1
|
Park J, Lee S, Park S, Lee C, Kim S, Im CH. Transcranial alternating current stimulation over multiple brain areas with non-zero phase delays other than 180 degrees modulates visuospatial working memory performance. Sci Rep 2023; 13:12710. [PMID: 37543713 PMCID: PMC10404219 DOI: 10.1038/s41598-023-39960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
While zero-phase lag synchronization between multiple brain regions has been widely observed, relatively recent reports indicate that systematic phase delays between cortical regions reflect the direction of communications between cortical regions. For example, it has been suggested that a non-zero phase delay of electroencephalography (EEG) signals at the gamma frequency band between the bilateral parietal areas may reflect the direction of communication between these areas. We hypothesized that the direction of communication between distant brain areas might be modulated by multi-site transcranial alternating current stimulation (tACS) with specific phase delays other than 0° and 180°. In this study, a new noninvasive brain stimulation (NIBS) method called multi-site multi-phase tACS (msmp-tACS) was proposed. The efficacy of the proposed method was tested in a case study using a visuospatial working memory (VWM) paradigm in which the optimal stimulation conditions including amplitudes and phases of multiple scalp electrodes were determined using finite element analysis adopting phasor representation. msmp-tACS was applied over the bilateral intraparietal sulci (IPS) and showed that 80 Hz tACS with the phase for the right IPS leading that for the left IPS by 90° (= 3.125 ms) partialized VWM performance toward the right visual hemifield. The three stimulation conditions were synchronized, RL, and LR, which refers to stimulation condition with no phase lag, stimulation phase of right IPS (rIPS) leading left IPS (lIPS) by 90° and the stimulation of lIPS leading rIPS by 90°, respectively. The lateralization of VWM significantly shifted towards right visual hemifield under the RL condition compared to the synchronized and LR conditions. The shift in VWM was the result of the stimulation affecting both left and right visual hemifield trials to certain degrees, rather than significantly increasing or decreasing VWM capacity of a specific visual hemifield. Altered brain dynamics caused by msmp-tACS partialized VWM performance, likely due to modulation of effective connectivity between the rIPS and lIPS. Our results suggest that msmp-tACS is a promising NBS method that can effectively modulate cortical networks that cannot be readily modulated with conventional multi-site stimulation methods.
Collapse
Affiliation(s)
- Jimin Park
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Sangjun Lee
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Seonghun Park
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sungshin Kim
- Department of Cognitive Sciences, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Riddle J, Scimeca JM, Cellier D, Dhanani S, D'Esposito M. Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory. Curr Biol 2020; 30:1748-1754.e4. [PMID: 32275881 DOI: 10.1016/j.cub.2020.02.065] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/17/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
Working memory (WM) relies on the prioritization of relevant information and suppression of irrelevant information [1, 2]. Prioritizing relevant information has been linked to theta frequency neural oscillations in lateral prefrontal cortex and suppressing irrelevant information has been linked to alpha oscillations in occipito-parietal cortex [3,11]. Here, we used a retrospective-cue WM paradigm to manipulate prioritization and suppression task demands designed to drive theta oscillations in prefrontal cortex and alpha oscillations in parietal cortex, respectively. To causally test the role of these neural oscillations, we applied rhythmic transcranial magnetic stimulation (TMS) in either theta or alpha frequency to prefrontal and parietal regions identified using functional MRI. The effect of rhythmic TMS on WM performance was dependent on whether the TMS frequency matched or mismatched the expected underlying task-driven oscillations of the targeted region. Functional MRI in the targeted regions predicted subsequent TMS effects across subjects supporting a model by which theta oscillations are excitatory to neural activity, and alpha oscillations are inhibitory. Together, these results causally establish dissociable roles for prefrontal theta oscillations and parietal alpha oscillations in the control of internally maintained WM representations.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27514, USA.
| | - Jason M Scimeca
- Helen Wills Neuroscience Institute, University of California, Berkeley, 450 Li Ka Shing Biomedical Center, MC#3370, Berkeley, CA 94720-3370, USA
| | - Dillan Cellier
- Department of Psychology, University of Iowa, 301 E Jefferson Street, Iowa City, IA 52245, USA; Department of Cognitive Science, University of California, Berkeley, 140 Stephens Hall, Berkeley, CA 94720-2306, USA
| | - Sofia Dhanani
- Department of Cognitive Science, University of California, Berkeley, 140 Stephens Hall, Berkeley, CA 94720-2306, USA
| | - Mark D'Esposito
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 450 Li Ka Shing Biomedical Center, MC#3370, Berkeley, CA 94720-3370, USA
| |
Collapse
|
3
|
Kustermann T, Popov T, Miller GA, Rockstroh B. Verbal working memory-related neural network communication in schizophrenia. Psychophysiology 2018; 55:e13088. [DOI: 10.1111/psyp.13088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | - Tzvetan Popov
- Department of Psychology; University of Konstanz; Konstanz Germany
| | - Gregory A. Miller
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences; University of California Los Angeles; Los Angeles California USA
| | | |
Collapse
|
4
|
Brigadoi S, Cutini S, Meconi F, Castellaro M, Sessa P, Marangon M, Bertoldo A, Jolicœur P, Dell'Acqua R. On the Role of the Inferior Intraparietal Sulcus in Visual Working Memory for Lateralized Single-feature Objects. J Cogn Neurosci 2017; 29:337-351. [DOI: 10.1162/jocn_a_01042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
A consolidated practice in cognitive neuroscience is to explore the properties of human visual working memory through the analysis of electromagnetic signals using cued change detection tasks. Under these conditions, EEG/MEG activity increments in the posterior parietal cortex scaling with the number of memoranda are often reported in the hemisphere contralateral to the objects' position in the memory array. This highly replicable finding clashes with several reported failures to observe compatible hemodynamic activity modulations using fMRI or fNIRS in comparable tasks. Here, we reconcile this apparent discrepancy by acquiring fMRI data on healthy participants and employing a cluster analysis to group voxels in the posterior parietal cortex based on their functional response. The analysis identified two distinct subpopulations of voxels in the intraparietal sulcus (IPS) showing a consistent functional response among participants. One subpopulation, located in the superior IPS, showed a bilateral response to the number of objects coded in visual working memory. A different subpopulation, located in the inferior IPS, showed an increased unilateral response when the objects were displayed contralaterally. The results suggest that a cluster of neurons in the inferior IPS is a candidate source of electromagnetic contralateral responses to working memory load in cued change detection tasks.
Collapse
|
5
|
Kastner S, Chen Q, Jeong SK, Mruczek REB. A brief comparative review of primate posterior parietal cortex: A novel hypothesis on the human toolmaker. Neuropsychologia 2017; 105:123-134. [PMID: 28159617 DOI: 10.1016/j.neuropsychologia.2017.01.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
The primate visual system contains two major cortical pathways: a ventral-temporal pathway that has been associated with object processing and recognition, and a dorsal-parietal pathway that has been associated with spatial processing and action guidance. Our understanding of the role of the dorsal pathway, in particular, has greatly evolved within the framework of the two-pathway hypothesis since its original conception. Here, we present a comparative review of the primate dorsal pathway in humans and monkeys based on electrophysiological, neuroimaging, neuropsychological, and neuroanatomical studies. We consider similarities and differences across species in terms of the topographic representation of visual space; specificity for eye, reaching, or grasping movements; multi-modal response properties; and the representation of objects and tools. We also review the relative anatomical location of functionally- and topographically-defined regions of the posterior parietal cortex. An emerging theme from this comparative analysis is that non-spatial information is represented to a greater degree, and with increased complexity, in the human dorsal visual system. We propose that non-spatial information in the primate parietal cortex contributes to the perception-to-action system aimed at manipulating objects in peripersonal space. In humans, this network has expanded in multiple ways, including the development of a dorsal object vision system mirroring the complexity of the ventral stream, the integration of object information with parietal working memory systems, and the emergence of tool-specific object representations in the anterior intraparietal sulcus and regions of the inferior parietal lobe. We propose that these evolutionary changes have enabled the emergence of human-specific behaviors, such as the sophisticated use of tools.
Collapse
Affiliation(s)
- S Kastner
- Department of Psychology, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Q Chen
- Department of Psychology, USA; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - S K Jeong
- Department of Psychology, USA; Korea Brain Research Institute, Daegu, South Korea
| | - R E B Mruczek
- Department of Psychology, Worcester State University, Worcester, MA 01520, USA
| |
Collapse
|
6
|
Influence of age and cognitive performance on resting-state brain networks of older adults in a population-based cohort. Cortex 2017; 89:28-44. [PMID: 28192723 DOI: 10.1016/j.cortex.2017.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/11/2016] [Accepted: 01/13/2017] [Indexed: 11/23/2022]
Abstract
Aging leads to global changes in brain structure and cognitive performance, with reorganization of functional brain networks. Importantly, these age-related changes show higher inter-individual variability in older subjects. To particularly address this variability is a challenge for studies on lifetime trajectories from early to late adulthood. The present study therefore had a dedicated focus on late adulthood to characterize the functional connectivity in resting-state networks (RSFC) in relation to age and cognitive performance in 711 older adults (55-85 years) from the 1000BRAINS project. The executive, left and right frontoparietal resting-state (RS) networks showed age-related increases in RSFC. However, older adults did not show changes in RSFC in the default mode network (DMN). Furthermore, lower performance in working memory (WM) was associated with higher RSFC in the left frontoparietal RS network. The results suggest age-related compensatory increases in RSFC which might help to maintain cognitive performance. Nevertheless, the negative correlation between RSFC and WM performance hints at limited cognitive reserve capacity in lower performing older adults. Consequently, the current results provide evidence for a functional reorganization of the brain until late adulthood that might additionally explain parts of the variability of cognitive abilities in older adults.
Collapse
|
7
|
Cona G, Marino G, Bisiacchi PS. Superior parietal cortex and the attention to delayed intention: An rTMS study. Neuropsychologia 2017; 95:130-135. [DOI: 10.1016/j.neuropsychologia.2016.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
8
|
Gurariy G, Killebrew KW, Berryhill ME, Caplovitz GP. Induced and Evoked Human Electrophysiological Correlates of Visual Working Memory Set-Size Effects at Encoding. PLoS One 2016; 11:e0167022. [PMID: 27902738 PMCID: PMC5130241 DOI: 10.1371/journal.pone.0167022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 11/08/2016] [Indexed: 01/23/2023] Open
Abstract
The ability to encode, store, and retrieve visually presented objects is referred to as visual working memory (VWM). Although crucial for many cognitive processes, previous research reveals that VWM strictly capacity limited. This capacity limitation is behaviorally observable in the set size effect: the ability to successfully report items in VWM asymptotes at a small number of items. Research into the neural correlates of set size effects and VWM capacity limits in general largely focus on the maintenance period of VWM. However, we previously reported that neural resources allocated to individual items during VWM encoding correspond to successful VWM performance. Here we expand on those findings by investigating neural correlates of set size during VWM encoding. We hypothesized that neural signatures of encoding-related VWM capacity limitations should be differentiable as a function of set size. We tested our hypothesis using High Density Electroencephalography (HD-EEG) to analyze frequency components evoked by flickering target items in VWM displays of set size 2 or 4. We found that set size modulated the amplitude of the 1st and 2nd harmonic frequencies evoked during successful VWM encoding across frontal and occipital-parietal electrodes. Frontal sites exhibited the most robust effects for the 2nd harmonic (set size 2 > set size 4). Additionally, we found a set-size effect on the induced power of delta-band (1-4 Hz) activity (set size 2 > set size 4). These results are consistent with a capacity limited VWM resource at encoding that is distributed across to-be-remembered items in a VWM display. This resource may work in conjunction with a task-specific selection process that determines which items are to be encoded and which are to be ignored. These neural set size effects support the view that VWM capacity limitations begin with encoding related processes.
Collapse
Affiliation(s)
- Gennadiy Gurariy
- University of Nevada, Reno Department of Psychology, Reno, United States of America
- * E-mail:
| | - Kyle W. Killebrew
- University of Nevada, Reno Department of Psychology, Reno, United States of America
| | - Marian E. Berryhill
- University of Nevada, Reno Department of Psychology, Reno, United States of America
| | - Gideon P. Caplovitz
- University of Nevada, Reno Department of Psychology, Reno, United States of America
| |
Collapse
|
9
|
Erlikhman G, Caplovitz GP. Decoding information about dynamically occluded objects in visual cortex. Neuroimage 2016; 146:778-788. [PMID: 27663987 DOI: 10.1016/j.neuroimage.2016.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/19/2016] [Accepted: 09/11/2016] [Indexed: 11/28/2022] Open
Abstract
During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or non-object-specific information such as its position or velocity as it is tracked behind an occluder, as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by "invisible" objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine representations within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may only represent the dynamically occluded object's position or motion path, while later visual areas represent object-specific information.
Collapse
|
10
|
Erlikhman G, Gurariy G, Mruczek REB, Caplovitz GP. The neural representation of objects formed through the spatiotemporal integration of visual transients. Neuroimage 2016; 142:67-78. [PMID: 27033688 DOI: 10.1016/j.neuroimage.2016.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time.
Collapse
Affiliation(s)
| | | | - Ryan E B Mruczek
- Department of Psychology, University of Nevada, Reno, USA; Department of Psychology, Worcester State University, USA
| | | |
Collapse
|