1
|
Pinti P, Dina LM, Smith TJ. Ecological functional near-infrared spectroscopy in mobile children: using short separation channels to correct for systemic contamination during naturalistic neuroimaging. NEUROPHOTONICS 2024; 11:045004. [PMID: 39380715 PMCID: PMC11460616 DOI: 10.1117/1.nph.11.4.045004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
Significance The advances and miniaturization in functional near-infrared spectroscopy (fNIRS) instrumentation offer the potential to move the classical laboratory-based cognitive neuroscience investigations into more naturalistic settings. Wearable and mobile fNIRS devices also provide a novel child-friendly means to image functional brain activity in freely moving toddlers and preschoolers. Measuring brain activity in more ecologically valid settings with fNIRS presents additional challenges, such as the increased impact of physiological interferences. One of the most popular methods for minimizing such interferences is to regress out short separation channels from the long separation channels [i.e., superficial signal regression (SSR)]. Although this has been extensively investigated in adults, little is known about the impact of systemic changes on the fNIRS signals recorded in children in either classical or novel naturalistic experiments. Aim We aim to investigate if extracerebral physiological changes occur in toddlers and preschoolers and whether SSR can help minimize these interferences. Approach We collected fNIRS data from 3- to 7-year-olds during a conventional computerized static task and in a dynamic naturalistic task in an immersive virtual reality (VR) cave automatic virtual environment. Results Our results show that superficial signal contamination data are present in young children as in adults. Importantly, we find that SSR helps in improving the localization of functional brain activity, both in the computerized task and, to a larger extent, in the dynamic VR task. Conclusions Following these results, we formulate suggestions to advance the field of developmental neuroimaging with fNIRS, particularly in ecological settings.
Collapse
Affiliation(s)
- Paola Pinti
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Larisa M. Dina
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- King’s College London, Department of Psychology, London, United Kingdom
| | - Tim J. Smith
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- University of the Arts London, Creative Computing Institute, London, United Kingdom
| |
Collapse
|
2
|
Rae CL, Raykov P, Ambridge EM, Colling LJ, Gould van Praag CD, Bouyagoub S, Polanski L, Larsson DEO, Critchley HD. Elevated representational similarity of voluntary action and inhibition in Tourette syndrome. Brain Commun 2023; 5:fcad224. [PMID: 37705680 PMCID: PMC10497185 DOI: 10.1093/braincomms/fcad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Many people with Tourette syndrome are able to volitionally suppress tics, under certain circumstances. To understand better the neural mechanisms that underlie this ability, we used functional magnetic resonance neuroimaging to track regional brain activity during performance of an intentional inhibition task. On some trials, Tourette syndrome and comparison participants internally chose to make or withhold a motor action (a button press), while on other trials, they followed 'Go' and 'NoGo' instructions to make or withhold the same action. Using representational similarity analysis, a functional magnetic resonance neuroimaging multivariate pattern analysis technique, we assessed how Tourette syndrome and comparison participants differed in neural activity when choosing to make or to withhold an action, relative to externally cued responses on Go and NoGo trials. Analyses were pre-registered, and the data and code are publicly available. We considered similarity of action representations within regions implicated as critical to motor action release or inhibition and to symptom expression in Tourette syndrome, namely the pre-supplementary motor area, inferior frontal gyrus, insula, caudate nucleus and primary motor cortex. Strikingly, in the Tourette syndrome compared to the comparison group, neural activity within the pre-supplementary motor area displayed greater representational similarity across all action types. Within the pre-supplementary motor area, there was lower response-specific differentiation of activity relating to action and inhibition plans and to internally chosen and externally cued actions, implicating the region as a functional nexus in the symptomatology of Tourette syndrome. Correspondingly, patients with Tourette syndrome may experience volitional tic suppression as an effortful and tiring process because, at the top of the putative motor decision hierarchy, activity within the population of neurons facilitating action is overly similar to activity within the population of neurons promoting inhibition. However, not all pre-supplementary motor area group differences survived correction for multiple comparisons. Group differences in representational similarity were also present in the primary motor cortex. Here, representations of internally chosen and externally cued inhibition were more differentiated in the Tourette syndrome group than in the comparison group, potentially a consequence of a weaker voluntary capacity earlier in the motor hierarchy to suppress actions proactively. Tic severity and premonitory sensations correlated with primary motor cortex and caudate nucleus representational similarity, but these effects did not survive correction for multiple comparisons. In summary, more rigid pre-supplementary motor area neural coding across action categories may constitute a central feature of Tourette syndrome, which can account for patients' experience of 'unvoluntary' tics and effortful tic suppression.
Collapse
Affiliation(s)
- Charlotte L Rae
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - Petar Raykov
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | | | | | | | - Samira Bouyagoub
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
| | - Liliana Polanski
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Dennis E O Larsson
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
| | - Hugo D Critchley
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
- Sussex Partnership NHS Foundation Trust, Worthing BN3 7HZ, UK
| |
Collapse
|
3
|
Öztekin I, Garic D, Bayat M, Hernandez ML, Finlayson MA, Graziano PA, Dick AS. Structural and diffusion-weighted brain imaging predictors of attention-deficit/hyperactivity disorder and its symptomology in very young (4- to 7-year-old) children. Eur J Neurosci 2022; 56:6239-6257. [PMID: 36215144 PMCID: PMC10165616 DOI: 10.1111/ejn.15842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022]
Abstract
The current study aimed to identify the key neurobiology of attention-deficit/hyperactivity disorder (ADHD), as it relates to ADHD diagnostic category and symptoms of hyperactive/impulsive behaviour and inattention. To do so, we adapted a predictive modelling approach to identify the key structural and diffusion-weighted brain imaging measures and their relative standing with respect to teacher ratings of executive function (EF) (measured by the Metacognition Index of the Behavior Rating Inventory of Executive Function [BRIEF]) and negativity and emotion regulation (ER) (measured by the Emotion Regulation Checklist [ERC]), in a critical young age range (ages 4 to 7, mean age 5.52 years, 82.2% Hispanic/Latino), where initial contact with educators and clinicians typically take place. Teacher ratings of EF and ER were predictive of both ADHD diagnostic category and symptoms of hyperactive/impulsive behaviour and inattention. Among the neural measures evaluated, the current study identified the critical importance of the largely understudied diffusion-weighted imaging measures for the underlying neurobiology of ADHD and its associated symptomology. Specifically, our analyses implicated the inferior frontal gyrus as a critical predictor of ADHD diagnostic category and its associated symptomology, above and beyond teacher ratings of EF and ER. Collectively, the current set of findings have implications for theories of ADHD, the relative utility of neurobiological measures with respect to teacher ratings of EF and ER, and the developmental trajectory of its underlying neurobiology.
Collapse
Affiliation(s)
- Ilke Öztekin
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA.,Exponent, Inc., Philadelphia, Pennsylvania, USA
| | - Dea Garic
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mohammadreza Bayat
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA
| | - Melissa L Hernandez
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA
| | - Mark A Finlayson
- School of Computing and Information Sciences, Florida International University, Miami, Florida, USA
| | - Paulo A Graziano
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA
| | - Anthony Steven Dick
- Center for Children and Families and Department of Psychology, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Leszkowicz E, Maio GR, Linden DEJ, Ihssen N. Neural coding of human values is underpinned by brain areas representing the core self in the cortical midline region. Soc Neurosci 2021; 16:486-499. [PMID: 34238118 DOI: 10.1080/17470919.2021.1953582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The impact of human values on our choices depends on their nature. Self-Transcendence values motivate us to act for the benefit of others and care for the environment. Self-Enhancement values motivate us to act for our benefit. The present study examines differences in the neural processes underlying these two value domains. Extending our previous research, we used fMRI to explore first of all neural correlates of Self-Transcendence vs Self-Enhancement values, with a particular focus on the putative role of the medial prefrontal cortex (MPFC), which has been linked to a self-transcendent mind-set. Additionally, we investigated the neural basis of Openness to Change vs Conservation values. We asked participants to reflect on and rate values as guiding principles in their lives while undergoing fMRI. Mental processing of Self-Transcendence values was associated with higher brain activity in the dorsomedial (BA9, BA8) and ventromedial (BA10) prefrontal cortices, as compared to Self-Enhancement values. The former involved activation and the latter deactivation of those regions. We did not detect differences in brain activation between Openness to Change vs Conservation values. Self-Transcendence values thus shared brain regions with social processes that have previously been linked to a self-transcendent mind-set, and the "core self" representation.
Collapse
Affiliation(s)
- Emilia Leszkowicz
- Department of Animal and Human Physiology, University of Gdansk, Gdansk, Poland.,School of Psychology, Cardiff University, Cardiff, UK
| | | | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Niklas Ihssen
- Department of Psychology, Durham University, Durham, UK
| |
Collapse
|
5
|
Öztekin I, Finlayson MA, Graziano PA, Dick AS. Is there any incremental benefit to conducting neuroimaging and neurocognitive assessments in the diagnosis of ADHD in young children? A machine learning investigation. Dev Cogn Neurosci 2021; 49:100966. [PMID: 34044207 PMCID: PMC8167232 DOI: 10.1016/j.dcn.2021.100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
Given the negative trajectories of early behavior problems associated with ADHD, early diagnosis is considered critical to enable intervention and treatment. To this end, the current investigation employed machine learning to evaluate the relative predictive value of parent/teacher ratings, behavioral and neural measures of executive function (EF) in predicting ADHD in a sample consisting of 162 young children (ages 4–7, mean age 5.55, 82.6 % Hispanic/Latino). Among the target measures, teacher ratings of EF were the most predictive of ADHD. While a more extensive evaluation of neural measures, such as diffusion-weighted imaging, may provide more information as they relate to the underlying cognitive deficits associated with ADHD, the current study indicates that measures of cortical anatomy obtained in research studies, as well cognitive measures of EF often obtained in routine assessments, have little incremental value in differentiating typically developing children from those diagnosed with ADHD. It is important to note that the overlap between some of the EF questions in the BRIEF, and the ADHD symptoms could be enhancing this effect. Thus, future research evaluating the importance of such measures in predicting children’s functional impairment in academic and social areas would provide additional insight into their contributing role in ADHD.
Collapse
Affiliation(s)
- Ilke Öztekin
- Florida International University, United States.
| | | | | | | |
Collapse
|
6
|
Rae CL, Parkinson J, Betka S, Gouldvan Praag CD, Bouyagoub S, Polyanska L, Larsson DEO, Harrison NA, Garfinkel SN, Critchley HD. Amplified engagement of prefrontal cortex during control of voluntary action in Tourette syndrome. Brain Commun 2021; 2:fcaa199. [PMID: 33409490 PMCID: PMC7772099 DOI: 10.1093/braincomms/fcaa199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
Tourette syndrome is characterized by ‘unvoluntary’ tics, which are compulsive, yet often temporarily suppressible. The inferior frontal gyrus is implicated in motor control, including inhibition of pre-potent actions through influences on downstream subcortical and motor regions. Although tic suppression in Tourette syndrome also engages the inferior frontal gyrus, it is unclear whether such prefrontal control of action is also dysfunctional: Tic suppression studies do not permit comparison with control groups, and neuroimaging studies of motor inhibition can be confounded by the concurrent expression or suppression of tics. Here, patients with Tourette syndrome were directly compared to control participants when performing an intentional inhibition task during functional MRI. Tic expression was recorded throughout for removal from statistical models. Participants were instructed to make a button press in response to Go cues, withhold responses to NoGo cues, and decide whether to press or withhold to ‘Choose’ cues. Overall performance was similar between groups, for both intentional inhibition rates (% Choose-Go) and reactive NoGo inhibition commission errors. A subliminal face prime elicited no additional effects on intentional or reactive inhibition. Across participants, the task activated prefrontal and motor cortices and subcortical nuclei, including pre-supplementary motor area, inferior frontal gyrus, insula, caudate nucleus, thalamus and primary motor cortex. In Tourette syndrome, activity was elevated in the inferior frontal gyrus, insula and basal ganglia, most notably within the right inferior frontal gyrus during voluntary action and inhibition (Choose-Go and Choose-NoGo), and reactive inhibition (NoGo-correct). Anatomically, the locus of this inferior frontal gyrus hyperactivation during control of voluntary action matched that previously reported for tic suppression. In Tourette syndrome, activity within the caudate nucleus was also enhanced during both intentional (Choose-NoGo) and reactive (NoGo-correct) inhibition. Strikingly, despite the absence of overt motor behaviour, primary motor cortex activity increased in patients with Tourette syndrome but decreased in controls during both reactive and intentional inhibition. Additionally, severity of premonitory sensations scaled with functional connectivity of the pre-supplementary motor area to the caudate nucleus, globus pallidus and thalamus when choosing to respond (Choose-Go). Together, these results suggest that patients with Tourette syndrome use equivalent prefrontal mechanisms to suppress tics and withhold non-tic actions, but require greater inferior frontal gyrus engagement than controls to overcome motor drive from hyperactive downstream regions, notably primary motor cortex. Moreover, premonitory sensations may cue midline motor regions to generate tics through interactions with the basal ganglia.
Collapse
Affiliation(s)
- Charlotte L Rae
- School of Psychology, University of Sussex, Sussex BN1 9QH, UK
| | - Jim Parkinson
- School of Psychology, University of Sussex, Sussex BN1 9QH, UK
| | - Sophie Betka
- Department of Neuroscience, Brighton & Sussex Medical School, Sussex BN1 9RY, UK
| | | | - Samira Bouyagoub
- Department of Neuroscience, Brighton & Sussex Medical School, Sussex BN1 9RY, UK
| | - Liliana Polyanska
- Department of Neuroscience, Brighton & Sussex Medical School, Sussex BN1 9RY, UK
| | | | - Neil A Harrison
- Department of Neuroscience, Brighton & Sussex Medical School, Sussex BN1 9RY, UK
| | - Sarah N Garfinkel
- Sackler Centre for Consciousness Science, University of Sussex, Sussex, UK
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Sussex, UK
| |
Collapse
|
7
|
Leszkowicz E, Linden DEJ, Maio GR, Ihssen N. Neural evidence of motivational conflict between social values. Soc Neurosci 2016; 12:494-505. [DOI: 10.1080/17470919.2016.1183517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Emilia Leszkowicz
- School of Psychology, Cardiff University, Cardiff, UK
- Department of Animal and Human Physiology, University of Gdańsk, Gdańsk, Poland
| | | | | | - Niklas Ihssen
- School of Psychology, Cardiff University, Cardiff, UK
- Department of Psychology, Durham University, Stockton-on-Tees, UK
| |
Collapse
|