1
|
Chen C, Lee VG. Looking away to see: The acquisition of a search habit away from the saccade direction. Vision Res 2023; 211:108276. [PMID: 37356376 DOI: 10.1016/j.visres.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Growing evidence has shown that attention can be habit-like, unconsciously and persistently directed toward locations that have frequently contained search targets in the past. The attentional preference typically arises when the eye gaze aligns with the attended location. Here we tested whether this spatial alignment is necessary for the acquisition of a search habit. To divert eye movements away from an attended location, we used gaze-contingent eye tracking, restricting the visible portion of the screen to an area opposite to the current gaze. Participants searched for a T target amidst a circular array of L distractors. Unbeknownst to them, the target appeared more frequently in one screen quadrant. Despite fixating on a location diametrically opposite to the visible, attended region, participants acquired probability cuing, producing quicker responses when the target appeared in the high-probability quadrant. They also showed a speed advantage in the diagonal quadrant. The attentional preference for the high-probability quadrant persisted during a testing phase in which the target's location was unbiased, but only when participants continued to search with the restricted view. These results indicate that a search habit can be acquired even when participants are required to look away from the high-probability locations. The finding suggests that the learned search habit is not solely a result of oculomotor learning.
Collapse
Affiliation(s)
- Chen Chen
- Department of Psychology, University of Minnesota, United States.
| | - Vanessa G Lee
- Department of Psychology, University of Minnesota, United States; Center for Cognitive Sciences, University of Minnesota, United States
| |
Collapse
|
2
|
Masson N, Pesenti M. A functional role for oculomotor preparation in mental arithmetic evidenced by the abducted eye paradigm. PSYCHOLOGICAL RESEARCH 2023; 87:919-928. [PMID: 35758995 DOI: 10.1007/s00426-022-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Solving subtraction and addition problems is accompanied by spontaneous leftward and rightward gaze shifts, respectively. These shifts have been related to attentional processes involved in mental arithmetic, but whether these processes induce overt attentional shifts mediated by the activation of the motor programs underlying lateral eye movements or covert shifts only is still unknown. Here, we used the abducted eye paradigm to selectively disrupt activation of the oculomotor system and prevent oculomotor preparation, which affects overt but not covert attentional shifts. Participants had to mentally solve addition and subtraction problems while fixating a screen positioned either in front of them or laterally to their left or right such that they were physically unable to programme and execute saccades further into their temporal field while they still could do so in their nasal field. In comparison to the frontal condition, rightward eye abduction impaired additions (with carrying), and leftward eye abduction impaired subtractions (with borrowing) showing that at least some arithmetic problems rely on processes dedicated to overt attentional shifts. We propose that when solving arithmetic problems requires procedures such as carrying and borrowing, oculomotor mechanisms operating on a mental space transiently built in working memory are recruited to represent one numerical magnitude in relation to another (e.g. the first operand and the result).
Collapse
Affiliation(s)
- Nicolas Masson
- Psychological Sciences Research Institute, Université catholique de Louvain, place Mercier 10, B-1348, Louvain-la-Neuve, Belgium.
- Department of Behavioural and Cognitive Sciences (DBCS), Institute of Cognitive Science and Assessment (COSA), Faculty of Humanities, Education and Social Sciences (FHSE), University of Luxembourg, Luxembourg, Luxembourg.
| | - Mauro Pesenti
- Psychological Sciences Research Institute, Université catholique de Louvain, place Mercier 10, B-1348, Louvain-la-Neuve, Belgium.
- Institute of Neuroscience, Université catholique de Louvain, Bruxelles, Belgium.
| |
Collapse
|
3
|
Shifting attention in visuospatial short-term memory does not require oculomotor planning: Insight from congenital gaze paralysis. Neuropsychologia 2021; 161:107998. [PMID: 34419490 DOI: 10.1016/j.neuropsychologia.2021.107998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
Attention allows pieces of information stored in visuospatial short-term memory (VSSTM) to be selectively processed. Previous studies showed that shifts of attention in VSSTM in response to a retro-cue are accompanied by eye movements in the direction of the position of the memorized item although there is nothing left to look at. This finding raises the possibility that shifts of attention in VSSTM are underpinned by mechanisms originally involved in the planning and control of eye movements. To explore this possibility, we investigated the ability of an individual with congenital horizontal gaze paralysis (HGP2) to shift her attention horizontally or vertically toward a memorized item within VSSTM using a retro-cue paradigm. As efficient oculomotor programming is not innate but requires some trial and error learning and adaptation to develop, congenital paralysis prevents this development. Consequently, if shifts of attention in VSSTM rely on the same mechanisms as those supporting the programming of eye movements, then horizontal congenital gaze paralysis should necessarily prevent typical retro-cueing effect in the paralyzed axis. At odds with this prediction, HGP2 showed a typical retro-cueing effect in her paralyzed axis. This original finding indicates that selecting an item within VSSTM does not depend on the ability to program a saccade.
Collapse
|
4
|
Edwards SG, Rudrum M, McDonough KL, Bayliss AP. The influence of social and emotional context on the gaze leading orienting effect. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.1980169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. Gareth Edwards
- School of Psychology, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Megan Rudrum
- School of Psychology, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Andrew P. Bayliss
- School of Psychology, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
5
|
Li HH, Hanning NM, Carrasco M. To look or not to look: dissociating presaccadic and covert spatial attention. Trends Neurosci 2021; 44:669-686. [PMID: 34099240 PMCID: PMC8552810 DOI: 10.1016/j.tins.2021.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Attention is a central neural process that enables selective and efficient processing of visual information. Individuals can attend to specific visual information either overtly, by making an eye movement to an object of interest, or covertly, without moving their eyes. We review behavioral, neuropsychological, neurophysiological, and computational evidence of presaccadic attentional modulations that occur while preparing saccadic eye movements, and highlight their differences from those of covert spatial endogenous (voluntary) and exogenous (involuntary) attention. We discuss recent studies and experimental procedures on how these different types of attention impact visual performance, alter appearance, differentially modulate the featural representation of basic visual dimensions (orientation and spatial frequency), engage different neural computations, and recruit partially distinct neural substrates. We conclude that presaccadic attention and covert attention are dissociable.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| | - Nina M Hanning
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Spatial attention and spatial short term memory in PSP and Parkinson's disease. Cortex 2021; 137:49-60. [PMID: 33588132 DOI: 10.1016/j.cortex.2020.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022]
Abstract
Progressive Supranuclear Palsy (PSP) is a neurodegenerative disorder characterised by deterioration in motor, oculomotor and cognitive function. A key clinical feature of PSP is the progressive paralysis of eye movements, most notably for vertical saccades. These oculomotor signs can be subtle, however, and PSP is often misdiagnosed as Parkinson's disease (PD), in its early stages. Although some of the clinical features of PD and PSP overlap, they are distinct disorders with differing underlying pathological processes, responses to treatment and prognoses. One key difference lies in the effects the diseases have on cognition. The oculomotor system is tightly linked to cognitive processes such as spatial attention and spatial short-term memory (sSTM), and previous studies have suggested that PSP and PD experience different deficits in these domains. We therefore hypothesised that people with PSP (N = 15) would experience problems with attention (assessed with feature and conjunction visual search tasks) and sSTM (assessed with the Corsi blocks task) compared to people with PD (N = 16) and Age Matched Controls (N = 15). As predicted, feature and conjunction search were sgnificantly slower in the PSP group compared to the other groups, and this deficit was significantly worse for feature compared to conjunction search. The PD group did not differ from AMC on feature search but were significantly impaired on the conjunction search. The PSP group also had a pronounced vertical sSTM impairment that was not present in PD or AMC groups. It is argued that PSP is associated with specific impairment of visuospatial cognition which is caused by degeneration of the oculomotor structures that support exogenous spatial attention, consistent with oculomotor theories of spatial attention and memory.
Collapse
|
7
|
On the link between attentional search and the oculomotor system: Is preattentive search restricted to the range of eye movements? Atten Percept Psychophys 2020; 82:518-532. [PMID: 31942703 PMCID: PMC7246251 DOI: 10.3758/s13414-019-01949-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been proposed that covert visual search can be fast, efficient, and stimulus driven, particularly when the target is defined by a salient single feature, or slow, inefficient, and effortful when the target is defined by a nonsalient conjunction of features. This distinction between fast, stimulus-driven orienting and slow, effortful orienting can be related to the distinction between exogenous spatial attention and endogenous spatial attention. Several studies have shown that exogenous, covert orienting is limited to the range of saccadic eye movements, whereas covert endogenous orienting is independent of the range of saccadic eye movements. The current study examined whether covert visual search is affected in a similar way. Experiment 1 showed that covert visual search for feature singletons was impaired when stimuli were presented beyond the range of saccadic eye movements, whereas conjunction search was unaffected by array position. Experiment 2 replicated and extended this effect by measuring search times at 6 eccentricities. The impairment in covert feature search emerged only when stimuli crossed the effective oculomotor range and remained stable for locations further into the periphery, ruling out the possibility that the results of Experiment 1 were due to a failure to fully compensate for the effects of cortical magnification. The findings are interpreted in terms of biased competition and oculomotor theories of spatial attention. It is concluded that, as with covert exogenous orienting, biological constraints on overt orienting in the oculomotor system constrain covert, preattentive search.
Collapse
|
8
|
Gaze-contingent stimulus removal leads to subsequent changes in overt attentional allocation. Neuropsychologia 2020; 139:107297. [DOI: 10.1016/j.neuropsychologia.2019.107297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022]
|
9
|
Updating spatial working memory in a dynamic visual environment. Cortex 2019; 119:267-286. [PMID: 31170650 DOI: 10.1016/j.cortex.2019.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 11/22/2022]
Abstract
The present review describes recent developments regarding the role of the eye movement system in representing spatial information and keeping track of locations of relevant objects. First, we discuss the active vision perspective and why eye movements are considered crucial for perception and attention. The second part focuses on the question of how the oculomotor system is used to represent spatial attentional priority, and the role of the oculomotor system in maintenance of this spatial information. Lastly, we discuss recent findings demonstrating rapid updating of information across saccadic eye movements. We argue that the eye movement system plays a key role in maintaining and rapidly updating spatial information. Furthermore, we suggest that rapid updating emerges primarily to make sure actions are minimally affected by intervening eye movements, allowing us to efficiently interact with the world around us.
Collapse
|
10
|
Hanning NM, Szinte M, Deubel H. Visual attention is not limited to the oculomotor range. Proc Natl Acad Sci U S A 2019; 116:9665-9670. [PMID: 31004064 PMCID: PMC6511044 DOI: 10.1073/pnas.1813465116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both patients with eye movement disorders and healthy participants whose oculomotor range had been experimentally reduced have been reported to show attentional deficits at locations unreachable by their eyes. Whereas previous studies were mainly based on the evaluation of reaction times, we measured visual sensitivity before saccadic eye movements and during fixation at locations either within or beyond participants' oculomotor range. Participants rotated their heads to prevent them from performing large rightward saccades. In this posture, an attentional cue was presented inside or outside their oculomotor range. Participants either made a saccade to the cue or maintained fixation while they discriminated the orientation of a visual noise patch. In contrast to previous reports, we found that the cue attracted visual attention regardless of whether it was presented within or beyond participants' oculomotor range during both fixation and saccade preparation. Moreover, when participants aimed to look to a cue that they could not reach with their eyes, we observed no benefit at their actual saccade endpoint. This demonstrates that spatial attention is not coupled to the executed oculomotor program but instead can be deployed unrestrictedly also toward locations to which no saccade can be executed. Our results are compatible with the view that covert and overt attentional orienting are guided by feedback projections of visual and visuomotor neurons of the gaze control system, irrespective of oculomotor limitations.
Collapse
Affiliation(s)
- Nina M Hanning
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität München, 80802 München, Germany;
- Graduate School of Systemic Neurosciences, Department Biologie, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Martin Szinte
- Department of Cognitive Psychology, Vrije Universiteit Amsterdam, 1081BT Amsterdam, The Netherlands
| | - Heiner Deubel
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität München, 80802 München, Germany
| |
Collapse
|
11
|
Casteau S, Smith DT. Associations and Dissociations between Oculomotor Readiness and Covert Attention. Vision (Basel) 2019; 3:vision3020017. [PMID: 31735818 PMCID: PMC6802773 DOI: 10.3390/vision3020017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
Abstract
The idea that covert mental processes such as spatial attention are fundamentally dependent on systems that control overt movements of the eyes has had a profound influence on theoretical models of spatial attention. However, theories such as Klein’s Oculomotor Readiness Hypothesis (OMRH) and Rizzolatti’s Premotor Theory have not gone unchallenged. We previously argued that although OMRH/Premotor theory is inadequate to explain pre-saccadic attention and endogenous covert orienting, it may still be tenable as a theory of exogenous covert orienting. In this article we briefly reiterate the key lines of argument for and against OMRH/Premotor theory, then evaluate the Oculomotor Readiness account of Exogenous Orienting (OREO) with respect to more recent empirical data. These studies broadly confirm the importance of oculomotor preparation for covert, exogenous attention. We explain this relationship in terms of reciprocal links between parietal ‘priority maps’ and the midbrain oculomotor centres that translate priority-related activation into potential saccade endpoints. We conclude that the OMRH/Premotor theory hypothesis is false for covert, endogenous orienting but remains tenable as an explanation for covert, exogenous orienting.
Collapse
|
12
|
Abstract
The nature of the relationship between spatial attention and eye movements has been the subject of intense debate for more than 40 years. Two ideas have dominated this debate. First is the idea that spatial attention shares common neural mechanisms with eye movement programming, characterizing attention as an eye movement that has been prepared but not executed. Second, based on the observation that attention shifts to saccade targets, several theories have proposed that saccade programming necessarily recruits attentional resources. In this chapter, we review the evidence for each of these ideas and discuss some of the limitations and challenges in confirming their predictions. Although they are clearly dependent under some circumstances, dissociations between spatial attention and eye movements, and clear differences in their basic functions, point to the existence of two interconnected, but separate, systems.
Collapse
|
13
|
Casteau S, Smith DT. Covert attention beyond the range of eye-movements: Evidence for a dissociation between exogenous and endogenous orienting. Cortex 2018; 122:170-186. [PMID: 30528427 DOI: 10.1016/j.cortex.2018.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/21/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
The relationship between covert shift of attention and the oculomotor system has been the subject of numerous studies. A widely held view, known as Premotor Theory, is that covert attention depends upon activation of the oculomotor system. However, recent work has argued that Premotor Theory is only true for covert, exogenous orienting of attention and that covert endogenous orienting is largely independent of the oculomotor system. To address this issue we examined how endogenous and exogenous covert orienting of attention was affected when stimuli were presented at a location outside the range of saccadic eye movements. Results from Experiment 1 showed that exogenous covert orienting was abolished when stimuli were presented beyond the range of saccadic eye movements, but preserved when stimuli were presented within this range. In contrast, in Experiment 2 endogenous covert orienting was preserved when stimuli appeared beyond the saccadic range. Finally, Experiment 3 confirmed the observations of Exp.1 and 2. Our results demonstrate that exogenous, covert orienting is limited to the range of overt saccadic eye movements, whereas covert endogenous orienting is not. These results are consistent with a weak, exogenous-only version of Premotor Theory.
Collapse
|
14
|
Abstract
Salient peripheral events trigger fast, “exogenous” covert orienting. The influential premotor theory of attention argues that covert orienting of attention depends upon planned but unexecuted eye-movements. One problem with this theory is that salient peripheral events, such as offsets, appear to summon attention when used to measure covert attention (e.g., the Posner cueing task) but appear not to elicit oculomotor preparation in tasks that require overt orienting (e.g., the remote distractor paradigm). Here, we examined the effects of peripheral offsets on covert attention and saccade preparation. Experiment 1 suggested that transient offsets summoned attention in a manual detection task without triggering motor preparation planning in a saccadic localisation task, although there were a high proportion of saccadic capture errors on “no-target” trials, where a cue was presented but no target appeared. In Experiment 2, “no-target” trials were removed. Here, transient offsets produced both attentional facilitation and faster saccadic responses on valid cue trials. A third experiment showed that the permanent disappearance of an object also elicited attentional facilitation and faster saccadic reaction times. These experiments demonstrate that offsets trigger both saccade programming and covert attentional orienting, consistent with the idea that exogenous, covert orienting is tightly coupled with oculomotor activation. The finding that no-go trials attenuates oculomotor priming effects offers a way to reconcile the current findings with previous claims of a dissociation between covert attention and oculomotor control in paradigms that utilise a high proportion of catch trials.
Collapse
Affiliation(s)
- Daniel T Smith
- Daniel T Smith, Department of Psychology, Durham University, E011 Wolfson Building, Stockton-on-Tees TS17 6BH, UK.
| | | |
Collapse
|
15
|
Michalczyk Ł, Paszulewicz J, Bielas J, Wolski P. Is saccade preparation required for inhibition of return (IOR)? Neurosci Lett 2018; 665:13-17. [DOI: 10.1016/j.neulet.2017.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
16
|
Qian CS, Brascamp JW. How to Build a Dichoptic Presentation System That Includes an Eye Tracker. J Vis Exp 2017:56033. [PMID: 28930987 PMCID: PMC5752173 DOI: 10.3791/56033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The presentation of different stimuli to the two eyes, dichoptic presentation, is essential for studies involving 3D vision and interocular suppression. There is a growing literature on the unique experimental value of pupillary and oculomotor measures, especially for research on interocular suppression. Although obtaining eye-tracking measures would thus benefit studies that use dichoptic presentation, the hardware essential for dichoptic presentation (e.g. mirrors) often interferes with high-quality eye tracking, especially when using a video-based eye tracker. We recently described an experimental setup that combines a standard dichoptic presentation system with an infrared eye tracker by using infrared-transparent mirrors1. The setup is compatible with standard monitors and eye trackers, easy to implement, and affordable (on the order of US$1,000). Relative to existing methods it has the benefits of not requiring special equipment and posing few limits on the nature and quality of the visual stimulus. Here we provide a visual guide to the construction and use of our setup.
Collapse
Affiliation(s)
- Cheng S Qian
- Department of Psychology, Michigan State University;
| | - Jan W Brascamp
- Department of Psychology, Michigan State University; Neuroscience Program, Michigan State University
| |
Collapse
|
17
|
Dunne S, Ellison A, Smith DT. Rewards modulate saccade latency but not exogenous spatial attention. Front Psychol 2015; 6:1080. [PMID: 26284004 PMCID: PMC4516812 DOI: 10.3389/fpsyg.2015.01080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/13/2015] [Indexed: 11/13/2022] Open
Abstract
The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.
Collapse
Affiliation(s)
- Stephen Dunne
- Department of Psychology, Durham University , Stockton-on-Tees, UK
| | - Amanda Ellison
- Department of Psychology, Durham University , Stockton-on-Tees, UK
| | - Daniel T Smith
- Department of Psychology, Durham University , Stockton-on-Tees, UK
| |
Collapse
|
18
|
Odoj B, Balslev D. Role of Oculoproprioception in Coding the Locus of Attention. J Cogn Neurosci 2015; 28:517-28. [DOI: 10.1162/jocn_a_00910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The most common neural representations for spatial attention encode locations retinotopically, relative to center of gaze. To keep track of visual objects across saccades or to orient toward sounds, retinotopic representations must be combined with information about the rotation of one's own eyes in the orbits. Although gaze input is critical for a correct allocation of attention, the source of this input has so far remained unidentified. Two main signals are available: corollary discharge (copy of oculomotor command) and oculoproprioception (feedback from extraocular muscles). Here we asked whether the oculoproprioceptive signal relayed from the somatosensory cortex contributes to coding the locus of attention. We used continuous theta burst stimulation (cTBS) over a human oculoproprioceptive area in the postcentral gyrus (S1EYE). S1EYE-cTBS reduces proprioceptive processing, causing ∼1° underestimation of gaze angle. Participants discriminated visual targets whose location was cued in a nonvisual modality. Throughout the visual space, S1EYE-cTBS shifted the locus of attention away from the cue by ∼1°, in the same direction and by the same magnitude as the oculoproprioceptive bias. This systematic shift cannot be attributed to visual mislocalization. Accuracy of open-loop pointing to the same visual targets, a function thought to rely mainly on the corollary discharge, was unchanged. We argue that oculoproprioception is selective for attention maps. By identifying a potential substrate for the coupling between eye and attention, this study contributes to the theoretical models for spatial attention.
Collapse
|
19
|
Abstract
Observing a change in gaze direction triggers a reflexive shift of attention and appears to engage the eye-movement system. However, the functional relationship between social attention and this oculomotor activation is unclear. One extremely influential hypothesis is that the preparation of a saccadic eye movement is necessary and sufficient for a covert, reflexive shift of attention (the premotor theory of attention; Rizzolatti et al., 1994). Surprisingly, this theory has not been directly tested with respect to reflexive gaze cueing. In order to address this issue, gaze cueing, peripheral cueing, and arrow cueing were examined under conditions in which some stimuli appeared at locations that could not become the goal of a saccadic eye movement. It was observed that peripheral cues failed to elicit reflexive attentional orienting when targets appeared beyond the range of eye movements. Similarly, nonpredictive arrow cues were ineffective when targets could not become the goal of a saccade. In contrast, significant gaze-cueing effects were still observed when targets were beyond the range of eye movements. These data demonstrate that the mechanisms involved in gaze cueing are dissociated from those involved in exogenous orienting to peripheral or arrow cues. Furthermore, the findings suggest that, unlike peripheral cueing and reflexive arrow cueing, gaze cueing is independent of oculomotor control. We conclude that the premotor theory does not offer a compelling explanation for gaze cueing.
Collapse
|
20
|
Pearson DG, Ball K, Smith DT. Oculomotor preparation as a rehearsal mechanism in spatial working memory. Cognition 2014; 132:416-28. [DOI: 10.1016/j.cognition.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/01/2022]
|
21
|
Smith DT, Ball K, Ellison A. Covert visual search within and beyond the effective oculomotor range. Vision Res 2014; 95:11-7. [DOI: 10.1016/j.visres.2013.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
22
|
Ball K, Pearson DG, Smith DT. Oculomotor involvement in spatial working memory is task-specific. Cognition 2013; 129:439-46. [DOI: 10.1016/j.cognition.2013.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/17/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
|
23
|
Abstract
To verify if the link between observed hand actions and executed foot actions found in aplasics is essentially induced by the constant use of foot substituting the hand, we investigated if the vision of a grasping hand is able to prime a foot response in normals. Participants were required to detect the time-to-contact of a hand grasping an object either with a suitable or a less suitable movement, an experimental paradigm known to induce a priming effect. Participants responded either with the hand or the foot, while having free or bound hands. Results showed that for hand responses motor priming effect was stronger when the hands were free, whereas for foot responses it was stronger when the hands were bound. These data are interpreted as a further evidence that a difficulty to move affects specific cognitive functions and that the vision of a grasping hand may prime a foot response.
Collapse
Affiliation(s)
- Laila Craighero
- Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
24
|
Smith DT, Schenk T. The Premotor theory of attention: Time to move on? Neuropsychologia 2012; 50:1104-14. [DOI: 10.1016/j.neuropsychologia.2012.01.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|
25
|
Remillard G. Pure perceptual-based learning of second-, third-, and fourth-order sequential probabilities. PSYCHOLOGICAL RESEARCH 2010; 75:307-23. [DOI: 10.1007/s00426-010-0309-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/30/2010] [Indexed: 11/30/2022]
|