1
|
Przybylski L, Kroliczak G. The functional organization of skilled actions in the adextral and atypical brain. Neuropsychologia 2023; 191:108735. [PMID: 37984793 DOI: 10.1016/j.neuropsychologia.2023.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
When planning functional grasps of tools, right-handed individuals (dextrals) show mostly left-lateralized neural activity in the praxis representation network (PRN), regardless of the used hand. Here we studied whether or not similar cerebral asymmetries are evident in non-righthanded individuals (adextrals). Sixty two participants, 28 righthanders and 34 non-righthanders (21 lefthanders, 13 mixedhanders), planned functional grasps of tools vs. grasps of control objects, and subsequently performed their pantomimed executions, in an event-related functional magnetic resonance imaging (fMRI) project. Both hands were tested, separately in two different sessions, counterbalanced across participants. After accounting for non-functional components of the prospective grasp, planning functional grasps of tools was associated with greater engagement of the same, left-hemisphere occipito-temporal, parietal and frontal areas of PRN, regardless of hand and handedness. Only when the analyses involved signal changes referenced to resting baseline intervals, differences between adextrals and dextrals emerged. Whereas in the left hemisphere the neural activity was equivalent in both groups (except for the occipito-temporo-parietal junction), its increases in the right occipito-temporal cortex, medial intraparietal sulcus (area MIP), the supramarginal gyrus (area PFt/PF), and middle frontal gyrus (area p9-46v) were significantly greater in adextrals. The inverse contrast was empty. Notably, when individuals with atypical and typical hemispheric phenotypes were directly compared, planning functional (vs. control) grasps invoked, instead, significant clusters located nearly exclusively in the left hemisphere of the typical phenotype. Previous studies interpret similar right-sided vs. left-sided increases in neural activity for skilled actions as handedness dependent, i.e., located in the hemisphere dominant for manual skills. Yet, none of the effects observed here can be purely handedness dependent because there were mixed-handed individuals among adextrals, and numerous mixed-handed and left-handed individuals possess the typical phenotype. Thus, our results clearly show that hand dominance has limited power in driving the cerebral organization of motor cognitive functions.
Collapse
Affiliation(s)
- Lukasz Przybylski
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Gregory Kroliczak
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland; Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
2
|
Michalowski B, Buchwald M, Klichowski M, Ras M, Kroliczak G. Action goals and the praxis network: an fMRI study. Brain Struct Funct 2022; 227:2261-2284. [PMID: 35731447 PMCID: PMC9418102 DOI: 10.1007/s00429-022-02520-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/30/2022] [Indexed: 01/09/2023]
Abstract
The praxis representation network (PRN) of the left cerebral hemisphere is typically linked to the control of functional interactions with familiar tools. Surprisingly, little is known about the PRN engagement in planning and execution of tool-directed actions motivated by non-functional but purposeful action goals. Here we used functional neuroimaging to perform both univariate and multi-voxel pattern analyses (MVPA) in 20 right-handed participants who planned and later executed, with their dominant and non-dominant hands, disparate grasps of tools for different goals, including: (1) planning simple vs. demanding functional grasps of conveniently vs. inconveniently oriented tools with an intention to immediately use them, (2) planning simple—but non-functional—grasps of inconveniently oriented tools with a goal to pass them to a different person, (3) planning reaching movements directed at such tools with an intention to move/push them with the back of the hand, and (4) pantomimed execution of the earlier planned tasks. While PRN contributed to the studied interactions with tools, the engagement of its critical nodes, and/or complementary right hemisphere processing, was differently modulated by task type. E.g., planning non-functional/structural grasp-to-pass movements of inconveniently oriented tools, regardless of the hand, invoked the left parietal and prefrontal nodes significantly more than simple, non-demanding functional grasps. MVPA corroborated decoding capabilities of critical PRN areas and some of their right hemisphere counterparts. Our findings shed new lights on how performance of disparate action goals influences the extraction of object affordances, and how or to what extent it modulates the neural activity within the parieto-frontal brain networks.
Collapse
Affiliation(s)
- Bartosz Michalowski
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland.,Learning Laboratory, Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Maciej Ras
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Gregory Kroliczak
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland.
| |
Collapse
|
3
|
Gurariy G, Mruczek REB, Snow JC, Caplovitz GP. Using High-Density Electroencephalography to Explore Spatiotemporal Representations of Object Categories in Visual Cortex. J Cogn Neurosci 2022; 34:967-987. [PMID: 35286384 PMCID: PMC9169880 DOI: 10.1162/jocn_a_01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Visual object perception involves neural processes that unfold over time and recruit multiple regions of the brain. Here, we use high-density EEG to investigate the spatiotemporal representations of object categories across the dorsal and ventral pathways. In , human participants were presented with images from two animate object categories (birds and insects) and two inanimate categories (tools and graspable objects). In , participants viewed images of tools and graspable objects from a different stimulus set, one in which a shape confound that often exists between these categories (elongation) was controlled for. To explore the temporal dynamics of object representations, we employed time-resolved multivariate pattern analysis on the EEG time series data. This was performed at the electrode level as well as in source space of two regions of interest: one encompassing the ventral pathway and another encompassing the dorsal pathway. Our results demonstrate shape, exemplar, and category information can be decoded from the EEG signal. Multivariate pattern analysis within source space revealed that both dorsal and ventral pathways contain information pertaining to shape, inanimate object categories, and animate object categories. Of particular interest, we note striking similarities obtained in both ventral stream and dorsal stream regions of interest. These findings provide insight into the spatio-temporal dynamics of object representation and contribute to a growing literature that has begun to redefine the traditional role of the dorsal pathway.
Collapse
|
4
|
Taniguchi S, Higashi Y, Kataoka H, Nakajima H, Shimokawa T. Functional Connectivity and Networks Underlying Complex Tool-Use Movement in Assembly Workers: An fMRI Study. Front Hum Neurosci 2021; 15:707502. [PMID: 34776900 PMCID: PMC8581229 DOI: 10.3389/fnhum.2021.707502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to identify the functional connectivity and networks utilized during tool-use in real assembly workers. These brain networks have not been elucidated because the use of tools in real-life settings is more complex than that in experimental environments. We evaluated task-related functional magnetic resonance imaging in 13 assembly workers (trained workers, TW) and 27 age-matched volunteers (untrained workers, UTW) during a tool-use pantomiming task, and resting-state functional connectivity was also analyzed. Two-way repeated-measures analysis of covariance was conducted with the group as a between-subject factor (TW > UTW) and condition (task > resting) as a repeated measure, controlling for assembly time and accuracy as covariates. We identified two patterns of functional connectivity in the whole brain within three networks that distinguished TW from UTW. TW had higher connectivity than UTW between the left middle temporal gyrus and right cerebellum Crus II (false discovery rate corrected p-value, p-FDR = 0.002) as well as between the left supplementary motor area and the pars triangularis of the right inferior frontal gyrus (p-FDR = 0.010). These network integrities may allow for TW to perform rapid tool-use. In contrast, UTW showed a stronger integrity compared to TW between the left paracentral lobule and right angular gyrus (p-FDR = 0.004), which may reflect a greater reliance on sensorimotor input to acquire complex tool-use ability than that of TW. Additionally, the fronto-parietal network was identified as a common network between groups. These findings support our hypothesis that assembly workers have stronger connectivity in tool-specific motor regions and the cerebellum, whereas UTW have greater involvement of sensorimotor networks during a tool-use task.
Collapse
Affiliation(s)
- Seira Taniguchi
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| | | | | | | | - Tetsuya Shimokawa
- Center for Information and Neural Networks, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
| |
Collapse
|
5
|
Whitwell RL, Striemer CL, Cant JS, Enns JT. The Ties that Bind: Agnosia, Neglect and Selective Attention to Visual Scale. Curr Neurol Neurosci Rep 2021; 21:54. [PMID: 34586544 DOI: 10.1007/s11910-021-01139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Historical and contemporary treatments of visual agnosia and neglect regard these disorders as largely unrelated. It is thought that damage to different neural processes leads directly to one or the other condition, yet apperceptive variants of agnosia and object-centered variants of neglect share remarkably similar deficits in the quality of conscious experience. Here we argue for a closer association between "apperceptive" variants of visual agnosia and "object-centered" variants of visual neglect. We introduce a theoretical framework for understanding these conditions based on "scale attention", which refers to selecting boundary and surface information at different levels of the structural hierarchy in the visual array. RECENT FINDINGS We review work on visual agnosia, the cortical structures and cortico-cortical pathways that underlie visual perception, visuospatial neglect and object-centered neglect, and attention to scale. We highlight direct and indirect pathways involved in these disorders and in attention to scale. The direct pathway involves the posterior vertical segments of the superior longitudinal fasciculus that are positioned to link the established dorsal and ventral attentional centers in the parietal cortex with structures in the inferior occipitotemporal cortex associated with visual apperceptive agnosia. The connections in the right hemisphere appear to be more important for visual conscious experience, whereas those in the left hemisphere appear to be more strongly associated with the planning and execution of visually guided grasps directed at multi-part objects such as tools. In the latter case, semantic and functional information must drive the selection of the appropriate hand posture and grasp points on the object. This view is supported by studies of grasping in patients with agnosia and in patients with neglect that show that the selection of grasp points when picking up a tool involves both scale attention and semantic contributions from inferotemporal cortex. The indirect pathways, which include the inferior fronto-occipital and horizontal components of the superior longitudinal fasciculi, involve the frontal lobe, working memory and the "multiple demands" network, which can shape the content of visual awareness through the maintenance of goal- and task-based abstractions and their influence on scale attention. Recent studies of human cortico-cortical pathways necessitate revisions to long-standing theoretical views on visual perception, visually guided action and their integrations. We highlight findings from a broad sample of seemingly disparate areas of research to support the proposal that attention to scale is necessary for typical conscious visual experience and for goal-directed actions that depend on functional and semantic information. Furthermore, we suggest that vertical pathways between the parietal and occipitotemporal cortex, along with indirect pathways that involve the premotor and prefrontal cortex, facilitate the operations of scale attention.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, University of British Columbia, Vancouver, Canada.
| | | | - Jonathan S Cant
- Department of Psychology, University of Toronto Scarborough, Toronto, Canada
| | - James T Enns
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
The contribution of object size, manipulability, and stability on neural responses to inanimate objects. Neuroimage 2021; 237:118098. [PMID: 33940141 DOI: 10.1016/j.neuroimage.2021.118098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 11/20/2022] Open
Abstract
In human occipitotemporal cortex, brain responses to depicted inanimate objects have a large-scale organization by real-world object size. Critically, the size of objects in the world is systematically related to behaviorally-relevant properties: small objects are often grasped and manipulated (e.g., forks), while large objects tend to be less motor-relevant (e.g., tables), though this relationship does not always have to be true (e.g., picture frames and wheelbarrows). To determine how these two dimensions interact, we measured brain activity with functional magnetic resonance imaging while participants viewed a stimulus set of small and large objects with either low or high motor-relevance. The results revealed that the size organization was evident for objects with both low and high motor-relevance; further, a motor-relevance map was also evident across both large and small objects. Targeted contrasts revealed that typical combinations (small motor-relevant vs. large non-motor-relevant) yielded more robust topographies than the atypical covariance contrast (small non-motor-relevant vs. large motor-relevant). In subsequent exploratory analyses, a factor analysis revealed that the construct of motor-relevance was better explained by two underlying factors: one more related to manipulability, and the other to whether an object moves or is stable. The factor related to manipulability better explained responses in lateral small-object preferring regions, while the factor related to object stability (lack of movement) better explained responses in ventromedial large-object preferring regions. Taken together, these results reveal that the structure of neural responses to objects of different sizes further reflect behavior-relevant properties of manipulability and stability, and contribute to a deeper understanding of some of the factors that help the large-scale organization of object representation in high-level visual cortex.
Collapse
|
7
|
Whitwell RL, Katz NJ, Goodale MA, Enns JT. The Role of Haptic Expectations in Reaching to Grasp: From Pantomime to Natural Grasps and Back Again. Front Psychol 2020; 11:588428. [PMID: 33391110 PMCID: PMC7773727 DOI: 10.3389/fpsyg.2020.588428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
When we reach to pick up an object, our actions are effortlessly informed by the object's spatial information, the position of our limbs, stored knowledge of the object's material properties, and what we want to do with the object. A substantial body of evidence suggests that grasps are under the control of "automatic, unconscious" sensorimotor modules housed in the "dorsal stream" of the posterior parietal cortex. Visual online feedback has a strong effect on the hand's in-flight grasp aperture. Previous work of ours exploited this effect to show that grasps are refractory to cued expectations for visual feedback. Nonetheless, when we reach out to pretend to grasp an object (pantomime grasp), our actions are performed with greater cognitive effort and they engage structures outside of the dorsal stream, including the ventral stream. Here we ask whether our previous finding would extend to cued expectations for haptic feedback. Our method involved a mirror apparatus that allowed participants to see a "virtual" target cylinder as a reflection in the mirror at the start of all trials. On "haptic feedback" trials, participants reached behind the mirror to grasp a size-matched cylinder, spatially coincident with the virtual one. On "no-haptic feedback" trials, participants reached behind the mirror and grasped into "thin air" because no cylinder was present. To manipulate haptic expectation, we organized the haptic conditions into blocked, alternating, and randomized schedules with and without verbal cues about the availability of haptic feedback. Replicating earlier work, we found the strongest haptic effects with the blocked schedules and the weakest effects in the randomized uncued schedule. Crucially, the haptic effects in the cued randomized schedule was intermediate. An analysis of the influence of the upcoming and immediately preceding haptic feedback condition in the cued and uncued random schedules showed that cuing the upcoming haptic condition shifted the haptic influence on grip aperture from the immediately preceding trial to the upcoming trial. These findings indicate that, unlike cues to the availability of visual feedback, participants take advantage of cues to the availability of haptic feedback, flexibly engaging pantomime, and natural modes of grasping to optimize the movement.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Nathan J Katz
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | - Melvyn A Goodale
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | - James T Enns
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Matić K, Op de Beeck H, Bracci S. It's not all about looks: The role of object shape in parietal representations of manual tools. Cortex 2020; 133:358-370. [PMID: 33186833 DOI: 10.1016/j.cortex.2020.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/05/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
The ability to build and expertly manipulate manual tools sets humans apart from other animals. Watching images of manual tools has been shown to elicit a distinct pattern of neural activity in a network of parietal areas, assumingly because tools entail a potential for action-a unique feature related to their functional use and not shared with other manipulable objects. However, a question has been raised whether this selectivity reflects a processing of low-level visual properties-such as elongated shape that is idiosyncratic to most tool-objects-rather than action-specific features. To address this question, we created and behaviourally validated a stimulus set that dissociates objects that are manipulable and nonmanipulable, as well as objects with different degrees of body extension property (tools and non-tools), while controlling for object shape and low-level image properties. We tested the encoding of action-related features by investigating neural representations in two parietal regions of interest (intraparietal sulcus and superior parietal lobule) using functional MRI. Univariate differences between tools and non-tools were not observed when controlling for visual properties, but strong evidence for the action account was nevertheless revealed when using a multivariate approach. Overall, this study provides further evidence that the representational content in the dorsal visual stream reflects encoding of action-specific properties.
Collapse
Affiliation(s)
- Karla Matić
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Brain and Cognition, Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium.
| | - Hans Op de Beeck
- Brain and Cognition, Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Stefania Bracci
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy; Brain and Cognition, Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
9
|
Kassuba T, Pinsk MA, Kastner S. Distinct auditory and visual tool regions with multisensory response properties in human parietal cortex. Prog Neurobiol 2020; 195:101889. [PMID: 32707071 DOI: 10.1016/j.pneurobio.2020.101889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/12/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Left parietal cortex has been associated with the human-specific ability of sophisticated tool use. Yet, it is unclear how tool information is represented across senses. Here, we compared auditory and visual tool-specific activations within healthy human subjects to probe the relation of tool-specific networks, uni- and multisensory response properties, and functional and structural connectivity using functional and diffusion-weighted MRI. In each subject, we identified an auditory tool network with regions in left anterior inferior parietal cortex (aud-aIPL), bilateral posterior lateral sulcus, and left inferior precentral sulcus, and a visual tool network with regions in left aIPL (vis-aIPL) and bilateral inferior temporal gyrus. Aud-aIPL was largely separate and anterior/inferior from vis-aIPL, with varying degrees of overlap across subjects. Both regions displayed a strong preference for tools versus other stimuli presented within the same modality. Despite their modality preference, aud-aIPL and vis-aIPL and a region in left inferior precentral sulcus displayed multisensory response properties, as revealed in multivariate analyses. Thus, two largely separate tool networks are engaged by the visual and auditory modalities with nodes in parietal and prefrontal cortex potentially integrating information across senses. The diversification of tool processing in human parietal cortex underpins its critical role in complex object processing.
Collapse
Affiliation(s)
- Tanja Kassuba
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Kageyama T, Dos Santos Kawata KH, Kawashima R, Sugiura M. Performance and Material-Dependent Holistic Representation of Unconscious Thought: A Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2019; 13:418. [PMID: 31866843 PMCID: PMC6908964 DOI: 10.3389/fnhum.2019.00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Psychological research has demonstrated that humans can think unconsciously. Unconscious thought (UT) refers to cognitive or affective decision-related processes that occur beyond conscious awareness. UT processes are considered more effective in complex decision-making than conscious thought (CT). In addition, holistic representation plays a key role in UT and consists of a multimodal, value-related cognitive process. While the neural correlates of UT have recently been investigated, the holistic representation hypothesis of UT has not been confirmed. Therefore, in the present study, we aimed to further evaluate this hypothesis by utilizing two UT tasks (person and consumer-product evaluations) in conjunction with an improved functional magnetic resonance imaging (fMRI) experimental protocol. Participants evaluated four alternatives with 12 attributes each. In the UT condition, once the decision information had been presented, the participants completed a 1-back task for 120 s and evaluated each alternative, as well as an independent 1-back task in the absence of any decision information. We then performed regression analysis of the UT performance in both tasks. Our results revealed a positive correlation between performance in the UT task and the use of the anterior part of the precuneus/paracentral lobule in the person evaluation task and between performance and the posterior part of the precuneus, postcentral gyrus, middle occipital gyrus, and superior parietal lobule in the consumer-product evaluation task. The involvement of the precuneus area in both tasks was indicative of a multimodal, value-related process and is consistent with the features of holistic representation, supporting a central role for holistic representation in UT. Furthermore, the involvement of different precuneus subregions in the two UT tasks may reflect the task dependency of the key representation critical for advantageous UT.
Collapse
Affiliation(s)
- Tetsuya Kageyama
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Ryuta Kawashima
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Motoaki Sugiura
- Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Disaster-Related Cognitive Science, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Ruttorf M, Kristensen S, Schad LR, Almeida J. Transcranial Direct Current Stimulation Alters Functional Network Structure in Humans: A Graph Theoretical Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2829-2837. [PMID: 31071024 DOI: 10.1109/tmi.2019.2915206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transcranial direct current stimulation (tDCS) is routinely used in basic and clinical research, but its efficacy has been challenged on a methodological, statistical and technical basis recently. The arguments against tDCS derive from an insufficient understanding of how this technique interacts with brain processes physiologically. Because of its potential as a central tool in neuroscience, it is important to clarify whether tDCS affects neuronal activity. Here, we investigate influences of offline tDCS on network architecture measured by functional magnetic resonance imaging. Applied to one network node only, offline tDCS affects the architecture of the entire functional network. Furthermore, offline tDCS exerts polarity-specific effects on the topology of the functional network attached. Our results confirm in a functioning brain and in a bias free and independent fashion that offline tDCS influences neuronal activity. Moreover, our results suggest that network-specific connectivity has an important role in improving our understanding of the effects of tDCS.
Collapse
|
12
|
Garcea FE, Almeida J, Sims MH, Nunno A, Meyers SP, Li YM, Walter K, Pilcher WH, Mahon BZ. Domain-Specific Diaschisis: Lesions to Parietal Action Areas Modulate Neural Responses to Tools in the Ventral Stream. Cereb Cortex 2019; 29:3168-3181. [PMID: 30169596 PMCID: PMC6933536 DOI: 10.1093/cercor/bhy183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Indexed: 12/31/2022] Open
Abstract
Neural responses to small manipulable objects ("tools") in high-level visual areas in ventral temporal cortex (VTC) provide an opportunity to test how anatomically remote regions modulate ventral stream processing in a domain-specific manner. Prior patient studies indicate that grasp-relevant information can be computed about objects by dorsal stream structures independently of processing in VTC. Prior functional neuroimaging studies indicate privileged functional connectivity between regions of VTC exhibiting tool preferences and regions of parietal cortex supporting object-directed action. Here we test whether lesions to parietal cortex modulate tool preferences within ventral and lateral temporal cortex. We found that lesions to the left anterior intraparietal sulcus, a region that supports hand-shaping during object grasping and manipulation, modulate tool preferences in left VTC and in the left posterior middle temporal gyrus. Control analyses demonstrated that neural responses to "place" stimuli in left VTC were unaffected by lesions to parietal cortex, indicating domain-specific consequences for ventral stream neural responses in the setting of parietal lesions. These findings provide causal evidence that neural specificity for "tools" in ventral and lateral temporal lobe areas may arise, in part, from online inputs to VTC from parietal areas that receive inputs via the dorsal visual pathway.
Collapse
Affiliation(s)
- Frank E Garcea
- University of Rochester, Department of Brain & Cognitive Sciences, 358 Meliora Hall, Rochester, NY, USA
- University of Rochester, Center for Language Sciences, 358 Meliora Hall, Rochester, NY, USA
- University of Rochester, Center for Visual Science, 274 Meliora Hall, Rochester, NY, USA
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA, USA
| | - Jorge Almeida
- University of Coimbra, Faculty of Psychology and Educational Sciences, Rua do Colégio Novo, Coimbra, Portugal
- University of Coimbra, Proaction Laboratory, Faculty of Psychology and Educational Sciences, Rua do Colégio Novo, Coimbra, Portugal
| | - Maxwell H Sims
- University of Rochester, Department of Brain & Cognitive Sciences, 358 Meliora Hall, Rochester, NY, USA
| | - Andrew Nunno
- University of Rochester, Department of Brain & Cognitive Sciences, 358 Meliora Hall, Rochester, NY, USA
| | - Steven P Meyers
- University of Rochester Medical Center, Department of Imaging Sciences, 601 Elmwood Avenue, Rochester, NY, USA
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
| | - Yan Michael Li
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
| | - Kevin Walter
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
| | - Webster H Pilcher
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
| | - Bradford Z Mahon
- University of Rochester, Department of Brain & Cognitive Sciences, 358 Meliora Hall, Rochester, NY, USA
- University of Rochester, Center for Language Sciences, 358 Meliora Hall, Rochester, NY, USA
- University of Rochester, Center for Visual Science, 274 Meliora Hall, Rochester, NY, USA
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Styrkowiec PP, Nowik AM, Króliczak G. The neural underpinnings of haptically guided functional grasping of tools: An fMRI study. Neuroimage 2019; 194:149-162. [DOI: 10.1016/j.neuroimage.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/26/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
|
14
|
Chen J, Snow JC, Culham JC, Goodale MA. What Role Does "Elongation" Play in "Tool-Specific" Activation and Connectivity in the Dorsal and Ventral Visual Streams? Cereb Cortex 2019; 28:1117-1131. [PMID: 28334063 DOI: 10.1093/cercor/bhx017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Images of tools induce stronger activation than images of nontools in a left-lateralized network that includes ventral-stream areas implicated in tool identification and dorsal-stream areas implicated in tool manipulation. Importantly, however, graspable tools tend to be elongated rather than stubby, and so the tool-selective responses in some of these areas may, to some extent, reflect sensitivity to elongation rather than "toolness" per se. Using functional magnetic resonance imaging, we investigated the role of elongation in driving tool-specific activation in the 2 streams and their interconnections. We showed that in some "tool-selective" areas, the coding of toolness and elongation coexisted, but in others, elongation and toolness were coded independently. Psychophysiological interaction analysis revealed that toolness, but not elongation, had a strong modulation of the connectivity between the ventral and dorsal streams. Dynamic causal modeling revealed that viewing tools (either elongated or stubby) increased the connectivity from the ventral- to the dorsal-stream tool-selective areas, but only viewing elongated tools increased the reciprocal connectivity between these areas. Overall, these data disentangle how toolness and elongation affect the activation and connectivity of the tool network and help to resolve recent controversies regarding the relative contribution of "toolness" versus elongation in driving dorsal-stream "tool-selective" areas.
Collapse
Affiliation(s)
- Juan Chen
- The Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | - Jody C Culham
- The Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Melvyn A Goodale
- The Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
15
|
Ganel T, Ozana A, Goodale MA. When perception intrudes on 2D grasping: evidence from Garner interference. PSYCHOLOGICAL RESEARCH 2019; 84:2138-2143. [PMID: 31201534 DOI: 10.1007/s00426-019-01216-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/08/2019] [Indexed: 11/28/2022]
Abstract
When participants reach out to pick up a real 3-D object, their grip aperture reflects the size of the object well before contact is made. At the same time, the classical psychophysical laws and principles of relative size and shape that govern visual perception do not appear to intrude into the control of such movements, which are instead tuned only to the relevant dimension for grasping. In contrast, accumulating evidence suggests that grasps directed at flat 2D objects are not immune to perceptual effects. Thus, in 2D but not 3D grasping, the aperture of the fingers has been shown to be affected by relative and contextual information about the size and shape of the target object. A notable example of this dissociation comes from studies of Garner interference, which signals holistic processing of shape. Previous research has shown that 3D grasping shows no evidence for Garner interference but 2D grasping does (Freud & Ganel, 2015). In a recent study published in this journal (Löhr-Limpens et al., 2019), participants were presented with 2D objects in a Garner paradigm. The pattern of results closely replicated the previously published results with 2D grasping. Unfortunately, the authors, who appear to be unaware the potential differences between 2D and 3D grasping, used their findings to draw an overgeneralized and unwarranted conclusion about the relation between 3D grasping and perception. In this short methodological commentary, we discuss current literature on aperture shaping during 2D grasping and suggest that researchers should play close attention to the nature of the target stimuli they use before drawing conclusions about visual processing for perception and action.
Collapse
Affiliation(s)
- Tzvi Ganel
- Psychology Department, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | - Aviad Ozana
- Psychology Department, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Melvyn A Goodale
- The Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
16
|
MEG sensor patterns reflect perceptual but not categorical similarity of animate and inanimate objects. Neuroimage 2019; 193:167-177. [DOI: 10.1016/j.neuroimage.2019.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
|
17
|
Potok W, Maskiewicz A, Króliczak G, Marangon M. The temporal involvement of the left supramarginal gyrus in planning functional grasps: A neuronavigated TMS study. Cortex 2019; 111:16-34. [DOI: 10.1016/j.cortex.2018.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
|
18
|
Chen Q, Garcea FE, Jacobs RA, Mahon BZ. Abstract Representations of Object-Directed Action in the Left Inferior Parietal Lobule. Cereb Cortex 2018; 28:2162-2174. [PMID: 28605410 PMCID: PMC6019004 DOI: 10.1093/cercor/bhx120] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Indexed: 11/14/2022] Open
Abstract
Prior neuroimaging and neuropsychological research indicates that the left inferior parietal lobule in the human brain is a critical substrate for representing object manipulation knowledge. In the present functional MRI study we used multivoxel pattern analyses to test whether action similarity among objects can be decoded in the inferior parietal lobule independent of the task applied to objects (identification or pantomime) and stimulus format in which stimuli are presented (pictures or printed words). Participants pantomimed the use of objects, cued by printed words, or identified pictures of objects. Classifiers were trained and tested across task (e.g., training data: pantomime; testing data: identification), stimulus format (e.g., training data: word format; testing format: picture) and specific objects (e.g., training data: scissors vs. corkscrew; testing data: pliers vs. screwdriver). The only brain region in which action relations among objects could be decoded across task, stimulus format and objects was the inferior parietal lobule. By contrast, medial aspects of the ventral surface of the left temporal lobe represented object function, albeit not at the same level of abstractness as actions in the inferior parietal lobule. These results suggest compulsory access to abstract action information in the inferior parietal lobe even when simply identifying objects.
Collapse
Affiliation(s)
- Quanjing Chen
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268, USA
| | - Frank E Garcea
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627-0268, USA
| | - Robert A Jacobs
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627-0268, USA
| | - Bradford Z Mahon
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627-0268, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14627-0268, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14627-0268, USA
| |
Collapse
|
19
|
Erlikhman G, Caplovitz GP, Gurariy G, Medina J, Snow JC. Towards a unified perspective of object shape and motion processing in human dorsal cortex. Conscious Cogn 2018; 64:106-120. [PMID: 29779844 DOI: 10.1016/j.concog.2018.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
Abstract
Although object-related areas were discovered in human parietal cortex a decade ago, surprisingly little is known about the nature and purpose of these representations, and how they differ from those in the ventral processing stream. In this article, we review evidence for the unique contribution of object areas of dorsal cortex to three-dimensional (3-D) shape representation, the localization of objects in space, and in guiding reaching and grasping actions. We also highlight the role of dorsal cortex in form-motion interaction and spatiotemporal integration, possible functional relationships between 3-D shape and motion processing, and how these processes operate together in the service of supporting goal-directed actions with objects. Fundamental differences between the nature of object representations in the dorsal versus ventral processing streams are considered, with an emphasis on how and why dorsal cortex supports veridical (rather than invariant) representations of objects to guide goal-directed hand actions in dynamic visual environments.
Collapse
Affiliation(s)
| | | | - Gennadiy Gurariy
- Department of Psychology, University of Nevada, Reno, USA; Department of Psychology, University of Wisconsin, Milwaukee, USA
| | - Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, USA
| | | |
Collapse
|
20
|
Chen Y, Monaco S, Crawford JD. Neural substrates for allocentric-to-egocentric conversion of remembered reach targets in humans. Eur J Neurosci 2018. [PMID: 29512943 DOI: 10.1111/ejn.13885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Targets for goal-directed action can be encoded in allocentric coordinates (relative to another visual landmark), but it is not known how these are converted into egocentric commands for action. Here, we investigated this using a slow event-related fMRI paradigm, based on our previous behavioural finding that the allocentric-to-egocentric (Allo-Ego) conversion for reach is performed at the first possible opportunity. Participants were asked to remember (and eventually reach towards) the location of a briefly presented target relative to another visual landmark. After a first memory delay, participants were forewarned by a verbal instruction if the landmark would reappear at the same location (potentially allowing them to plan a reach following the auditory cue before the second delay), or at a different location where they had to wait for the final landmark to be presented before response, and then reach towards the remembered target location. As predicted, participants showed landmark-centred directional selectivity in occipital-temporal cortex during the first memory delay, and only developed egocentric directional selectivity in occipital-parietal cortex during the second delay for the 'Same cue' task, and during response for the 'Different cue' task. We then compared cortical activation between these two tasks at the times when the Allo-Ego conversion occurred, and found common activation in right precuneus, right presupplementary area and bilateral dorsal premotor cortex. These results confirm that the brain converts allocentric codes to egocentric plans at the first possible opportunity, and identify the four most likely candidate sites specific to the Allo-Ego transformation for reaches.
Collapse
Affiliation(s)
- Ying Chen
- Center for Vision Research, Room 0009, Lassonde Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada
| | - Simona Monaco
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - J Douglas Crawford
- Center for Vision Research, Room 0009, Lassonde Building, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), Toronto, ON, Canada.,Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| |
Collapse
|
21
|
Freud E, Macdonald SN, Chen J, Quinlan DJ, Goodale MA, Culham JC. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex 2018; 98:34-48. [DOI: 10.1016/j.cortex.2017.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/07/2016] [Accepted: 02/24/2017] [Indexed: 10/19/2022]
|
22
|
Unaware Processing of Tools in the Neural System for Object-Directed Action Representation. J Neurosci 2017; 37:10712-10724. [PMID: 28978664 DOI: 10.1523/jneurosci.1061-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness.SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor programming of actions that could be accomplished congruently with the objects' functions? In this fMRI study, we instantiated unaware visual perception conditions, by dynamically suppressing the visibility of manipulable object pictures with mondrian masks. Despite escaping conscious perception, manipulable objects activated an object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices. This demonstrates that visuomotor encoding occurs independently of conscious object perception.
Collapse
|
23
|
Peelen MV, Downing PE. Category selectivity in human visual cortex: Beyond visual object recognition. Neuropsychologia 2017; 105:177-183. [DOI: 10.1016/j.neuropsychologia.2017.03.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
|
24
|
Planning Functional Grasps of Simple Tools Invokes the Hand-independent Praxis Representation Network: An fMRI Study. J Int Neuropsychol Soc 2017; 23:108-120. [PMID: 28205496 DOI: 10.1017/s1355617716001120] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Neuropsychological and neuroimaging evidence indicates that tool use knowledge and abilities are represented in the praxis representation network (PRN) of the left cerebral hemisphere. We investigated whether PRN would also underlie the planning of function-appropriate grasps of tools, even though such an assumption is inconsistent with some neuropsychological evidence for independent representations of tool grasping and skilled tool use. METHODS Twenty right-handed participants were tested in an event-related functional magnetic resonance imaging (fMRI) study wherein they planned functionally appropriate grasps of tools versus grasps of non-tools matched for size and/or complexity, and later executed the pantomimed grasps of these objects. The dominant right, and non-dominant left hands were used in two different sessions counterbalanced across participants. The tool and non-tool stimuli were presented at three different orientations, some requiring uncomfortable hand rotations for effective grips, with the difficulty matched for both hands. RESULTS Planning functional grasps of tools (vs. non-tools) was associated with significant asymmetrical increases of activity in the temporo/occipital-parieto-frontal networks. The greater involvement of the left hemisphere PRN was particularly evident when hand movement kinematics (including wrist rotations) for grasping tools and non-tools were matched. The networks engaged in the task for the dominant and non-dominant hand were virtually identical. The differences in neural activity for the two object categories disappeared during grasp execution. CONCLUSIONS The greater hand-independent engagement of the left-hemisphere praxis representation network for planning functional grasps reveals a genuine effect of an early affordance/function-based visual processing of tools. (JINS, 2017, 23, 108-120).
Collapse
|
25
|
Freud E, Plaut DC, Behrmann M. 'What' Is Happening in the Dorsal Visual Pathway. Trends Cogn Sci 2016; 20:773-784. [PMID: 27615805 DOI: 10.1016/j.tics.2016.08.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
The cortical visual system is almost universally thought to be segregated into two anatomically and functionally distinct pathways: a ventral occipitotemporal pathway that subserves object perception, and a dorsal occipitoparietal pathway that subserves object localization and visually guided action. Accumulating evidence from both human and non-human primate studies, however, challenges this binary distinction and suggests that regions in the dorsal pathway contain object representations that are independent of those in ventral cortex and that play a functional role in object perception. We review here the evidence implicating dorsal object representations, and we propose an account of the anatomical organization, functional contributions, and origins of these representations in the service of perception.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA.
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex. Exp Brain Res 2016; 234:3677-3687. [DOI: 10.1007/s00221-016-4765-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|