1
|
Biltz RG, Yin W, Goodman EJ, Wangler LM, Davis AC, Oliver BT, Godbout JP, Sheridan JF. Repeated social defeat in male mice induced unique RNA profiles in projection neurons from the amygdala to the hippocampus. Brain Behav Immun Health 2025; 43:100908. [PMID: 39720627 PMCID: PMC11667635 DOI: 10.1016/j.bbih.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic stress increases the incidence of psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Repeated Social Defeat (RSD) in mice recapitulates several key physiological, immune, and behavioral changes evident after chronic stress in humans. For instance, neurons in the prefrontal cortex, amygdala, and hippocampus are involved in the interpretation of and response to fear and threatful stimuli after RSD. Therefore, the purpose of this study was to determine how stress influenced the RNA profile of hippocampal neurons and neurons that project into the hippocampus from threat appraisal centers. Here, RSD increased anxiety-like behavior in the elevated plus maze and reduced hippocampal-dependent novel object location memory in male mice. Next, pan-neuronal (Baf53 b-Cre) RiboTag mice were generated to capture ribosomal bound mRNA (i.e., active translation) activated by RSD in the hippocampus. RNAseq revealed that there were 1694 differentially expressed genes (DEGs) in hippocampal neurons after RSD. These DEGs were associated with an increase in oxidative stress, synaptic long-term potentiation, and neuroinflammatory signaling. To further examine region-specific neural circuitry associated with fear and anxiety, a retrograde-adeno-associated-virus (AAV2rg) expressing Cre-recombinase was injected into the hippocampus of male RiboTag mice. This induced expression of a hemagglutinin epitope in neurons that project into the hippocampus. These AAV2rg-RiboTag mice were subjected to RSD and ribosomal-bound mRNA was collected from the amygdala for RNA-sequencing. RSD induced 677 DEGs from amygdala projections. Amygdala neurons that project into the hippocampus had RNA profiles associated with increased synaptogenesis, interleukin-1 signaling, nitric oxide, and reactive oxygen species production. Using a similar approach, there were 1132 DEGs in neurons that project from the prefrontal cortex. These prefrontal cortex neurons had RNA profiles associated with increased synaptogenesis, integrin signaling, and dopamine feedback signaling after RSD. Collectively, there were unique RNA profiles of stress-influenced projection neurons and these profiles were associated with hippocampal-dependent behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Rebecca G. Biltz
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Wenyuan Yin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Ethan J. Goodman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Lynde M. Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Amara C. Davis
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Braedan T. Oliver
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
- Chronic Brain Injury Program, The Ohio State University, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| | - John F. Sheridan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
- Division of Biosciences, The Ohio State University College of Dentistry, USA
- Chronic Brain Injury Program, The Ohio State University, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| |
Collapse
|
2
|
Pondelick AM, Moncayo LV, Donvito G, McLane VD, Gillespie JC, Hauser KF, Spiegel S, Lichtman AH, Sim-Selley LJ, Selley DE. Dissociation between the anti-allodynic effects of fingolimod (FTY720) and desensitization of S1P 1 receptor-mediated G-protein activation in a mouse model of sciatic nerve injury. Neuropharmacology 2024; 261:110165. [PMID: 39303855 DOI: 10.1016/j.neuropharm.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice. Daily injections of FTY720 for 14 days dose-dependently reversed CCI-induced mechanical allodynia without tolerance development, and concomitantly resulted in a dose-dependent reduction of G-protein activation by the S1PR1-selective agonist SEW2871 in the lumbar spinal cord and brain. These findings indicate FTY720-induced desensitization of S1PR1 signaling coincides with its anti-allodynic effects. Consistent with this finding, a single injection of FTY720 reversed mechanical allodynia while concomitantly producing partial desensitization of S1PR1-stimulated G-protein activation in the CNS. However, mechanical allodynia returned 24-hr post injection, despite S1PR1 desensitization at that time, demonstrating a dissociation between these measures. Furthermore, CCI surgery led to elevations of sphingolipid metabolites, including S1P, which were unaffected by daily FTY720 administration, suggesting FTY720 reversed mechanical allodynia by targeting S1PR1 rather than sphingolipid metabolism. Supporting this hypothesis, acute administration of the S1PR1-selective agonist CYM-5442 mimicked the anti-allodynic effect of FTY720. In contrast, the S1PR1-selective antagonist NIBR-0213 prevented the anti-allodynic effect of FTY720, but NIBR-0213 given alone did not affect nociception. These results indicate that FTY720 alleviates CCI-induced allodynia through a mechanism distinct from functional antagonism.
Collapse
Affiliation(s)
- Abby M Pondelick
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren V Moncayo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
3
|
Fu F, Li W, Zheng X, Wu Y, Du D, Han C. Role of Sphingosine-1-Phosphate Signaling Pathway in Pancreatic Diseases. Int J Mol Sci 2024; 25:11474. [PMID: 39519028 PMCID: PMC11545938 DOI: 10.3390/ijms252111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolic product produced via the phosphorylation of sphingosine by sphingosine kinases (SPHKs), serving as a powerful modulator of various cellular processes through its interaction with S1P receptors (S1PRs). Currently, this incompletely understood mechanism in pancreatic diseases including pancreatitis and pancreatic cancer, largely limits therapeutic options for these disorders. Recent evidence indicates that S1P significantly contributes to pancreatic diseases by modulating inflammation, promoting pyroptosis in pancreatic acinar cells, regulating the activation of pancreatic stellate cells, and affecting organelle functions in pancreatic cancer cells. Nevertheless, no review has encapsulated these advancements. Thus, this review compiles information about the involvement of S1P signaling in exocrine pancreatic disorders, including acute pancreatitis, chronic pancreatitis, and pancreatic cancer, as well as prospective treatment strategies to target S1P signaling for these conditions. The insights presented here possess the potential to offer valuable guidance for the implementation of therapies targeting S1P signaling in various pancreatic diseases.
Collapse
Affiliation(s)
- Fei Fu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Wanmeng Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Xiaoyin Zheng
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
4
|
Kiritoshi T, Yakhnitsa V, Singh S, Wilson TD, Chaudhry S, Neugebauer B, Torres-Rodriguez JM, Lin JL, Carrasquillo Y, Neugebauer V. Cells and circuits for amygdala neuroplasticity in the transition to chronic pain. Cell Rep 2024; 43:114669. [PMID: 39178115 PMCID: PMC11473139 DOI: 10.1016/j.celrep.2024.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Maladaptive plasticity is linked to the chronification of diseases such as pain, but the transition from acute to chronic pain is not well understood mechanistically. Neuroplasticity in the central nucleus of the amygdala (CeA) has emerged as a mechanism for sensory and emotional-affective aspects of injury-induced pain, although evidence comes from studies conducted almost exclusively in acute pain conditions and agnostic to cell type specificity. Here, we report time-dependent changes in genetically distinct and projection-specific CeA neurons in neuropathic pain. Hyperexcitability of CRF projection neurons and synaptic plasticity of parabrachial (PB) input at the acute stage shifted to hyperexcitability without synaptic plasticity in non-CRF neurons at the chronic phase. Accordingly, chemogenetic inhibition of the PB→CeA pathway mitigated pain-related behaviors in acute, but not chronic, neuropathic pain. Cell-type-specific temporal changes in neuroplasticity provide neurobiological evidence for the clinical observation that chronic pain is not simply the prolonged persistence of acute pain.
Collapse
Affiliation(s)
- Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sudhuman Singh
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Torri D Wilson
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Chaudhry
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Neugebauer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeitzel M Torres-Rodriguez
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny L Lin
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA.
| |
Collapse
|
5
|
Yakhnitsa V, Thompson J, Ponomareva O, Ji G, Kiritoshi T, Mahimainathan L, Molehin D, Pruitt K, Neugebauer V. Dysfunction of Small-Conductance Ca 2+-Activated Potassium (SK) Channels Drives Amygdala Hyperexcitability and Neuropathic Pain Behaviors: Involvement of Epigenetic Mechanisms. Cells 2024; 13:1055. [PMID: 38920682 PMCID: PMC11201618 DOI: 10.3390/cells13121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Neuroplasticity in the amygdala and its central nucleus (CeA) is linked to pain modulation and pain behaviors, but cellular mechanisms are not well understood. Here, we addressed the role of small-conductance Ca2+-activated potassium (SK) channels in pain-related amygdala plasticity. The facilitatory effects of the intra-CeA application of an SK channel blocker (apamin) on the pain behaviors of control rats were lost in a neuropathic pain model, whereas an SK channel activator (NS309) inhibited pain behaviors in neuropathic rats but not in sham controls, suggesting the loss of the inhibitory behavioral effects of amygdala SK channels. Brain slice electrophysiology found hyperexcitability of CeA neurons in the neuropathic pain condition due to the loss of SK channel-mediated medium afterhyperpolarization (mAHP), which was accompanied by decreased SK2 channel protein and mRNA expression, consistent with a pretranscriptional mechanisms. The underlying mechanisms involved the epigenetic silencing of the SK2 gene due to the increased DNA methylation of the CpG island of the SK2 promoter region and the change in methylated CpG sites in the CeA in neuropathic pain. This study identified the epigenetic dysregulation of SK channels in the amygdala (CeA) as a novel mechanism of neuropathic pain-related plasticity and behavior that could be targeted to control abnormally enhanced amygdala activity and chronic neuropathic pain.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Lenin Mahimainathan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Pozzilli V, Haggiag S, Di Filippo M, Capone F, Di Lazzaro V, Tortorella C, Gasperini C, Prosperini L. Incidence and determinants of seizures in multiple sclerosis: a meta-analysis of randomised clinical trials. J Neurol Neurosurg Psychiatry 2024; 95:612-619. [PMID: 38383156 DOI: 10.1136/jnnp-2023-332996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Seizures are reported to be more prevalent in individuals with multiple sclerosis (MS) compared with the general population. Existing data predominantly originate from population-based studies, which introduce variability in methodologies and are vulnerable to selection and reporting biases. METHODS This meta-analysis aims to assess the incidence of seizures in patients participating in randomised clinical trials and to identify potential contributing factors. Data were extracted from 60 articles published from 1993 to 2022. The pooled effect size, representing the incidence rate of seizure events, was estimated using a random-effect model. Metaregression was employed to explore factors influencing the pooled effect size. RESULTS The meta-analysis included data from 53 535 patients and 120 seizure events in a median follow-up of 2 years. The pooled incidence rate of seizures was 68.0 per 100 000 patient-years, significantly higher than the general population rate of 34.6. Generalised tonic-clonic seizures were the most common type reported, although there was a high risk of misclassification for focal seizures with secondary generalisation. Disease progression, longer disease duration, higher disability levels and lower brain volume were associated with a higher incidence of seizures. Particularly, sphingosine-1-phosphate receptor (S1PR) modulators exhibited a 2.45-fold increased risk of seizures compared with placebo or comparators, with a risk difference of 20.5 events per 100 000 patient-years. CONCLUSIONS Patients with MS face a nearly twofold higher seizure risk compared with the general population. This risk appears to be associated not only with disease burden but also with S1PR modulators. Our findings underscore epilepsy as a significant comorbidity in MS and emphasise the necessity for further research into its triggers, preventive measures and treatment strategies.
Collapse
Affiliation(s)
- Valeria Pozzilli
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Lazio, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Shalom Haggiag
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Roma, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Lazio, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Lazio, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carla Tortorella
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Roma, Italy
| | - Claudio Gasperini
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Roma, Italy
| | - Luca Prosperini
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Roma, Italy
| |
Collapse
|
7
|
Crofton EJ, O'Buckley TK, Bohnsack JP, Morrow AL, Herman MA. Divergent Population-Specific Effects of Chronic Ethanol Exposure on Excitability and Inhibitory Transmission in Male and Female Rat Central Amygdala. J Neurosci 2023; 43:7056-7068. [PMID: 37657933 PMCID: PMC10586533 DOI: 10.1523/jneurosci.0717-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The central nucleus of the amygdala (CeA) is implicated in alcohol use disorder (AUD) and AUD-associated plasticity. The CeA is a primarily GABAergic nucleus that is subdivided into lateral and medial compartments with genetically diverse subpopulations. GABAA receptors are heteromeric pentamers with subunits conferring distinct physiological characteristics. GABAA receptor signaling in the CeA has been implicated in ethanol-associated plasticity; however, population-specific changes in inhibitory signaling and subunit expression remain unclear. Here, we combined electrophysiology with single-cell gene expression analysis of population markers and GABAA receptor subunits to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure. We found that chronic ethanol exposure and withdrawal produced global changes in GABAA receptor subunit expression at the transcript and protein levels, increased excitability in female CeA neurons, and increased inhibitory synaptic transmission in male CeA neurons. When we examined CeA neurons at the single-cell level we found heterogenous populations, as previously reported. We observed ethanol-induced increases in excitability only in somatostatin neurons in the CeA of females, decreases in excitability only in the protein kinase C delta (PKCd) population in males, and ethanol-induced increases in inhibitory transmission in male PKCd and calbindin 2-expressing CeA neurons. There were no population-specific differences in GABAA receptor (Gabr) subunits in males but reduced GabrA5 expression in female somatostatin neurons. Collectively, these findings suggest that defined CeA populations display differential ethanol sensitivity in males and females, which may play a role in sex differences in vulnerability to AUD or expression of AUD pathology.SIGNIFICANCE STATEMENT The CeA is involved in the effects of ethanol in the brain; however, the population-specific changes in CeA activity remain unclear. We used recordings of CeA neuronal activity and single-cell gene expression to examine population-specific changes in inhibitory control in male and female rats following chronic ethanol exposure and found sex- and population-specific effects of chronic ethanol exposure and withdrawal. Specifically, female CeA neurons displayed increased excitability in the somatostatin CeA population, whereas male CeA neurons displayed increased inhibitory control in both PKCd and calbindin populations and decreased excitability in the PKCd population. These findings identify CeA populations that display differential sensitivity to ethanol exposure, which may contribute to sex differences in vulnerability to alcohol use disorder.
Collapse
Affiliation(s)
- Elizabeth J Crofton
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychology and Neuroscience, Emmanuel College, Boston, Massachusetts 02115
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - John P Bohnsack
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - A Leslie Morrow
- Departments of Psychiatry
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Melissa A Herman
- Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Wang Y, Krabbe S, Eddison M, Henry FE, Fleishman G, Lemire AL, Wang L, Korff W, Tillberg PW, Lüthi A, Sternson SM. Multimodal mapping of cell types and projections in the central nucleus of the amygdala. eLife 2023; 12:e84262. [PMID: 36661218 PMCID: PMC9977318 DOI: 10.7554/elife.84262] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The central nucleus of the amygdala (CEA) is a brain region that integrates external and internal sensory information and executes innate and adaptive behaviors through distinct output pathways. Despite its complex functions, the diversity of molecularly defined neuronal types in the CEA and their contributions to major axonal projection targets have not been examined systematically. Here, we performed single-cell RNA-sequencing (scRNA-seq) to classify molecularly defined cell types in the CEA and identified marker genes to map the location of these neuronal types using expansion-assisted iterative fluorescence in situ hybridization (EASI-FISH). We developed new methods to integrate EASI-FISH with 5-plex retrograde axonal labeling to determine the spatial, morphological, and connectivity properties of ~30,000 molecularly defined CEA neurons. Our study revealed spatiomolecular organization of the CEA, with medial and lateral CEA associated with distinct molecularly defined cell families. We also found a long-range axon projection network from the CEA, where target regions receive inputs from multiple molecularly defined cell types. Axon collateralization was found primarily among projections to hindbrain targets, which are distinct from forebrain projections. This resource reports marker gene combinations for molecularly defined cell types and axon-projection types, which will be useful for selective interrogation of these neuronal populations to study their contributions to the diverse functions of the CEA.
Collapse
Affiliation(s)
- Yuhan Wang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sabine Krabbe
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Mark Eddison
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Fredrick E Henry
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Greg Fleishman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Howard Hughes Medical Institute & Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
9
|
Li JN, Chen K, Sheets PL. Topographic organization underlies intrinsic and morphological heterogeneity of central amygdala neurons expressing corticotropin-releasing hormone. J Comp Neurol 2022; 530:2286-2303. [PMID: 35579999 PMCID: PMC9283236 DOI: 10.1002/cne.25332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
The central nucleus of the amygdala (CeA) network consists of a heterogeneous population of inhibitory GABAergic neurons distributed across distinct subregions. While the specific roles for molecularly defined CeA neurons have been extensively studied, our understanding of functional heterogeneity within classes of molecularly distinct CeA neurons remains incomplete. In addition, manipulation of genetically defined CeA neurons has produced inconsistent behavioral results potentially due to broad targeting across CeA subregions. Therefore, elucidating heterogeneity within molecularly defined neurons in subdivisions of the CeA is pivotal for gaining a complete understanding of how CeA circuits function. Here, we used a multifaceted approach involving transgenic reporter mice, brain slice electrophysiology, and neuronal morphology to dissect the heterogeneity of corticotropin‐releasing hormone (CRH) neurons in topographically distinct subregions of the CeA. Our results revealed that intrinsic and morphological properties of CRH‐expressing (CRH+) neurons in the lateral (CeL) and medial (CeM) subdivisions of the CeA were significantly different. We found that CeL‐CRH+ neurons are relatively homogeneous in morphology and firing profile. Conversely, CeM‐CRH+ neurons displayed heterogeneous electrophysiological and morphological phenotypes. Overall, these results show phenotypic differences between CRH+ neurons in CeL and CeM.
Collapse
Affiliation(s)
- Jun-Nan Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kevin Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Zionsville Community High School, Zionsville, Indiana, USA
| | - Patrick L Sheets
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|