1
|
Wang XM, Welsh TN. TAT-HUM: Trajectory analysis toolkit for human movements in Python. Behav Res Methods 2024; 56:4103-4129. [PMID: 38504077 DOI: 10.3758/s13428-024-02378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Human movement trajectories can reveal useful insights regarding the underlying mechanisms of human behaviors. Extracting information from movement trajectories, however, can be challenging because of their complex and dynamic nature. The current paper presents a Python toolkit developed to help users analyze and extract meaningful information from the trajectories of discrete rapid aiming movements executed by humans. This toolkit uses various open-source Python libraries, such as NumPy and SciPy, and offers a collection of common functionalities to analyze movement trajectory data. To ensure flexibility and ease of use, the toolkit offers two approaches: an automated approach that processes raw data and generates relevant measures automatically, and a manual approach that allows users to selectively use different functions based on their specific needs. A behavioral experiment based on the spatial cueing paradigm was conducted to illustrate how one can use this toolkit in practice. Readers are encouraged to access the publicly available data and relevant analysis scripts as an opportunity to learn about kinematic analysis for human movements.
Collapse
Affiliation(s)
- Xiaoye Michael Wang
- Centre for Motor Control, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada.
| | - Timothy N Welsh
- Centre for Motor Control, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Whitwell RL, Hasan HA, MacNeil RR, Enns JT. Coming to grips with reality: Real grasps, but not pantomimed grasps, resist a simultaneous tilt illusion. Neuropsychologia 2023; 191:108726. [PMID: 37931746 DOI: 10.1016/j.neuropsychologia.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Investigations of grasping real, 3D objects subjected to illusory effects from a pictorial background often choose in-flight grasp aperture as the primary variable to test the hypothesis that the visuomotor system resists the illusion. Here we test an equally important feature of grasps that has received less attention: in-flight grasp orientation. The current study tested a variant of the simultaneous tilt illusion using a mirror-apparatus to manipulate the availability of haptic feedback. Participants performed grasps with haptic feedback (real grasps) and without it (pantomime grasps), reaching for the reflection of a real, 3D bar atop a background grating that induced a 1.1° bias in the perceived orientation of the bar in a separate sample of participants. Analysis of the hand's in-flight grasp orientation at early, late, and end stages of the reach showed that at no point were the real grasps biased by the illusion. In contrast, pantomimed grasps were affected by the illusion at the late and end stages of the reach. At each stage, the effect on the real grasps was significantly weaker than the effect of the illusion as measured by the mean point of subjective equality (PSE) in a two-alternative forced-choice task. In contrast, the effect on the pantomime grasps was statistically indistinguishable from the mean PSE at all three stages of the reach. These findings reinforce the idea that in-flight grasp orientation, like grasp aperture to pictorial illusions of target size, is refractory to pictorial backgrounds that bias perceived orientation.
Collapse
Affiliation(s)
- R L Whitwell
- Department of Physiology & Pharmacology, The University of Western University, Canada; Department of Psychology, The University of Western University, Canada.
| | - H A Hasan
- Department of Psychology, The University of British Columbia, Canada
| | - R R MacNeil
- Department of Psychology, The University of British Columbia, Canada
| | - J T Enns
- Department of Psychology, The University of British Columbia, Canada
| |
Collapse
|
3
|
Schonard C, Ulrich R, Janczyk M. Temporal aspects of two types of backward crosstalk in dual-tasks: An analysis of continuous mouse-tracking data. Q J Exp Psychol (Hove) 2023; 76:2068-2083. [PMID: 36255305 DOI: 10.1177/17470218221135603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A common explanation for processing limitations in dual-tasking is the existence of a bottleneck during response selection, meaning that the selection of responses can only occur serially for different tasks. However, a large body of data shows that features of a (secondary) Task 2 can already influence the processing of a (primary) Task 1. Such effects are referred to as backward crosstalk effects (BCEs). In the present study, two types of such BCEs were investigated: the compatibility-based BCE, which depends on the dimensional (often spatial) overlap between task features, and a BCE based on a go/no-go task in Task 2 (no-go BCE). Joining a line of research that suggests different mechanisms for these two types of BCEs, we investigated them using a mouse-tracking setup. Time continuous analyses revealed that the compatibility-based BCE triggered a spatial activation of the Task 2 response early during Task 1 processing, whereas the no-go BCE triggered an inhibitory effect in the case of a no-go Task 2, which spills over to Task 1 execution. This occurred, however, earlier in the time course than expected. The results are discussed with regard to recent models of dual-task processing.
Collapse
Affiliation(s)
- Carolin Schonard
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Rolf Ulrich
- Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Markus Janczyk
- Department of Psychology, University of Bremen, Bremen, Germany
| |
Collapse
|
4
|
Ozana A, Berman S, Ganel T. Grasping Weber's Law in a Virtual Environment: The Effect of Haptic Feedback. Front Psychol 2020; 11:573352. [PMID: 33329216 PMCID: PMC7710620 DOI: 10.3389/fpsyg.2020.573352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Recent findings suggest that the functional separation between vision-for-action and vision-for-perception does not generalize to situations in which virtual objects are used as targets. For instance, unlike actions toward real objects that violate Weber's law, a basic law of visual perception, actions toward virtual objects presented on flat-screens, or in remote virtual environments, obey to Weber's law. These results suggest that actions in virtual environments are performed in an inefficient manner and are subjected to perceptual effects. It is unclear, however, whether this inefficiency reflects extensive variation in the way in which visual information is processed in virtual environments or more local aspects related to the settings of the virtual environment. In the current study, we focused on grasping performance in a state-of-the-art virtual reality system that provides an accurate representation of the 3D space. Within this environment, we tested the effect of haptic feedback on grasping trajectories. Participants were asked to perform bimanual grasping movements toward the edges of virtual targets. In the haptic feedback condition, physical stimuli of matching dimensions were embedded in the virtual environment. Haptic feedback was not provided in the no-feedback condition. The results showed that grasping trajectories in the feedback, but not in the no-feedback condition, could be performed more efficiently, and evade the influence of Weber's law. These findings are discussed in relevance to previous literature on 2D and 3D grasping.
Collapse
Affiliation(s)
- Aviad Ozana
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Berman
- Zlotowski Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
Consciously monitored grasping is vulnerable to perceptual intrusions. Conscious Cogn 2020; 85:103019. [DOI: 10.1016/j.concog.2020.103019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
|
6
|
Abedi Khoozani P, Voudouris D, Blohm G, Fiehler K. Reaching around obstacles accounts for uncertainty in coordinate transformations. J Neurophysiol 2020; 123:1920-1932. [PMID: 32267186 DOI: 10.1152/jn.00049.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When reaching to a visual target, humans need to transform the spatial target representation into the coordinate system of their moving arm. It has been shown that increased uncertainty in such coordinate transformations, for instance, when the head is rolled toward one shoulder, leads to higher movement variability and influence movement decisions. However, it is unknown whether the brain incorporates such added variability in planning and executing movements. We designed an obstacle avoidance task in which participants had to reach with or without visual feedback of the hand to a visual target while avoiding collisions with an obstacle. We varied coordinate transformation uncertainty by varying head roll (straight, 30° clockwise, and 30° counterclockwise). In agreement with previous studies, we observed that the reaching variability increased when the head was tilted. Indeed, head roll did not influence the number of collisions during reaching compared with the head-straight condition, but it did systematically change the obstacle avoidance behavior. Participants changed the preferred direction of passing the obstacle and increased the safety margins indicated by stronger movement curvature. These results suggest that the brain takes the added movement variability during head roll into account and compensates for it by adjusting the reaching trajectories.NEW & NOTEWORTHY We show that changing body geometry such as head roll results in compensatory reaching behaviors around obstacles. Specifically, we observed head roll causes changed preferred movement direction and increased trajectory curvature. As has been shown before, head roll increases movement variability due to stochastic coordinate transformations. Thus these results provide evidence that the brain must consider the added movement variability caused by coordinate transformations for accurate reach movements.
Collapse
Affiliation(s)
- Parisa Abedi Khoozani
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada
| | - Dimitris Voudouris
- Center for Mind, Brain, and Behaviour, Marburg University, Marburg, Germany.,Psychology and Sport Sciences, Justus Liebig University, Giessen, Germany
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada.,Association for Canadian Neuroinformatics and Computational Neuroscience, Kingston, Ontario, Canada
| | - Katja Fiehler
- Center for Mind, Brain, and Behaviour, Marburg University, Marburg, Germany.,Psychology and Sport Sciences, Justus Liebig University, Giessen, Germany
| |
Collapse
|
7
|
Dotan D, Pinheiro-Chagas P, Al Roumi F, Dehaene S. Track It to Crack It: Dissecting Processing Stages with Finger Tracking. Trends Cogn Sci 2019; 23:1058-1070. [DOI: 10.1016/j.tics.2019.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 11/15/2022]
|
8
|
Ozana A, Ganel T. Obeying the law: speed-precision tradeoffs and the adherence to Weber's law in 2D grasping. Exp Brain Res 2019; 237:2011-2021. [PMID: 31161415 DOI: 10.1007/s00221-019-05572-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
Visually guided actions toward two-dimensional (2D) and three-dimensional (3D) objects show different patterns of adherence to Weber's law. In 3D grasping, Just Noticeable Differences (JNDs) do not scale with object size, violating Weber's law. Conversely, JNDs in 2D grasping increase with size, showing a pattern of scaler variability between aperture and JND, as predicted by Weber's law. In the current study, we tested whether such scaler variability in 2D grasping reflects genuine adherence to Weber's law. Alternatively, it could be potentially accounted for by a speed-precision tradeoff effect due to an increase in aperture velocity with size. In two experiments, we modified the relation between aperture velocity and size in 2D grasping and tested whether movement trajectories still adhere to Weber's law. In Experiment 1, we aimed to equate aperture velocities between different-sized objects by pre-adjusting the initial finger aperture to match the target's size. In Experiment 2, we reversed the relation between size and velocity by asking participants to hold their fingers wide open prior to grasp, resulting in faster velocities for smaller rather than for larger objects. The results of the two experiments showed that although aperture velocities did not increase with size, adherence to Weber's law was still maintained. These results indicate that the adherence to Weber's law during 2D grasping cannot be accounted for by a speed-precision tradeoff effect, but rather represents genuine reliance on relative, perceptually based computations in visuomotor interactions with 2D objects.
Collapse
Affiliation(s)
- Aviad Ozana
- Department of Psychology, Ben-Gurion University of the Negev, 8410500, Beer-Sheva, Israel
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev, 8410500, Beer-Sheva, Israel.
| |
Collapse
|
9
|
Abstract
Do illusory distortions of perceived object size influence how wide the hand is opened during a grasping movement? Many studies on this question have reported illusion-resistant grasping, but this finding has been contradicted by other studies showing that grasping movements and perceptual judgments are equally susceptible. One largely unexplored explanation for these contradictions is that illusion effects on grasping can be reduced with repeated movements. Using a visuomotor adaptation paradigm, we investigated whether an adaptation model could predict the time course of Ponzo illusion effects on grasping. Participants performed a series of trials in which they viewed a thin wooden target, manually reported an estimate of the target's length, then reached to grasp the target. Manual size estimates (MSEs) were clearly biased by the illusion, but maximum grip apertures (MGAs) of grasping movements were consistently accurate. Illusion-resistant MGAs were observed immediately upon presentation of the illusion, so there was no decrement in susceptibility for the adaptation model to explain. To determine whether online corrections based on visual feedback could have produced illusion-resistant MGAs, we performed an exploratory post hoc analysis of movement trajectories. Early portions of the illusion effect profile evolved as if they were biased by the illusion to the same magnitude as the perceptual responses (MSEs), but this bias was attenuated prior to the MGA. Overall, this preregistered study demonstrated that visuomotor adaptation of grasping is not the primary source of illusion resistance in closed-loop grasping.
Collapse
|
10
|
Multiple distance cues do not prevent systematic biases in reach to grasp movements. PSYCHOLOGICAL RESEARCH 2018; 83:147-158. [PMID: 30259095 DOI: 10.1007/s00426-018-1101-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
The perceived distance of objects is biased depending on the distance from the observer at which objects are presented, such that the egocentric distance tends to be overestimated for closer objects, but underestimated for objects further away. This leads to the perceived depth of an object (i.e., the perceived distance from the front to the back of the object) also being biased, decreasing with object distance. Several studies have found the same pattern of biases in grasping tasks. However, in most of those studies, object distance and depth were solely specified by ocular vergence and binocular disparities. Here we asked whether grasping objects viewed from above would eliminate distance-dependent depth biases, since this vantage point introduces additional information about the object's distance, given by the vertical gaze angle, and its depth, given by contour information. Participants grasped objects presented at different distances (1) at eye-height and (2) 130 mm below eye-height, along their depth axes. In both cases, grip aperture was systematically biased by the object distance along most of the trajectory. The same bias was found whether the objects were seen in isolation or above a ground plane to provide additional depth cues. In two additional experiments, we verified that a consistent bias occurs in a perceptual task. These findings suggest that grasping actions are not immune to biases typically found in perceptual tasks, even when additional cues are available. However, online visual control can counteract these biases when direct vision of both digits and final contact points is available.
Collapse
|
11
|
Gianelli C, Marzocchi M, Borghi AM. Grasping the Agent's Perspective: A Kinematics Investigation of Linguistic Perspective in Italian and German. Front Psychol 2017; 8:42. [PMID: 28223947 PMCID: PMC5293804 DOI: 10.3389/fpsyg.2017.00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Every day, we primarily experience actions as agents, by having a concrete perspective on our actions, their means and goals. This peculiar perspective is what allows us to successfully plan and execute our actions in a dense social environment. Nevertheless, in this environment actions are also perceived from an observer's perspective. Adopting such a perspective helps us to understand and respond to other's people actions and their outcomes. Importantly, similar experiences of being agent and observer occur also when actions are not physically acted/perceived but are merely linguistically shared. In this paper we present two exploratory studies, one in Italian and one in German, in which we applied a direct comparison of three singular perspectives in combination with different verb categories. First, second and third person pronouns were combined with action and interaction verbs, i.e., verbs implying an interaction with an object - e.g., grasp - or an interaction with an object and another person - e.g., give. By means of kinematics recording, we analyzed participants' reaching-grasping responses to a mouse while they were presented with the different combinations of linguistic stimuli (pronouns and verb type). Results of Experiment 1 on reaching show that, when they are preceded by YOU, interaction verbs reached the velocity peak earlier than action verbs, since a further motor act will follow. Thus pronouns influence perspective taking and while comprehending language we are sensitive to the motor chain organization of verbs. The absence of the same effects in Experiment 2 is likely due to the fact that, being the pronoun in German mandatory, it is perceived as less salient than in Italian. Overall our result supports the idea that language is grounded in the motor system in a flexible way, and highlights the need for cross-linguistic studies in the field of embodied language processing.
Collapse
Affiliation(s)
- Claudia Gianelli
- Division of Cognitive Sciences, University of PotsdamPotsdam, Germany
| | - Michele Marzocchi
- Division of Cognitive Sciences, University of PotsdamPotsdam, Germany
| | - Anna M. Borghi
- Department of Psychology, University of BolognaBologna, Italy
- Institute of Cognitive Sciences and Technologies, National Research CouncilRome, Italy
| |
Collapse
|
12
|
Ansuini C, Cavallo A, Koul A, D'Ausilio A, Taverna L, Becchio C. Grasping others' movements: Rapid discrimination of object size from observed hand movements. J Exp Psychol Hum Percept Perform 2016; 42:918-29. [PMID: 27078036 DOI: 10.1037/xhp0000169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During reach-to-grasp movements, the hand is gradually molded to conform to the size and shape of the object to be grasped. Yet the ability to glean information about object properties by observing grasping movements is poorly understood. In this study, we capitalized on the effect of object size to investigate the ability to discriminate the size of an invisible object from movement kinematics. The study consisted of 2 phases. In the first action execution phase, to assess grip scaling, we recorded and analyzed reach-to-grasp movements performed toward differently sized objects. In the second action observation phase, video clips of the corresponding movements were presented to participants in a two-alternative forced-choice task. To probe discrimination performance over time, videos were edited to provide selective vision of different periods from 2 viewpoints. Separate analyses were conducted to determine how the participants' ability to discriminate between stimulus alternatives (Type I sensitivity) and their metacognitive ability to discriminate between correct and incorrect responses (Type II sensitivity) varied over time and viewpoint. We found that as early as 80 ms after movement onset, participants were able to discriminate object size from the observation of grasping movements delivered from the lateral viewpoint. For both viewpoints, information pickup closely matched the evolution of the hand's kinematics, reaching an almost perfect performance well before the fingers made contact with the object (60% of movement duration). These findings suggest that observers are able to decode object size from kinematic sources specified early on in the movement. (PsycINFO Database Record
Collapse
Affiliation(s)
- Caterina Ansuini
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia
| | | | - Atesh Koul
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia
| | - Alessandro D'Ausilio
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia
| | - Laura Taverna
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia
| | - Cristina Becchio
- Department of Robotics, Brain and Cognitive Sciences, Fondazione Istituto Italiano di Tecnologia
| |
Collapse
|
13
|
Functional dissociation between action and perception of object shape in developmental visual object agnosia. Cortex 2016; 76:17-27. [DOI: 10.1016/j.cortex.2015.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/27/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022]
|
14
|
Brandes J, Heed T. Reach Trajectories Characterize Tactile Localization for Sensorimotor Decision Making. J Neurosci 2015; 35:13648-58. [PMID: 26446218 PMCID: PMC6605379 DOI: 10.1523/jneurosci.1873-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 11/21/2022] Open
Abstract
Spatial target information for movement planning appears to be coded in a gaze-centered reference frame. In touch, however, location is initially coded with reference to the skin. Therefore, the tactile spatial location must be derived by integrating skin location and posture. It has been suggested that this recoding is impaired when the limb is placed in the opposite hemispace, for example, by limb crossing. Here, human participants reached toward visual and tactile targets located at uncrossed and crossed feet in a sensorimotor decision task. We characterized stimulus recoding by analyzing the timing and spatial profile of hand reaches. For tactile targets at crossed feet, skin-based information implicates the incorrect side, and only recoded information points to the correct location. Participants initiated straight reaches and redirected the hand toward a target presented in midflight. Trajectories to visual targets were unaffected by foot crossing. In contrast, trajectories to tactile targets were redirected later with crossed than uncrossed feet. Reaches to crossed feet usually continued straight until they were directed toward the correct tactile target and were not biased toward the skin-based target location. Occasional, far deflections toward the incorrect target were most likely when this target was implicated by trial history. These results are inconsistent with the suggestion that spatial transformations in touch are impaired by limb crossing, but are consistent with tactile location being recoded rapidly and efficiently, followed by integration of skin-based and external information to specify the reach target. This process may be implemented in a bounded integrator framework. SIGNIFICANCE STATEMENT How do you touch yourself, for instance, to scratch an itch? The place you need to reach is defined by a sensation on the skin, but our bodies are flexible, so this skin location could be anywhere in 3D space. The movement toward the tactile sensation must therefore be specified by merging skin location and body posture. By investigating human hand reach trajectories toward tactile stimuli on the feet, we provide experimental evidence that this transformation process is quick and efficient, and that its output is integrated with the original skin location in a fashion consistent with bounded integrator decision-making frameworks.
Collapse
Affiliation(s)
- Janina Brandes
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, University of Hamburg, 20146 Hamburg, Germany
| | - Tobias Heed
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
15
|
Biomechanical factors may explain why grasping violates Weber’s law. Vision Res 2015; 111:22-30. [DOI: 10.1016/j.visres.2015.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/22/2022]
|
16
|
Kuang S, Gail A. When adaptive control fails: Slow recovery of reduced rapid online control during reaching under reversed vision. Vision Res 2014; 110:155-65. [PMID: 25218421 DOI: 10.1016/j.visres.2014.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 08/21/2014] [Accepted: 08/29/2014] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that short-term exposure to mirror-reversed visual feedback suppresses rapid online control (ROC) of arm movements in response to a sudden target displacement. Here we tested if the reduced ROC under reversed vision can be observed for natural reaches without target perturbations, i.e. without corrective movements that are driven by visual input perturbation. Second, we ask if such ROC reduction generalizes to movement phases without visual feedback of the hand. Subjects were instructed to perform simple reach movements towards a stationary target position either under normal or physically reversed vision of the hand during the late movement phase. We quantified time-resolved ROC via a coefficient of determination of the reach trajectories over the full course of the movement. As for other measures in previous studies, we found that our perturbation-independent ROC was reduced within a few trials after exposure to reversed visual feedback. The reduced ROC was restricted to late movement phases, and was not observed in early movement phases. We further asked if subjects would be able to re-gain ROC with prolonged exposure to the reversed visual input. ROC gradually and incompletely increased over the course of 400 exposure trials, affecting both early and late movement phases. Our results show that under reversed vision ROC is reduced even for perturbation-independent natural reaches aiming at stationary targets.
Collapse
Affiliation(s)
- Shenbing Kuang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; German Primate Center, Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Alexander Gail
- German Primate Center, Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| |
Collapse
|
17
|
Gallivan JP, Chapman CS. Three-dimensional reach trajectories as a probe of real-time decision-making between multiple competing targets. Front Neurosci 2014; 8:215. [PMID: 25100941 PMCID: PMC4107946 DOI: 10.3389/fnins.2014.00215] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/02/2014] [Indexed: 11/24/2022] Open
Abstract
Though several features of cognitive processing can be inferred from the discrete measurement [e.g., reaction time (RT), accuracy, etc.] of participants' conscious reports (e.g., verbal or key-press responses), it is becoming increasingly clear that a much richer understanding of these features can be captured from continuous measures of rapid, largely non-conscious behaviors like hand or eye movements. Here, using new experimental data, we describe in detail both the approach and analyses implemented in some of our previous studies that have used rapid reaching movements under cases of target uncertainty in order to probe the features, constraints and dynamics of stimulus-related processing in the brain. This work, as well as that of others, shows that when individuals are simultaneously presented with multiple potential targets—only one of which will be cued after reach onset—they produce initial reach trajectories that are spatially biased in accordance with the probabilistic distribution of targets. Such “spatial averaging” effects are consistent with observations from neurophysiological studies showing that neuronal populations in sensorimotor brain structures represent multiple target choices in parallel and they compete for selection. These effects also confirm and help extend computational models aimed at understanding the underlying mechanisms that support action-target selection. We suggest that the use of this simple, yet powerful behavioral paradigm for providing a “real-time” visualization of ongoing cognitive processes occurring at the neural level offers great promise for studying processes related to a wide range of psychological phenomena, such as decision-making and the representation of objects.
Collapse
Affiliation(s)
- Jason P Gallivan
- Department of Psychology, Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada
| | - Craig S Chapman
- Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| |
Collapse
|