1
|
Grassi PR, Bannert MM, Bartels A. The causal involvement of the visual cortex in visual working memory remains uncertain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231884. [PMID: 39092143 PMCID: PMC11293800 DOI: 10.1098/rsos.231884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 08/04/2024]
Abstract
The role of the early visual cortex in visual working memory (VWM) is a matter of current debate. Neuroimaging studies have consistently shown that visual areas encode the content of working memory, while transcranial magnetic stimulation (TMS) studies have presented incongruent results. Thus, we lack conclusive evidence supporting the causal role of early visual areas in VWM. In a recent registered report, Phylactou et al. (Phylactou P, Shimi A, Konstantinou N 2023 R. Soc. Open Sci. 10, 230321 (doi:10.1098/rsos.230321)) sought to tackle this controversy via two well-powered TMS experiments, designed to correct possible methodological issues of previous attempts identified in a preceding systematic review and meta-analysis (Phylactou P, Traikapi A, Papadatou-Pastou M, Konstantinou N 2022 Psychon. Bull. Rev. 29, 1594-1624 (doi:10.3758/s13423-022-02107-y)). However, a key part of their critique and experimental design was based on a misunderstanding of the visual system. They disregarded two important anatomical facts, namely that early visual areas of each hemisphere represent the contralateral visual hemifield, and that each hemisphere receives equally strong input from each eye-both leading to confounded conditions and artefactual effects in their studies. Here, we explain the correct anatomy, describe why their experiments failed to address current issues in the literature and perform a thorough reanalysis of their TMS data revealing important null results. We conclude that the causal role of the visual cortex in VWM remains uncertain.
Collapse
Affiliation(s)
- Pablo Rodrigo Grassi
- Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Centre for Integrative Neuroscience, Tübingen, Germany
- Department for High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Michael M. Bannert
- Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Centre for Integrative Neuroscience, Tübingen, Germany
- Department for High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andreas Bartels
- Department of Psychology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Centre for Integrative Neuroscience, Tübingen, Germany
- Department for High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
2
|
Phylactou P, Shimi A, Konstantinou N. Causal evidence for the role of the sensory visual cortex in visual short-term memory maintenance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230321. [PMID: 37090966 PMCID: PMC10113812 DOI: 10.1098/rsos.230321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The role of the sensory visual cortex during visual short-term memory (VSTM) remains controversial. This controversy is possibly due to methodological issues in previous attempts to investigate the effects of transcranial magnetic stimulation (TMS) on VSTM. The aim of this study was to use TMS, while covering previous methodological deficits. Sixty-four young adults were recruited to participate in two experiments (Experiment 1: n = 36; Experiment 2: n = 28) using a VSTM orientation change-detection task under TMS. Monocular vision was ensured using red-blue goggles combined with red-blue stimuli. Double-pulse TMS was delivered at different times (Experiment 1: 0, 200 or 1000 ms; Experiment 2: 200, 1000 ms) during a 2 s maintenance phase, on one side of the occipital hemisphere. In Experiment 2, a sham TMS condition was introduced. Decreased detection sensitivity (d') in the ipsilateral occipital hemisphere to visual hemifield, and in the real TMS (compared with sham TMS) condition indicated inhibitory TMS effects, and thus, a causal involvement of the sensory visual cortex during early (200 ms) and late (1000 ms) maintenance in VSTM. These findings are aligned with sensory recruitment, which proposes that both perceptual and memory processes rely upon the same neural substrates in the sensory visual cortex. The methods used in this study were preregistered and had received in-principle acceptance on 6 June 2022 (Stage 1 protocol can be found in: https://doi.org/10.17605/OSF.IO/EMPDT).
Collapse
Affiliation(s)
- Phivos Phylactou
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus
| | - Andria Shimi
- Department of Psychology, Faculty of Social Sciences and Education, University of Cyprus, CY-1678 Nicosia, Cyprus
| | - Nikos Konstantinou
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus
| |
Collapse
|
3
|
Sensory recruitment in visual short-term memory: A systematic review and meta-analysis of sensory visual cortex interference using transcranial magnetic stimulation. Psychon Bull Rev 2022; 29:1594-1624. [PMID: 35606595 DOI: 10.3758/s13423-022-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Sensory visual areas are involved in encoding information in visual short-term memory (VSTM). Yet it remains unclear whether sensory visual cortex is a necessary component of the brain network for maintenance of information in VSTM. Here, we aimed to systematically review studies that have investigated the role of the sensory visual cortex in VSTM using transcranial magnetic stimulation (TMS) and to quantitatively explore these effects using meta-analyses. Fourteen studies were identified and reviewed. Eight studies provided sufficient data for meta-analysis. Two meta-analyses, one regarding the VSTM encoding phase (17 effect sizes) and one regarding the VSTM maintenance phase (15 effect sizes), two meta-regressions (32 effect sizes in each), and one exploratory meta-analysis were conducted. Our results indicate that the sensory visual cortex is similarly involved in both the encoding and maintenance VSTM phase. We suggest that some cases where evidence did not show significant TMS effects was due to low memory or perceptual task demands. Overall, these findings support the idea that sensory visual areas are part of the brain network responsible for successfully maintaining information in VSTM.
Collapse
|
4
|
Yue Q, Martin RC. Maintaining verbal short-term memory representations in non-perceptual parietal regions. Cortex 2021; 138:72-89. [PMID: 33677329 DOI: 10.1016/j.cortex.2021.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Buffer accounts of verbal short-term memory (STM) assume dedicated buffers for maintaining different types of information (e.g., phonological, visual) whereas embedded processes accounts argue against the existence of buffers and claim that STM consists of the activated portion of long-term memory (LTM). We addressed this debate by determining whether STM recruits the same neural substrate as LTM, or whether additional regions are involved in short-term storage. Using fMRI with representational similarity analysis (RSA), we examined the representational correspondence of multi-voxel neural activation patterns with the theoretical predictions for the maintenance of both phonological and semantic codes in STM. We found that during the delay period of a phonological STM task, phonological representations could be decoded in the left supramarginal gyrus (SMG) but not the superior temporal gyrus (STG), a speech processing region, for word stimuli. Whereas the pattern in the SMG was specific to phonology, a different region in the left angular gyrus showed RSA decoding evidence for the retention of either phonological or semantic codes, depending on the task context. Taken together, the results provide clear support for a dedicated buffer account of phonological STM, although evidence for a semantic buffer is equivocal.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA; Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
5
|
Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W, Nguyen D, Chrapliwy NA, Davis SW, Cabeza R, Lisanby SH, Deng ZD. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: A meta-analysis and recommendations for future studies. Neurosci Biobehav Rev 2019; 107:47-58. [PMID: 31473301 PMCID: PMC7654714 DOI: 10.1016/j.neubiorev.2019.08.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 01/03/2023]
Abstract
Online repetitive transcranial magnetic stimulation (rTMS), applied while subjects are performing a task, is widely used to disrupt brain regions underlying cognition. However, online rTMS has also induced "paradoxical enhancement". Given the rapid proliferation of this approach, it is crucial to develop a better understanding of how online stimulation influences cognition, and the optimal parameters to achieve desired effects. To accomplish this goal, a quantitative meta-analysis was performed with random-effects models fitted to reaction time (RT) and accuracy data. The final dataset included 126 studies published between 1998 and 2016, with 244 total effects for reaction times, and 202 for accuracy. Meta-analytically, rTMS at 10 Hz and 20 Hz disrupted accuracy for attention, executive, language, memory, motor, and perception domains, while no effects were found with 1 Hz or 5 Hz. Stimulation applied at and 10 and 20 Hz slowed down RTs in attention and perception tasks. No performance enhancement was found. Meta-regression analysis showed that fMRI-guided targeting and short inter-trial intervals are associated with increased disruptive effects with rTMS.
Collapse
Affiliation(s)
- Lysianne Beynel
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Lawrence G Appelbaum
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Courtney A Crowell
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Susan A Hilbig
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Wesley Lim
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Duy Nguyen
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Nicolas A Chrapliwy
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC, United States
| | - Sarah H Lisanby
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Zhi-De Deng
- Departments of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|