1
|
Favila N, Gurney K, Overton PG. Role of the basal ganglia in innate and learned behavioural sequences. Rev Neurosci 2024; 35:35-55. [PMID: 37437141 DOI: 10.1515/revneuro-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Integrating individual actions into coherent, organised behavioural units, a process called chunking, is a fundamental, evolutionarily conserved process that renders actions automatic. In vertebrates, evidence points to the basal ganglia - a complex network believed to be involved in action selection - as a key component of action sequence encoding, although the underlying mechanisms are only just beginning to be understood. Central pattern generators control many innate automatic behavioural sequences that form some of the most basic behaviours in an animal's repertoire, and in vertebrates, brainstem and spinal pattern generators are under the control of higher order structures such as the basal ganglia. Evidence suggests that the basal ganglia play a crucial role in the concatenation of simpler behaviours into more complex chunks, in the context of innate behavioural sequences such as chain grooming in rats, as well as sequences in which innate capabilities and learning interact such as birdsong, and sequences that are learned from scratch, such as lever press sequences in operant behaviour. It has been proposed that the role of the striatum, the largest input structure of the basal ganglia, might lie in selecting and allowing the relevant central pattern generators to gain access to the motor system in the correct order, while inhibiting other behaviours. As behaviours become more complex and flexible, the pattern generators seem to become more dependent on descending signals. Indeed, during learning, the striatum itself may adopt the functional characteristics of a higher order pattern generator, facilitated at the microcircuit level by striatal neuropeptides.
Collapse
Affiliation(s)
- Natalia Favila
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Kevin Gurney
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| | - Paul G Overton
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| |
Collapse
|
2
|
Song C, Shen Q, Tan C, Li J, Zhou F, Wang T, Zhang L, Wang M, Liu Y, Yuan J, Cai S, Liao H. Distinct changes in global brain synchronization in different motor subtypes of Parkinson's disease. Front Neurosci 2023; 17:1170225. [PMID: 37920294 PMCID: PMC10618346 DOI: 10.3389/fnins.2023.1170225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
This study investigated alterations in degree centrality (DC) in different motor subtypes of Parkinson's disease (PD) and analyzed its clinical significance during disease occurrence. A total of 146 subjects were recruited in the study, including 90 patients with PD [51 and 39 with tremor dominant (TD) and akinetic-rigid dominant (ARD) disease, respectively] and 56 healthy controls (HCs). The resting-state functional magnetic resonance imaging data of all the subjects were obtained by 3.0 T magnetic resonance scans. The DC values, an indicator of whole brain synchronization, were calculated and compared among the TD, ARD, and HC groups. Disparities in DC values among the three groups were evaluated by analysis of variance and post hoc two-sample t-tests. Correlation between brain regions with DC differences and clinical variables were performed using partial correlation analysis after controlling for age, gender, and disease duration. Compared to the HCs, both TD and ARD groups demonstrated increased DC values bilaterally in the cerebellum; DC values were decreased in the left putamen and paracentral lobule in the TD group and in the left anterior cingulate gyrus and right supplementary motor area in the ARD group. Compared to the ARD group, the TD group showed decreased DC values in bilateral cerebellar hemispheres and increased DC values in the left anterior cingulate gyrus and right supplementary motor area. The DC of the whole brain showed inconsistencies and shared neural bases among patients with the two subtypes of PD. The differences between brain regions with abnormal DC values may be closely related to different clinical presentations of the two motor subtypes. Our findings provide new insights into the clinical heterogeneity of PD with respect to different motor subtypes.
Collapse
Affiliation(s)
- Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Wang
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Role of P11 through serotonergic and glutamatergic pathways in LID. Mol Biol Rep 2023; 50:4535-4549. [PMID: 36853472 DOI: 10.1007/s11033-023-08326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder caused by the degeneration of dopaminergic neurons. This leads to the pathogenesis of multiple basal ganglia-thalamomotor loops and diverse neurotransmission alterations. Dopamine replacement therapy, and on top of that, levodopa and l-3,4-dihydroxyphenylalanine (L-DOPA), is the gold standard treatment, while it develops numerous complications. Levodopa-induced dyskinesia (LID) is well-known as the most prominent side effect. Several studies have been devoted to tackling this problem. Studies showed that metabotropic glutamate receptor 5 (mGluR5) antagonists and 5-hydroxytryptamine receptor 1B (5HT1B) agonists significantly reduced LID when considering the glutamatergic overactivity and compensatory mechanisms of serotonergic neurons after L-DOPA therapy. Moreover, it is documented that these receptors act through an adaptor protein called P11 (S100A10). This protein has been thought to play a crucial role in LID due to its interactions with numerous ion channels and receptors. Lately, experiments have shown successful evidence of the effects of P11 blockade on alleviating LID greater than 5HT1B and mGluR5 manipulations. In contrast, there is a trace of ambiguity in the exact mechanism of action. P11 has shown the potential to be a promising target to diminish LID and prolong L-DOPA therapy in parkinsonian patients owing to further studies and experiments.
Collapse
|
4
|
Chen H, Xu Y, Chen L, Shang S, Luo X, Wang X, Xia W, Zhang H. The convergent and divergent patterns in brain perfusion between Alzheimer's disease and Parkinson's disease with dementia: An ASL MRI study. Front Neurosci 2022; 16:892374. [PMID: 36408395 PMCID: PMC9669427 DOI: 10.3389/fnins.2022.892374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background Aberrant brain blood perfusion changes have been found to play an important role in the progress of Alzheimer's disease (AD) and Parkinson's disease with dementia (PDD). However, the convergent and divergent patterns in brain perfusion between two dementias remain poorly documented. Objective To explore the impaired brain perfusion pattern and investigate their overlaps and differences between AD and PDD using normalized cerebral blood flow (CBF). Methods The regional perfusion in patients with AD and PDD as well as healthy control (HC) subjects were explored using the three-dimensional arterial spin labeling. The normalized CBF values were compared across the three groups and further explored the potential linkages to clinical assessments. Results In total, 24 patients with AD, 26 patients with PDD, and 35 HC subjects were enrolled. Relative to the HC group, both the AD group and the PDD group showed reduced normalized CBF mainly in regions of the temporal and frontal gyrus, whereas preserved perfusion presented in the sensorimotor cortex and basal ganglia area. Compared with the AD group, the PDD group showed decreased perfusion in the right putamen and right supplementary motor area (SMA), while preserved perfusion in the right inferior parietal lobule (IPL) and right precuneus. In the AD group, significant correlations were observed between the normalized CBF values in the right IPL and scores of global cognitive function (P = 0.033, ρ = 0.442), between the normalized CBF values in the right precuneus and the scores of memory function (P = 0.049,ρ = 0.406). The normalized CBF in the right putamen was significantly linked to cores of motor symptoms (P = 0.017, ρ = 0.214) in the PDD group. Conclusion Our findings suggested convergent and divergent patterns of brain hemodynamic dysregulation between AD and PDD and contributed to a better understanding of the pathophysiological mechanisms.
Collapse
Affiliation(s)
- Hongri Chen
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Radiology, Weihai Maternal and Child Health Care Hospital, Weihai, China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Songan Shang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xianfu Luo
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xin Wang
- Department of Rehabilitation, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wei Xia
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
- *Correspondence: Hongying Zhang
| |
Collapse
|
5
|
Wyrobnik M, van der Meer E, Klostermann F. Relation between event segmentation and memory dysfunction in Parkinson's disease. Brain Cogn 2022; 163:105912. [PMID: 36084521 DOI: 10.1016/j.bandc.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
The perception of everyday events is thought to imply the segmentation into discrete sub-events. Involvement of dopaminergic networks in this process could relate to particular problems of persons with Parkinson's disease (PD) to recall recent activities. In an event segmentation task, persons with PD and healthy controls had to indicate the beginning of sub-events within three movies showing persons performing everyday activities. In a subsequent recognition task, they should judge whether presented pictures of sub-events were part of the watched movies. In a final order memory task, they had to arrange pictures in the sequence in which they had occurred. With respect to the overall segmentation behavior, persons with PD diverged from healthy controls only in the most familiar of the three demonstrated everyday activities. Moreover, persons with PD compared to healthy controls showed generally worse event recognition and committed more errors in the order memory task. These memory deficits were the higher, the more the segmentation moved away from the 'normative' segmentation pattern identified in healthy controls. The findings suggest that dysfunctional structuring of sensory event information contributes to deficient event representations of ongoing everyday activities and recall problems of these recently perceived events in persons with PD.
Collapse
Affiliation(s)
- Michelle Wyrobnik
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117 Berlin, Germany; Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Elke van der Meer
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117 Berlin, Germany
| | - Fabian Klostermann
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany; Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
6
|
Tiedt HO, Ehlen F, Klostermann F. Dopamine-Related Reduction of Semantic Spreading Activation in Patients With Parkinson's Disease. Front Hum Neurosci 2022; 16:837122. [PMID: 35431839 PMCID: PMC9008217 DOI: 10.3389/fnhum.2022.837122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Impaired performance in verbal fluency (VF) tasks is a frequent observation in Parkinson's disease (PD). As to the nature of the underlying cognitive deficit, it is commonly attributed to a frontal-type dysexecutive syndrome due to nigrostriatal dopamine depletion. Whereas dopaminergic medication typically improves VF performance in PD, e.g., by ameliorating impaired lexical switching, its effect on semantic network activation is unclear. Data from priming studies suggest that dopamine causes a faster decay of semantic activation spread. The aim of the current study was to examine the impact of dopaminergic medication on the dynamic change of word frequency during VF performance as a measure of semantic spreading activation. To this end, we performed a median split analysis of word frequency during phonemic and semantic VF task performance in a PD group tested while receiving dopaminergic medication (ON) as well as after drug withdrawal (i.e., OFF), and in a sample of age-matched healthy volunteers (both groups n = 26). Dopaminergic medication in the PD group significantly affected phonemic VF with improved word production as well as increased error-rates. The expected decrease of word frequency during VF task performance was significantly smaller in the PD group ON medication than in healthy volunteers across semantic and phonemic VF. No significant group-difference emerged between controls and the PD group in the OFF condition. The comparison between both treatment conditions within the PD group did not reach statistical significance. The observed pattern of results indicates a faster decay of semantic network activation during lexical access in PD patients on dopaminergic medication. In view of improved word generation, this finding is consistent with a concept of more focused neural activity by an increased signal-to-noise ratio due to dopaminergic neuromodulation. However, the effect of dopaminergic stimulation on VF output suggests a trade-off between these beneficial effects and increased error-rates.
Collapse
Affiliation(s)
- Hannes Ole Tiedt
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
- Department of Psychiatry, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitätzu Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Effects of task prioritization on a postural-motor task in early-stage Parkinson's disease: EEG connectivity and clinical implication. GeroScience 2022; 44:2061-2075. [PMID: 35039998 DOI: 10.1007/s11357-022-00516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/12/2022] [Indexed: 11/04/2022] Open
Abstract
Appropriate attentional resource allocation could minimize exaggerated dual-task interference due to basal ganglia dysfunction in Parkinson's disease (PD). Here, we assessed the electroencephalography (EEG) functional connectivity to investigate how task prioritization affected posture-motor dual-tasks in PD. Sixteen early-stage PD patients and 16 healthy controls maintained balance in narrow stance alone (single-posture task) or while separating two interlocking rings (postural dual-task). The participants applied a posture-focus or supraposture-focus strategy in the postural dual-task. Postural sway dynamics, ring-touching time, and scalp EEG were analyzed. Both groups exhibited smaller postural sway size, postural determinism, and ring-touching time with the supraposture-focus versus posture-focus strategy. PD patients exhibited higher mean inter-regional connectivity strength than control subjects in both single and dual-task postural conditions. To cope with dual-task interference, PD patients increased inter-regional connectivity (especially with the posture-focus strategy), while control subjects reduced inter-regional connectivity. The difference in mean connectivity strength between the dual-task condition with supraposture-focus and single-posture condition was negatively correlated to the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III total scores and hand-related sub-scores. Our findings suggest differential task prioritization effects on dual-task performance and cortical reorganization between early-stage PD and healthy individuals. Early-stage PD patients are advocated to use a supraposture-focus strategy during a postural dual-task. In addition, with a supraposture-focus strategy, PD patients with mild motor severity could increase compensatory inter-regional connectivity to cope with dual-task interference.
Collapse
|
8
|
Dan X, Liu J, Doyon J, Zhou Y, Ma J, Chan P. Impaired Fine Motor Function of the Asymptomatic Hand in Unilateral Parkinson's Disease. Front Aging Neurosci 2019; 11:266. [PMID: 31636557 PMCID: PMC6787142 DOI: 10.3389/fnagi.2019.00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/13/2019] [Indexed: 01/05/2023] Open
Abstract
The early detection of Parkinson's disease (PD) still remains a challenge to date. Although studies have previously reported subtle motor function abnormalities in early PD patients, it is unclear whether such clinical signs can be better detected while patients are concurrently performing a cognitive task, and whether they can be useful in predicting patients' clinical conversion state. Seventy-two right-handed participants (40 drug-naive patients with idiopathic unilateral PD and 32 age-matched healthy controls) were enrolled in this study. All participants were asked to perform the Purdue Pegboard test (PPT) either alone (single-task condition) or during a concurrent mental subtraction-by-3 task (dual-task condition). A 4-year telephone follow-up was later conducted to determine whether PD patients converted to bilateral signs. We found that PD patients showed a significant reduction in dexterity on the PPT compared to the controls in both single- and dual-task conditions. Yet patients' performance in the dual-task condition revealed a greater interference effect when patients performed the task with their right hand than with their left hand. PPT also revealed reasonable discriminative ability for prediagnosing PD. However, dual-tasking did not have added value in differentiating early patients and controls. At follow-up, the baseline PPT performance of the asymptomatic hands was positively correlated with time to convert from unilaterally to bilaterally affected states (r = 0.62, P = 0.031). Together, these findings suggest that PPT can serve as a useful auxiliary tool in evaluating early PD, and shed light on the neuroplasticity mechanism of fine motor deficit at this very early stage.
Collapse
Affiliation(s)
- Xiaojuan Dan
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, Beijing, China
| | - Jia Liu
- Department of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Julien Doyon
- McConnell Brain Imaging Center, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yongtao Zhou
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, Beijing, China
| | - Jinghong Ma
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, Beijing, China
| | - Piu Chan
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Key Laboratory on Parkinson's Disease of Beijing, Beijing, China.,Department of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders Parkinson's Disease Center, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Motor cognition in patients treated with subthalamic nucleus deep brain stimulation: Limits of compensatory overactivity in Parkinson's disease. Neuropsychologia 2018; 117:491-499. [PMID: 30003903 DOI: 10.1016/j.neuropsychologia.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 01/17/2023]
Abstract
Recent fMRI findings revealed that impairment in a serial prediction task in patients suffering from Parkinson's disease (PD) results from hypoactivity of the SMA. Furthermore, hyperactivity of the lateral premotor cortex sustained performance after withdrawal of medication. To further explore these findings, we here examined the impact of deep brain stimulation of the subthalamic nucleus on the activity of the putamen and premotor areas while performing the serial prediction task. To this end, we measured eight male PD patients ON and OFF deep brain stimulation and eight healthy age-matched male controls using [15O] water positron emission tomography to measure regional cerebral blood flow. As expected, PD patients showed poorer performance than healthy controls while performance did not differ between OFF and ON stimulation. Hypoactivity of the putamen and hyperactivity of the left lateral premotor cortex was found in patients compared to controls. Lateral premotor hyperactivity further increased OFF compared to ON stimulation and was positively related to task performance. These results confirm that the motor loop's dysfunction has impact on cognitive processes (here: prediction of serial stimuli) in PD. Extending prior data regarding the role of the lateral premotor cortex in cognitive compensation, our results indicate that lateral premotor cortex hyperactivity, while beneficial in moderate levels of impairment, might fail to preserve performance in more severe stages of the motor loop's degeneration.
Collapse
|
10
|
Abstract
Dystonia can be seen in a number of different phenotypes that may arise from different etiologies. The pathophysiological substrate of dystonia is related to three lines of research. The first postulate a loss of inhibition which may account for the excess of movement and for the overflow phenomena. A second abnormality is sensory dysfunction which is related to the mild sensory complaints in patients with focal dystonias and may be responsible for some of the motor dysfunction. Finally, there are strong pieces of evidence from animal and human studies suggesting that alterations of synaptic plasticity characterized by a disruption of homeostatic plasticity, with a prevailing facilitation of synaptic potentiation may play a pivotal role in primary dystonia. These working hypotheses have been generalized in all form of dystonia. On the other hand, several pieces of evidence now suggest that the pathophysiology may be slightly different in the different types of dystonia. Therefore, in the present review, we would like to discuss the neural mechanisms underlying the different forms of dystonia to disentangle the different weight and role of environmental and predisposing factors.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.,IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Diane Ruge
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
11
|
Manohar SG, Pertzov Y, Husain M. Short-term memory for spatial, sequential and duration information. Curr Opin Behav Sci 2017; 17:20-26. [PMID: 29167809 PMCID: PMC5678495 DOI: 10.1016/j.cobeha.2017.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analog report methods provide novel insights on STM for space and time. Space and time may be used to bind features in STM. The hippocampus is involved in object-location binding in STM.
Space and time appear to play key roles in the way that information is organized in short-term memory (STM). Some argue that they are crucial contexts within which other stored features are embedded, allowing binding of information that belongs together within STM. Here we review recent behavioral, neurophysiological and imaging studies that have sought to investigate the nature of spatial, sequential and duration representations in STM, and how these might break down in disease. Findings from these studies point to an important role of the hippocampus and other medial temporal lobe structures in aspects of STM, challenging conventional accounts of involvement of these regions in only long-term memory.
Collapse
Affiliation(s)
- Sanjay G Manohar
- Dept Experimental Psychology and Nuffield Dept of Clinical Neuroscience, University of Oxford, United Kingdom
| | - Yoni Pertzov
- Dept of Psychology, The Hebrew University of Jerusalem, Israel
| | - Masud Husain
- Dept Experimental Psychology and Nuffield Dept of Clinical Neuroscience, University of Oxford, United Kingdom
| |
Collapse
|
12
|
Trempler I, Schiffer AM, El-Sourani N, Ahlheim C, Fink GR, Schubotz RI. Frontostriatal Contribution to the Interplay of Flexibility and Stability in Serial Prediction. J Cogn Neurosci 2016; 29:298-309. [PMID: 27626228 DOI: 10.1162/jocn_a_01040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Surprising events may be relevant or irrelevant for behavior, requiring either flexible adjustment or stabilization of our model of the world and according response strategies. Cognitive flexibility and stability in response to environmental demands have been described as separable cognitive states, associated with activity of striatal and lateral prefrontal regions, respectively. It so far remains unclear, however, whether these two states act in an antagonistic fashion and which neural mechanisms mediate the selection of respective responses, on the one hand, and a transition between these states, on the other. In this study, we tested whether the functional dichotomy between striatal and prefrontal activity applies for the separate functions of updating (in response to changes in the environment, i.e., switches) and shielding (in response to chance occurrences of events violating expectations, i.e., drifts) of current predictions. We measured brain activity using fMRI while 20 healthy participants performed a task that required to serially predict upcoming items. Switches between predictable sequences had to be indicated via button press while sequence omissions (drifts) had to be ignored. We further varied the probability of switches and drifts to assess the neural network supporting the transition between flexible and stable cognitive states as a function of recent performance history in response to environmental demands. Flexible switching between models was associated with activation in medial pFC (BA 9 and BA 10), whereas stable maintenance of the internal model corresponded to activation in the lateral pFC (BA 6 and inferior frontal gyrus). Our findings extend previous studies on the interplay of flexibility and stability, suggesting that different prefrontal regions are activated by different types of prediction errors, dependent on their behavioral requirements. Furthermore, we found that striatal activation in response to switches and drifts was modulated by participants' successful behavior toward these events, suggesting the striatum to be responsible for response selections following unpredicted stimuli. Finally, we observed that the dopaminergic midbrain modulates the transition between different cognitive states, thresholded by participants' individual performance history in response to temporal environmental demands.
Collapse
Affiliation(s)
- Ima Trempler
- Westfälische Wilhelms-Universität, Münster, Germany.,University Hospital Cologne.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | | | - Nadiya El-Sourani
- Westfälische Wilhelms-Universität, Münster, Germany.,University Hospital Cologne
| | - Christiane Ahlheim
- Westfälische Wilhelms-Universität, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | | | - Ricarda I Schubotz
- Westfälische Wilhelms-Universität, Münster, Germany.,University Hospital Cologne.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| |
Collapse
|