1
|
Kimura R. Flexible information representation to stabilize sensory perception despite minor external input variations. Neurosci Res 2023; 195:1-8. [PMID: 37236268 DOI: 10.1016/j.neures.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Sensory information about the environment constantly changes or varies depending on circumstances. However, once we repeatedly experience objects, our brain can perceive and recognize them as identical, even if they are slightly altered or include some diversity. We can stably perceive things without interference from minor external changes or variety. Our recent study focusing on visual perception showed that repeatedly viewing the same oriented grating stimuli enables information representation for low-contrast (or weak-intensity) orientations in the primary visual cortex. We observed low contrast-preferring neurons, whose firing rates increased by reducing the luminance contrast. The number of such neurons increased after the experience, and the neuronal population, including such neurons, can represent even low-contrast orientations. This study indicated that experience leads to flexible information representations that continuously respond to inputs of various strengths at the neuronal population level in the primary sensory cortex. In this perspective article, in addition to the above mechanism, I would discuss alternative mechanisms for perceptual stabilization. The primary sensory cortex represents external information faithfully without alterations, as well as in a state distorted by experience. Both sensory representations may cooperatively and dynamically affect hierarchical downstream, resulting in stable perception.
Collapse
Affiliation(s)
- Rie Kimura
- International Research Center for Neurointelligence, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
2
|
Silvestre D, Guy J, Hanck J, Cornish K, Bertone A. Different luminance- and texture-defined contrast sensitivity profiles for school-aged children. Sci Rep 2020; 10:13039. [PMID: 32747677 PMCID: PMC7400652 DOI: 10.1038/s41598-020-69802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Our current understanding of how the visual brain develops is based largely on the study of luminance-defined information processing. This approach, however, is somewhat limiting, since everyday scenes are composed of complex images, consisting of information characterized by physical attributes relating to both luminance and texture. Few studies have explored how contrast sensitivity to texture-defined information develops, particularly throughout the school-aged years. The current study investigated how contrast sensitivity to luminance- (luminance-modulated noise) and texture-defined (contrast-modulated noise) static gratings develops in school-aged children. Contrast sensitivity functions identified distinct profiles for luminance- and texture-defined gratings across spatial frequencies (SFs) and age. Sensitivity to luminance-defined gratings reached maturity in childhood by the ages of 9–10 years for all SFs (0.5, 1, 2, 4 and 8 cycles/degree or cpd). Sensitivity to texture-defined gratings reached maturity at 5–6 years for low SFs and 7–8 years for high SFs (i.e., 4 cpd). These results establish that the processing of luminance- and texture-defined information develop differently as a function of SF and age.
Collapse
Affiliation(s)
- Daphné Silvestre
- Perceptual Neuroscience Lab (PNLab) for Autism and Development, Department of Education and Counselling Psychology, McGill University, 3700 McTavish Street, Montreal, QC, H3A 1Y2, Canada
| | - Jacalyn Guy
- Perceptual Neuroscience Lab (PNLab) for Autism and Development, Department of Education and Counselling Psychology, McGill University, 3700 McTavish Street, Montreal, QC, H3A 1Y2, Canada.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Julie Hanck
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Kim Cornish
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Armando Bertone
- Perceptual Neuroscience Lab (PNLab) for Autism and Development, Department of Education and Counselling Psychology, McGill University, 3700 McTavish Street, Montreal, QC, H3A 1Y2, Canada.
| |
Collapse
|
3
|
Beyond the eye: Cortical differences in primary visual processing in children with cerebral palsy. NEUROIMAGE-CLINICAL 2020; 27:102318. [PMID: 32604019 PMCID: PMC7327303 DOI: 10.1016/j.nicl.2020.102318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Visual processing deficits are common in children with CP. MEG was used to image multispectral cortical oscillations during visual processing. Compared with controls, children with CP had weaker occipital oscillations. Aberrant cortical oscillations likely impact early visual processing abilities.
Despite the growing clinical recognition of visual impairments among people with cerebral palsy (CP), very few studies have evaluated the neurophysiology of the visual circuitry. To this end, the primary aim of this investigation was to use magnetoencephalography and beamforming methods to image the relative change in the alpha–beta and gamma occipital cortical oscillations induced by a spatial grating stimulus (e.g., visual contrast) that was viewed by a cohort of children with CP and typically-developing (TD) children. Our results showed that the high-contrast, visual gratings stimuli induced a decrease in alpha–beta (10 – 20 Hz) activity, and an increase in both low (40 – 56 Hz) and high (60 – 72 Hz) gamma oscillations in the occipital cortices. Compared with the TD children, the strength of the frequency specific cortical oscillations were significantly weaker in the children with CP, suggesting that they had deficient processing of the contrast stimulus. Although CP is largely perceived as a musculoskeletal centric disorder, our results fuel the growing impression that there may also be prominent visual processing deficiencies. These visual processing deficits likely impact the ability to perceive visual changes in the environment.
Collapse
|
4
|
Maróthi R, Csigó K, Kéri S. Early-Stage Vision and Perceptual Imagery in Autism Spectrum Conditions. Front Hum Neurosci 2019; 13:337. [PMID: 31632255 PMCID: PMC6781947 DOI: 10.3389/fnhum.2019.00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum conditions (ASC) are characterized by multifaceted alterations in visual perception and mental imagery. However, the interaction between early-stage visual perception and imagery has not been explored. We recruited 40 individuals with ASC and 20 neurotypical control volunteers to participate in a lateral masking task. Participants detected a luminance-contrast target pattern (Gabor patch) flanked by two collinear masks. The flanking masks inhibit target detection at small target-mask distances and facilitate target detection at intermediate target-mask distances. In the perceptual task, the masks appeared adjacent to the target. In the imagery task, participants imagined the masks immediately after seeing them. Results revealed that individuals with ASC characterized by exceptional visuoconstructional abilities (enhanced Block Design performance; n = 20) showed weaker inhibition at small target-mask distances and stronger facilitation at intermediate target-mask distances relative to the controls. Visual imagery was markedly dampened in ASC regardless of the visuoconstructional abilities. At the behavioral level, these results indicate increased facilitation via lateral connections in the primary visual cortex (V1) of individuals with ASC who exhibit exceptional visuoconstructional abilities, together with less efficient mental imagery.
Collapse
Affiliation(s)
- Rebeka Maróthi
- Nyírö Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Katalin Csigó
- Nyírö Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Szabolcs Kéri
- Nyírö Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Department of Physiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Moore A, Wozniak M, Yousef A, Barnes CC, Cha D, Courchesne E, Pierce K. The geometric preference subtype in ASD: identifying a consistent, early-emerging phenomenon through eye tracking. Mol Autism 2018; 9:19. [PMID: 29581878 PMCID: PMC5861622 DOI: 10.1186/s13229-018-0202-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 03/02/2018] [Indexed: 01/11/2023] Open
Abstract
Background The wide range of ability and disability in ASD creates a need for tools that parse the phenotypic heterogeneity into meaningful subtypes. Using eye tracking, our past studies revealed that when presented with social and geometric images, a subset of ASD toddlers preferred viewing geometric images, and these toddlers also had greater symptom severity than ASD toddlers with greater social attention. This study tests whether this "GeoPref test" effect would generalize across different social stimuli. Methods Two hundred and twenty-seven toddlers (76 ASD) watched a 90-s video, the Complex Social GeoPref test, of dynamic geometric images paired with social images of children interacting and moving. Proportion of visual fixation time and number of saccades per second to both images were calculated. To allow for cross-paradigm comparisons, a subset of 126 toddlers also participated in the original GeoPref test. Measures of cognitive and social functioning (MSEL, ADOS, VABS) were collected and related to eye tracking data. To examine utility as a diagnostic indicator to detect ASD toddlers, validation statistics (e.g., sensitivity, specificity, ROC, AUC) were calculated for the Complex Social GeoPref test alone and when combined with the original GeoPref test. Results ASD toddlers spent a significantly greater amount of time viewing geometric images than any other diagnostic group. Fixation patterns from ASD toddlers who participated in both tests revealed a significant correlation, supporting the idea that these tests identify a phenotypically meaningful ASD subgroup. Combined use of both original and Complex Social GeoPref tests identified a subgroup of about 1 in 3 ASD toddlers from the "GeoPref" subtype (sensitivity 35%, specificity 94%, AUC 0.75.) Replicating our previous studies, more time looking at geometric images was associated with significantly greater ADOS symptom severity. Conclusions Regardless of the complexity of the social images used (low in the original GeoPref test vs high in the new Complex Social GeoPref test), eye tracking of toddlers can accurately identify a specific ASD "GeoPref" subtype with elevated symptom severity. The GeoPref tests are predictive of ASD at the individual subject level and thus potentially useful for various clinical applications (e.g., early identification, prognosis, or development of subtype-specific treatments).
Collapse
Affiliation(s)
- Adrienne Moore
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla, CA USA
| | - Madeline Wozniak
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla, CA USA
| | - Andrew Yousef
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla, CA USA
| | - Cindy Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla, CA USA
| | - Debra Cha
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla, CA USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla, CA USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
6
|
Haigh SM. Variable sensory perception in autism. Eur J Neurosci 2017; 47:602-609. [DOI: 10.1111/ejn.13601] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah M. Haigh
- Clinical Neurophysiology Research Laboratory; Western Psychiatric Institute and Clinic; Department of Psychiatry; University of Pittsburgh School of Medicine; 3501 Forbes Avenue Suite 420 Pittsburgh PA 15213 USA
| |
Collapse
|
7
|
Takesaki N, Kikuchi M, Yoshimura Y, Hiraishi H, Hasegawa C, Kaneda R, Nakatani H, Takahashi T, Mottron L, Minabe Y. The Contribution of Increased Gamma Band Connectivity to Visual Non-Verbal Reasoning in Autistic Children: A MEG Study. PLoS One 2016; 11:e0163133. [PMID: 27631982 PMCID: PMC5025179 DOI: 10.1371/journal.pone.0163133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/03/2016] [Indexed: 12/12/2022] Open
Abstract
Some individuals with autism spectrum (AS) perform better on visual reasoning tasks than would be predicted by their general cognitive performance. In individuals with AS, mechanisms in the brain’s visual area that underlie visual processing play a more prominent role in visual reasoning tasks than they do in normal individuals. In addition, increased connectivity with the visual area is thought to be one of the neural bases of autistic visual cognitive abilities. However, the contribution of such brain connectivity to visual cognitive abilities is not well understood, particularly in children. In this study, we investigated how functional connectivity between the visual areas and higher-order regions, which is reflected by alpha, beta and gamma band oscillations, contributes to the performance of visual reasoning tasks in typically developing (TD) (n = 18) children and AS children (n = 18). Brain activity was measured using a custom child-sized magneto-encephalograph. Imaginary coherence analysis was used as a proxy to estimate the functional connectivity between the occipital and other areas of the brain. Stronger connectivity from the occipital area, as evidenced by higher imaginary coherence in the gamma band, was associated with higher performance in the AS children only. We observed no significant correlation between the alpha or beta bands imaginary coherence and performance in the both groups. Alpha and beta bands reflect top-down pathways, while gamma band oscillations reflect a bottom-up influence. Therefore, our results suggest that visual reasoning in AS children is at least partially based on an enhanced reliance on visual perception and increased bottom-up connectivity from the visual areas.
Collapse
Affiliation(s)
- Natsumi Takesaki
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
- * E-mail:
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Hirotoshi Hiraishi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Reizo Kaneda
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Hideo Nakatani
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| | - Tetsuya Takahashi
- Health Administration Center, University of Fukui, Matsuokashimoaizuki, 910–1193, Japan
| | - Laurent Mottron
- University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Quebec, Canada
| | - Yoshio Minabe
- Department of Psychiatry & Behavioral Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920–8640, Japan
| |
Collapse
|
8
|
Rejecting probability summation for radial frequency patterns, not so Quick! Vision Res 2016; 122:124-134. [PMID: 26975501 DOI: 10.1016/j.visres.2016.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/17/2016] [Accepted: 03/08/2016] [Indexed: 11/22/2022]
Abstract
Radial frequency (RF) patterns are used to assess how the visual system processes shape. They are thought to be detected globally. This is supported by studies that have found summation for RF patterns to be greater than what is possible if the parts were being independently detected and performance only then improved with an increasing number of cycles by probability summation between them. However, the model of probability summation employed in these previous studies was based on High Threshold Theory (HTT), rather than Signal Detection Theory (SDT). We conducted rating scale experiments to investigate the receiver operating characteristics. We find these are of the curved form predicted by SDT, rather than the straight lines predicted by HTT. This means that to test probability summation we must use a model based on SDT. We conducted a set of summation experiments finding that thresholds decrease as the number of modulated cycles increases at approximately the same rate as previously found. As this could be consistent with either additive or probability summation, we performed maximum-likelihood fitting of a set of summation models (Matlab code provided in our Supplementary material) and assessed the fits using cross validation. We find we are not able to distinguish whether the responses to the parts of an RF pattern are combined by additive or probability summation, because the predictions are too similar. We present similar results for summation between separate RF patterns, suggesting that the summation process there may be the same as that within a single RF.
Collapse
|