems in sponges and placozoans. By integrating scRNA-seq and microscopy data, we revise the definition of neurons as synaptically-coupled polarized and highly heterogenous secretory cells at the top of behavioral hierarchies with learning capabilities. This physiological (not phylogenetic) definition separates 'true' neurons from non-synaptically and gap junction-coupled integrative systems executing more stereotyped behaviors. Growing evidence supports the hypothesis of multiple origins of neurons and synapses. Thus, many non-bilaterian and bilaterian neuronal classes, circuits or systems are considered functional rather than genetic categories, composed of non-homologous cell types. In summary, little-explored examples of convergent neuronal evolution in representatives of early branching metazoans provide conceptually novel microanatomical and physiological architectures of behavioral controls in animals with prospects of neuro-engineering and synthetic biology.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova, Moscow, Russia
| |
Collapse
|
25
|
Colgren J, Burkhardt P. The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays Biochem 2022; 66:781-795. [PMID: 36205407 PMCID: PMC9750855 DOI: 10.1042/ebc20220042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Neurons, especially when coupled with muscles, allow animals to interact with and navigate through their environment in ways unique to life on earth. Found in all major animal lineages except sponges and placozoans, nervous systems range widely in organization and complexity, with neurons possibly representing the most diverse cell-type. This diversity has led to much debate over the evolutionary origin of neurons as well as synapses, which allow for the directed transmission of information. The broad phylogenetic distribution of neurons and presence of many of the defining components outside of animals suggests an early origin of this cell type, potentially in the time between the first animal and the last common ancestor of extant animals. Here, we highlight the occurrence and function of key aspects of neurons outside of animals as well as recent findings from non-bilaterian animals in order to make predictions about when and how the first neuron(s) arose during animal evolution and their relationship to those found in extant lineages. With advancing technologies in single cell transcriptomics and proteomics as well as expanding functional techniques in non-bilaterian animals and the close relatives of animals, it is an exciting time to begin unraveling the complex evolutionary history of this fascinating animal cell type.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| |
Collapse
|
26
|
Wang L, Li WQ, Liu F, Li YJ, Du J. Decreased xCT activity in patients associated with Helicobacter pylori infection. Front Pharmacol 2022; 13:1021655. [PMID: 36545313 PMCID: PMC9760671 DOI: 10.3389/fphar.2022.1021655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Objective: In animals, Helicobacter pylori (Hp)-induced gastric injury is accompanied by a decrease in the activity of the cysteine/glutamate transporter (xCT), which regulates extracellular glutamate levels. However, the impact of xCT activity in patients with Hp infection remains unclear. This study aims to investigate variations of xCT activity in the gastric mucosa of patients with Hp infection and to provide a clinical basis for identifying targets related to Hp infection. Methods: Our study included a total of 67 patients with gastritis, which consisted of 44 Hp-negative and 23 Hp-positive peptic ulcer cases. The inclusion criteria used to select patients were as follows: gastric histology was determined with a gastroscope, antral biopsies were taken for urease tests, and pathology and culture were performed for analysis of Hp-colonization. The clinical characteristics of the patients were obtained, the expressions of microRNAs and xCT protein were detected using immune histochemical analysis, and the concentration of glutamate in their gastric secretion was determined. Results: The findings revealed that xCT expression was significantly lower in Hp-positive patients as compared to Hp-negative individuals, which was accompanied by a decrease in glutamate concentration in gastric juice. We also discovered a high expression of microRNAs that have been shown to negatively regulate xCT expression, in Hp-positive patients. Conclusion: Reduced xCT activity in patients may play an important role in gastric ulcers caused by Hp infection. Our findings suggest that the microRNA/xCT pathway could be a potential treatment target for Hp-infection-related ulcers.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fen Liu
- Department of Digestion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuan-Jian Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Jie Du,
| |
Collapse
|
27
|
Mezheritskiy MI, Dyakonova VE. Direct and Inherited Epigenetic Changes in the Nervous System Caused by Intensive Locomotion: Possible Adaptive Significance. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
This review is devoted to the analysis of works that investigated the long-term effects of species-specific forms of intensive locomotion on the cognitive functions of animals and humans, which can be transmitted to the next generation. To date, the anxiolytic and cognitive-enhancing long-term effects of intensive locomotion have been demonstrated in humans, rodents, fish, insects, mollusks, and nematodes. In rodents, changes in the central nervous system caused by intense locomotion can be transmitted through the maternal and paternal line to the descendants of the first generation. These include reduced anxiety, improved spatial learning and memory, increased levels of brain neurotrophic factor and vascular endothelial growth factor in the hippocampus and frontal cortex. The shift of the balance of histone acetylation in the hippocampus of rodents towards hyperacetylation, and the balance of DNA methylation towards demethylation manifests itself both as a direct and as a first-generation inherited effect of motor activity. The question about the mechanisms that link locomotion with an increase in the plasticity of a genome in the brain of descendants remains poorly understood, and invertebrate model organisms can be an ideal object for its study. Currently, there is a lack of a theoretical model explaining why motor activity leads to long-term improvement of some cognitive functions that can be transmitted to the next generation and why such an influence could have appeared in evolution. The answer to these questions is not only of fundamental interest, but it is necessary for predicting therapeutic and possible side effects of motor activity in humans. In this regard, the article pays special attention to the review of ideas on the evolutionary aspects of the problem. We propose our own hypothesis, according to which the activating effect of intensive locomotion on the function of the nervous system could have been formed in evolution as a preadaptation to a possible entry into a new environment.
Collapse
|
28
|
FKN/NR Signaling Pathway Regulates Hippocampal Inflammatory Responses: the Survival of Hippocampal Neurons in Diabetic Rats with Chronic Unpredictable Mild Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8980627. [PMID: 36072409 PMCID: PMC9444384 DOI: 10.1155/2022/8980627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Aim To investigate the mechanism via which FKN/CX3CR1 signaling abnormalities mediate N-methyl-D-aspartic acid receptor (NMDA) overexcitation-induced hippocampal neuronal injury in diabetic rats complicated with depression (DD). Methods Sixty rats were randomly divided into 5 groups. The depression-like behaviors of the rats were evaluated by open field test and Morris water maze. The pathological changes of hippocampus in DD rats were observed by HE staining. The blood levels of inflammatory factors (IL-1β, TNF-α, and IL-6) and neurotransmitters (D-serine and glutamic acid) were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of BDNF, A1 receptor (A1R), A2 receptor (A2R), A3 receptor (A3R), calmodulin dependent kinase II (CaMKII), CX3CR1, CX3CL1 (FKN), NR2A, and NR2B proteins were detected by immunohistochemistry and Western-blotting. Results Compared with the normal control group, blood glucose level increased significantly and body weight decreased in T2DM group and T2DMC group. In addition, the number of spontaneous activities significantly decreased and the capability of learning and memory was attenuated in T2DMC group and Chronic Stress group. The blood levels of IL-1β, TNF-α, IL-6, glutamate (Glu), and D-serine significantly increased in each model group. After intervention with CX3CR1 antibody, the expressions of BDNF, CaMK II, A1R, and A3R increased and those of A2R, CX3CR1, FKN, NR2A, and NR2B decreased. Conclusion In the diabetic state, the binding of FKN to CX3CR1 increases, which regulates a variety of adenosine receptors. When it exerts its effect on neurons, the overactivation of NR results in neuronal injury and causes depression.
Collapse
|
29
|
GABAergic and Glutamatergic Phenotypes of Neurons Expressing Calcium-Binding Proteins in the Preoptic Area of the Guinea Pig. Int J Mol Sci 2022; 23:ijms23147963. [PMID: 35887305 PMCID: PMC9320123 DOI: 10.3390/ijms23147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The mammalian preoptic area (POA) has large populations of calbindin (CB), calretinin (CR) and parvalbumin (PV) neurons, but phenotypes of these cells are unknown. Therefore, the question is whether neurons expressing CB, CR, and/or PV are GABAergic or glutamatergic. Double-immunofluorescence staining followed by epifluorescence and confocal microscopy was used to determine the coexpression patterns of CB, CR and PV expressing neurons with vesicular GABA transporters (VGAT) as specific markers of GABAergic neurons and vesicular glutamate transporters (VGLUT 2) as specific markers of glutamatergic neurons. The guinea pig was adopted as, like humans, it has a reproductive cycle with a true luteal phase and a long gestation period. The results demonstrated that in the guinea pig POA of both sexes, ~80% of CB+ and ~90% of CR+ neurons coexpress VGAT; however, one-fifth of CB+ neurons and one-third of CR+ cells coexpress VGLUT. About two-thirds of PV+ neurons express VGAT, and similar proportion of them coexpress VGLUT. Thus, many CB+, CR+ and PV+ neurons may be exclusively GABAergic (VGAT-expressing cells) or glutamatergic (VGLUT-expressing cells); however, at least a small fraction of CR+ cells and at least one-third of PV+ cells are likely neurons with a dual GABA/glutamate phenotype that may coexpress both transporters.
Collapse
|
30
|
The evolution of synaptic and cognitive capacity: Insights from the nervous system transcriptome of Aplysia. Proc Natl Acad Sci U S A 2022; 119:e2122301119. [PMID: 35867761 PMCID: PMC9282427 DOI: 10.1073/pnas.2122301119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The gastropod mollusk Aplysia is an important model for cellular and molecular neurobiological studies, particularly for investigations of molecular mechanisms of learning and memory. We developed an optimized assembly pipeline to generate an improved Aplysia nervous system transcriptome. This improved transcriptome enabled us to explore the evolution of cognitive capacity at the molecular level. Were there evolutionary expansions of neuronal genes between this relatively simple gastropod Aplysia (20,000 neurons) and Octopus (500 million neurons), the invertebrate with the most elaborate neuronal circuitry and greatest behavioral complexity? Are the tremendous advances in cognitive power in vertebrates explained by expansion of the synaptic proteome that resulted from multiple rounds of whole genome duplication in this clade? Overall, the complement of genes linked to neuronal function is similar between Octopus and Aplysia. As expected, a number of synaptic scaffold proteins have more isoforms in humans than in Aplysia or Octopus. However, several scaffold families present in mollusks and other protostomes are absent in vertebrates, including the Fifes, Lev10s, SOLs, and a NETO family. Thus, whereas vertebrates have more scaffold isoforms from select families, invertebrates have additional scaffold protein families not found in vertebrates. This analysis provides insights into the evolution of the synaptic proteome. Both synaptic proteins and synaptic plasticity evolved gradually, yet the last deuterostome-protostome common ancestor already possessed an elaborate suite of genes associated with synaptic function, and critical for synaptic plasticity.
Collapse
|
31
|
Dyakonova VE. Origin and Evolution of the Nervous System: New Data from Comparative Whole Genome Studies of Multicellular Animals. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Romanova DY, Nikitin MA, Shchenkov SV, Moroz LL. Expanding of Life Strategies in Placozoa: Insights From Long-Term Culturing of Trichoplax and Hoilungia. Front Cell Dev Biol 2022; 10:823283. [PMID: 35223848 PMCID: PMC8864292 DOI: 10.3389/fcell.2022.823283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Placozoans are essential reference species for understanding the origins and evolution of animal organization. However, little is known about their life strategies in natural habitats. Here, by maintaining long-term culturing for four species of Trichoplax and Hoilungia, we extend our knowledge about feeding and reproductive adaptations relevant to the diversity of life forms and immune mechanisms. Three modes of population dynamics depended upon feeding sources, including induction of social behaviors, morphogenesis, and reproductive strategies. In addition to fission, representatives of all species produced “swarmers” (a separate vegetative reproduction stage), which could also be formed from the lower epithelium with greater cell-type diversity. We monitored the formation of specialized spheroid structures from the upper cell layer in aging culture. These “spheres” could be transformed into juvenile animals under favorable conditions. We hypothesize that spheroid structures represent a component of the innate immune defense response with the involvement of fiber cells. Finally, we showed that regeneration could be a part of the adaptive reproductive strategies in placozoans and a unique experimental model for regenerative biology.
Collapse
Affiliation(s)
- Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
- *Correspondence: Daria Y. Romanova, ; Leonid L. Moroz,
| | - Mikhail A. Nikitin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V. Shchenkov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
- *Correspondence: Daria Y. Romanova, ; Leonid L. Moroz,
| |
Collapse
|
33
|
Shmukler YB, Nikishin DA. Non-Neuronal Transmitter Systems in Bacteria, Non-Nervous Eukaryotes, and Invertebrate Embryos. Biomolecules 2022; 12:271. [PMID: 35204771 PMCID: PMC8961645 DOI: 10.3390/biom12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
In 1921, Otto Loewi published his report that ushered in the era of chemical transmission of biological signals. January 2021 marked the 90th anniversary of the birth of Professor Gennady A. Buznikov, who was the first to study the functions of transmitters in embryogenesis. A year earlier it was 60 years since his first publication in this field. These data are a venerable occasion for a review of current knowledge on the mechanisms related to classical transmitters such as 5-hydroxytryptamine, acetylcholine, catecholamines, etc., in animals lacking neural elements and prenervous invertebrate embryos.
Collapse
Affiliation(s)
- Yuri B. Shmukler
- Lab of the Problems of Regeneration, N. K. Koltzov Institute of Developmental Biology RAS, Moscow 119334, Russia;
| | | |
Collapse
|
34
|
Frenguelli BG. The glutamatergic synapse - A key hub in neuronal metabolism, signalling and plasticity. Neuropharmacology 2022; 207:108945. [PMID: 34999011 DOI: 10.1016/j.neuropharm.2022.108945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Special Issue of Neuropharmacology on the glutamatergic synapse is one of a series of Special Issues celebrating the 40th anniversary of Dick Evans and Jeff Watkins's seminal review on excitatory amino acids (Watkins and Evans, 1981). Through a careful appraisal of the literature extending several decades prior to the 1980s, and their own development and use of ligands for excitatory amino acid receptors, Dick and Jeff provided incontrovertible proof for the veracity and importance of glutamate as a neurotransmitter in the central nervous system. While other Special Issues in this series examine the receptors activated by glutamate (AMPA, NMDA, Kainate, mGluR and Delta/Orphan glutamate receptors) this Special Issue examines the glutamatergic synapse itself, and considers its evolution, metabolism, structure, properties and plasticity that have placed it so firmly at the centre of neuronal signalling in the central nervous system.
Collapse
|
35
|
Moroz LL, Romanova DY. Selective Advantages of Synapses in Evolution. Front Cell Dev Biol 2021; 9:726563. [PMID: 34490275 PMCID: PMC8417881 DOI: 10.3389/fcell.2021.726563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Lab of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|