1
|
Xia H, Hou Y, Li Q, Chen A. A meta-analysis of cognitive flexibility in aging: Perspective from functional network and lateralization. Hum Brain Mapp 2024; 45:e70031. [PMID: 39360550 PMCID: PMC11447525 DOI: 10.1002/hbm.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Cognitive flexibility, the ability to switch between mental processes to generate appropriate behavioral responses, is reduced with typical aging. Previous studies have found that age-related declines in cognitive flexibility are often accompanied by variations in the activation of multiple regions. However, no meta-analyses have examined the relationship between cognitive flexibility in aging and age-related variations in activation within large-scale networks. Here, we conducted a meta-analysis employing multilevel kernel density analysis to identify regions with different activity patterns between age groups, and determined how these regions fall into functional networks. We also employed lateralization analysis to explore the spatial distribution of regions exhibiting group differences in activation. The permutation tests based on Monte Carlo simulation were used to determine the significance of the activation and lateralization results. The results showed that cognitive flexibility in aging was associated with both decreased and increased activation in several functional networks. Compared to young adults, older adults exhibited increased activation in the default mode, dorsal attention, ventral attention, and somatomotor networks, while displayed decreased activation in the visual network. Moreover, we found a global-level left lateralization for regions with decreased activation, but no lateralization for regions with higher activation in older adults. At the network level, the regions with decreased activation were left-lateralized, while the regions with increased activation showed varying lateralization patterns within different networks. To sum up, we found that networks that support various mental functions contribute to age-related variations in cognitive flexibility. Additionally, the aging brain exhibited network-dependent activation and lateralization patterns in response to tasks involving cognitive flexibility. We highlighted that the comprehensive meta-analysis in this study offered new insights into understanding cognitive flexibility in aging from a network perspective.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Yongqing Hou
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Qing Li
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Antao Chen
- School of Psychology, Research Center for Exercise and Brain ScienceShanghai University of SportChina
| |
Collapse
|
2
|
Rodríguez-Nieto G, Alvarez-Anacona DF, Mantini D, Edden RAE, Oeltzschner G, Sunaert S, Swinnen SP. Association between Inhibitory-Excitatory Balance and Brain Activity Response during Cognitive Flexibility in Young and Older Individuals. J Neurosci 2024; 44:e0355242024. [PMID: 39134417 PMCID: PMC11376334 DOI: 10.1523/jneurosci.0355-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024] Open
Abstract
Cognitive flexibility represents the capacity to switch among different mental schemes, providing an adaptive advantage to a changing environment. The neural underpinnings of this executive function have been deeply studied in humans through fMRI, showing that the left inferior frontal cortex (IFC) and the left inferior parietal lobule (IPL) are crucial. Here, we investigated the inhibitory-excitatory balance in these regions by means of γ-aminobutyric acid (GABA+) and glutamate + glutamine (Glx), measured with magnetic resonance spectroscopy, during a cognitive flexibility task and its relationship with the performance level and the local task-induced blood oxygenation level-dependent (BOLD) response in 40 young (18-35 years; 26 female) and 40 older (18-35 years; 21 female) human adults. As the IFC and the IPL are richly connected regions, we also examined whole-brain effects associated with their local metabolic activity. Results did not show absolute metabolic modulations associated with flexibility performance, but the performance level was related to the direction of metabolic modulation in the IPL with opposite patterns in young and older individuals. The individual inhibitory-excitatory balance modulation showed an inverse relationship with the local BOLD response in the IPL. Finally, the modulation of inhibitory-excitatory balance in IPL was related to whole-brain effects only in older individuals. These findings show disparities in the metabolic mechanisms underlying cognitive flexibility in young and older adults and their association with the performance level and BOLD response. Such metabolic differences are likely to play a role in executive functioning during aging and specifically in cognitive flexibility.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Stefan Sunaert
- Department of Imaging and Pathology, Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Wang P, Guo SJ, Li HJ. Brain imaging of a gamified cognitive flexibility task in young and older adults. Brain Imaging Behav 2024; 18:902-912. [PMID: 38627304 DOI: 10.1007/s11682-024-00883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 08/31/2024]
Abstract
The study aimed to develop and validate a gamified cognitive flexibility task through brain imaging, and to investigate behavioral and brain activation differences between young and older adults during task performance. Thirty-one young adults (aged 18-35) and 31 older adults (aged 60-80) were included in the present study. All participants underwent fMRI scans while completing the gamified cognitive flexibility task. Results showed that young adults outperformed older adults on the task. The left inferior frontal junction (IFJ), a key region of cognitive flexibility, was significantly activated during the task in both older and young adults. Comparatively, the percent signal change in the left IFJ was stronger in older adults than in young adults. Moreover, older adults demonstrated more precise representations during the task in the left IFJ. Additionally, the left inferior parietal lobule (IPL) and superior parietal lobule in older adults and the left middle frontal gyrus (MFG) and inferior frontal gyrus in young adults were also activated during the task. Psychophysiological interaction analyses showed significant functional connectivity between the left IFJ and the left IPL, as well as the right precuneus in older adults. In young adults, significant functional connectivity was found between the left IFJ and the left MFG, as well as the right angular. The current study provides preliminary evidence for the validity of the gamified cognitive flexibility task through brain imaging. The findings suggest that this task could serve as a reliable tool for assessing cognitive flexibility and for exploring age-related differences of cognitive flexibility in both brain and behavior.
Collapse
Affiliation(s)
- Ping Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
- McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Sheng-Ju Guo
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui-Jie Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Govaerts R, De Bock S, Stas L, El Makrini I, Habay J, Van Cutsem J, Roelands B, Vanderborght B, Meeusen R, De Pauw K. Work performance in industry: The impact of mental fatigue and a passive back exoskeleton on work efficiency. APPLIED ERGONOMICS 2023; 110:104026. [PMID: 37060653 DOI: 10.1016/j.apergo.2023.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Mental fatigue (MF) is likely to occur in the industrial working population. However, the link between MF and industrial work performance has not been investigated, nor how this interacts with a passive lower back exoskeleton used during industrial work. Therefore, to elucidate its potential effect(s), this study investigated the accuracy of work performance and movement duration through a dual task paradigm and compared results between mentally fatigued volunteers and controls, with and without the exoskeleton. No main effects of MF and the exoskeleton were found. However, when mentally fatigued and wearing the exoskeleton, movement duration significantly increased compared to the baseline condition (βMF:Exo = 0.17, p = .02, ω2 = .03), suggesting an important interaction between the exoskeleton and one's psychobiological state. Importantly, presented data indicate a negative effect on production efficiency through increased performance time. Further research into the cognitive aspects of industrial work performance and human-exoskeleton interaction is therefore warranted.
Collapse
Affiliation(s)
- Renée Govaerts
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Sander De Bock
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Lara Stas
- Biostatistics and Medical Informatics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Support for Quantitative and Qualitative Research, Core Facility of the Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Ilias El Makrini
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Jelle Habay
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Jeroen Van Cutsem
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Vital Signs and Performance Monitoring Research Unit, LIFE Department, Royal Military Academy, Pleinlaan 2, B-1050, Belgium.
| | - Bart Roelands
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Bram Vanderborght
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel and IMEC, Pleinlaan 2, B-1050, Belgium.
| | - Romain Meeusen
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Kevin De Pauw
- BruBotics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium.
| |
Collapse
|
5
|
Eich TS, Langfield C, Sakhardande J, Gazes Y, Habeck C, Stern Y. Older adults compensate for switch, but not mixing costs, relative to younger adults on an intrinsically cued task switching experiment. Front Aging Neurosci 2023; 15:1152582. [PMID: 37151844 PMCID: PMC10158939 DOI: 10.3389/fnagi.2023.1152582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Aging negatively impacts the ability to rapidly and successfully switch between two or more tasks that have different rules or objectives. However, previous work has shown that the context impacts the extent of this age-related impairment: while there is relative age-related invariance when participants must rapidly switch back and forth between two simple tasks (often called "switch costs"), age-related differences emerge when the contexts changes from one in which only one task must be performed to one in which multiple tasks must be performed, but a trial-level switch is not required (e.g., task repeat trials within dual task blocks, often called "mixing costs"). Here, we explored these two kinds of costs behaviorally, and also investigated the neural correlates of these effects. Methods Seventy-one younger adults and 175 older adults completed a task-switching experiment while they underwent fMRI brain imaging. We investigated the impact of age on behavioral performance and neural activity considering two types of potential costs: switch costs (dual-task switch trials minus dual-task non-switch trials), and mixing costs (dual-task non-switch minus single-task trials). Results We replicated previous behavioral findings, with greater age associated with mixing, but not switch costs. Neurally, we found age-related compensatory activations for switch costs in the dorsal lateral prefrontal cortex, pars opercularis, superior temporal gyrus, and the posterior and anterior cingulate, but age-related under recruitment for mixing costs in fronto-parietal areas including the supramarginal gyrus and pre and supplemental motor areas. Discussion These results suggest an age-based dissociation between executive components that contribute to task switching.
Collapse
Affiliation(s)
- Teal S. Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Christopher Langfield
- Cognitive Neuroscience Division and The Taub Institute, Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Jayant Sakhardande
- Cognitive Neuroscience Division and The Taub Institute, Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Yunglin Gazes
- Cognitive Neuroscience Division and The Taub Institute, Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Christian Habeck
- Cognitive Neuroscience Division and The Taub Institute, Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Yaakov Stern
- Cognitive Neuroscience Division and The Taub Institute, Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| |
Collapse
|
6
|
Richard’s MM, Zamora EV, Aydmune Y, Comesaña A, Krzemien D, Introzzi IM, Lopez-Ramón MF, Navarro-Pardo E. Age-related switching costs in adulthood: “All or None Hypothesis” corollaries. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-023-04340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Bonnechère B. Evaluation of Processing Speed of Different Cognitive Functions Across the Life Span Using Cognitive Mobile Games. Games Health J 2022; 11:132-140. [PMID: 35180366 DOI: 10.1089/g4h.2021.0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: Processing speed (PS) is an important indicator of cognitive functioning and normal aging. However, the tools used to evaluate these are often rather simplistic and only assess one cognitive component. The aim of this study was to use cognitive mobile games (CMG) to evaluate the evolution of reaction times over the life span during different cognitive tasks. Methodology: We carried out a retrospective observational study in which we obtained anonymized results of 15,000 subjects. Scores of five CMG that train arithmetic, vocabulary, response control, visual attention and recognition, and working memory were analyzed. Results: Overall, we observed a highly statistically significant decrease (P < 0.001) in PS and a decrease of accuracy (P < 0.001) with increasing participant age, indicating that for each cognitive function tested, older participants performed cognitive tasks more slowly than younger participants. We also observed an interaction between the age of the participants and the number of errors. These results are consistent with physiological data with respect to aging and cognition. Conclusion: Owing to their wide availability and ease of use, CMG could be used as a simple tool to monitor cognitive function such as PS. Further studies are needed to study the influence of pathologies on those variables.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
8
|
Stimuli with a positive valence can facilitate cognitive control. Mem Cognit 2021; 50:911-924. [PMID: 34792788 DOI: 10.3758/s13421-021-01257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 11/08/2022]
Abstract
In the process of interacting with people and objects, humans assign affective valence. By using an association-transfer paradigm, the current study investigated whether the emotion associated with a stimulus would have an impact on cognitive control outcomes. During the association phase of two experiments reported here, participants identified the emotion expressed by an actor's face as either positive (i.e., smiling) or negative (i.e., frowning). Half of the actors expressed positive emotions (MP) on 80% of trials, while the other half expressed negative emotions (MN) on 80% of trials. We tested the cognitive effect of these associations in two experiments. In the transfer phase of Experiment 1, the same actors from the association phase were shown with neutral expression during a gender Stroop task, requiring participants to identify the gender of the face while ignoring a gender word (congruent or incongruent) that was imposed upon the face. The Stroop effect was significant for the MN faces, but the effect disappeared for the MP faces. In the transfer phase of Experiment 2, the emotionless faces were presented in a task-switching paradigm, in which participants identified the age (i.e., old or young) or the gender depending on the task cue. The task switch cost was smaller (though significant) for the MP faces than for the MN faces. These results suggest that, relative to social stimuli associated with negative expressions, social stimuli associated with positive expressions can promote better cognitive control and inhibit distractor interference in goal-oriented behavior.
Collapse
|
9
|
Heckner MK, Cieslik EC, Eickhoff SB, Camilleri JA, Hoffstaedter F, Langner R. The Aging Brain and Executive Functions Revisited: Implications from Meta-analytic and Functional-Connectivity Evidence. J Cogn Neurosci 2021; 33:1716-1752. [PMID: 32762523 DOI: 10.1162/jocn_a_01616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Healthy aging is associated with changes in cognitive performance, including executive functions (EFs) and their associated brain activation patterns. However, it has remained unclear which EF-related brain regions are affected consistently, because the results of pertinent neuroimaging studies and earlier meta-analyses vary considerably. We, therefore, conducted new rigorous meta-analyses of published age differences in EF-related brain activity. Out of a larger set of regions associated with EFs, only left inferior frontal junction and left anterior cuneus/precuneus were found to show consistent age differences. To further characterize these two age-sensitive regions, we performed seed-based resting-state functional connectivity (RS-FC) analyses using fMRI data from a large adult sample with a wide age range. We also assessed associations of the two regions' whole-brain RS-FC patterns with age and EF performance. Although our results largely point toward a domain-general role of left inferior frontal junction in EFs, the pattern of individual study contributions to the meta-analytic results suggests process-specific modulations by age. Our analyses further indicate that the left anterior cuneus/precuneus is recruited differently by older (compared with younger) adults during EF tasks, potentially reflecting inefficiencies in switching the attentional focus. Overall, our findings question earlier meta-analytic results and suggest a larger heterogeneity of age-related differences in brain activity associated with EFs. Hence, they encourage future research that pays greater attention to replicability, investigates age-related differences in deactivation, and focuses on more narrowly defined EF subprocesses, combining multiple behavioral assessments with multimodal imaging.
Collapse
Affiliation(s)
- Marisa K Heckner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf
| |
Collapse
|
10
|
Bonnechère B, Klass M, Langley C, Sahakian BJ. Brain training using cognitive apps can improve cognitive performance and processing speed in older adults. Sci Rep 2021; 11:12313. [PMID: 34112925 PMCID: PMC8192763 DOI: 10.1038/s41598-021-91867-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Managing age-related decrease of cognitive function is an important public health challenge, especially in the context of the global aging of the population. Over the last years several Cognitive Mobile Games (CMG) have been developed to train and challenge the brain. However, currently the level of evidence supporting the benefits of using CMG in real-life use is limited in older adults, especially at a late age. In this study we analyzed game scores and the processing speed obtained over the course of 100 sessions in 12,000 subjects aged 60 to over 80 years. Users who trained with the games improved regardless of age in terms of scores and processing speed throughout the 100 sessions, suggesting that old and very old adults can improve their cognitive performance using CMG in real-life use.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium. .,Department of Psychiatry and Behavioural and Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK.
| | - Malgorzata Klass
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christelle Langley
- Department of Psychiatry and Behavioural and Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Barbara Jacquelyn Sahakian
- Department of Psychiatry and Behavioural and Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| |
Collapse
|
11
|
Qin S, Basak C. Influence of Multiple Cardiovascular Risk Factors on Task-Switching in Older Adults: An fMRI Study. Front Hum Neurosci 2020; 14:561877. [PMID: 33033477 PMCID: PMC7509111 DOI: 10.3389/fnhum.2020.561877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Not only are the effects of cardiovascular risk factors such as high blood pressure and low fitness on executive functions and brain activations in older adults scarcely investigated, no fMRI study has investigated the combined effects of multiple risk factors on brain activations in older adults. This fMRI study examined the independent and combined effects of two cardiovascular risk factors, arterial plasticity, and physical fitness, on brain activations during task-switching in older adults. The effects of these two risk factors on age-related differences in activation between older and younger adults were also examined. Independently, low physical fitness and low arterial plasticity were related to reduced suppressions of occipital brain regions. The combined effects of these two risks on occipital regions were greater than the independent effects of either risk factor. Age-related overactivations in frontal cortex were observed in low fitness older adults. Brain-behavior correlation indicates that these frontal overactivations are maladaptive to older adults' task performance. It is possible that the resulting effects of cardiovascular risks on the aging brain, especially the maladaptive overactivations of frontal brain regions by high risk older adults, contribute to often found posterior-anterior shift in aging (PASA) brain activations. Furthermore, observed age-related differences in brain activations during task-switching can be partially attributed to individual differences in cardiovascular risks among older adults.
Collapse
Affiliation(s)
- Shuo Qin
- Center for Vital Longevity, The University of Texas at Dallas, Dallas, TX, United States
| | - Chandramallika Basak
- Center for Vital Longevity, The University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
12
|
Grange JA, Becker RB. The Effect of Aging on Response Congruency in Task Switching: A Meta-Analysis. J Gerontol B Psychol Sci Soc Sci 2020; 74:389-396. [PMID: 29045734 DOI: 10.1093/geronb/gbx122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Response-congruency effects in task switching are the observed slowing of response times (RTs) for incongruent targets which afford more than one response (depending on task) in comparison to congruent stimuli that afford just one response regardless of the task. These effects are thought to reflect increased ambiguity during response selection for incongruent stimuli. METHODS The present study presents a meta-analysis of 27 conditions (from 16 separate studies) whose designs allowed investigation of age-related differences in response-congruency effects on RT. RESULTS Multilevel modelling of Brinley plots and state-trace plots showed no age-related effect on response congruency beyond that which can be explained by general age-related slowing. DISCUSSION The results add to the growing body of evidence of no age-related decline in measures of attention and executive functioning.
Collapse
Affiliation(s)
| | - Raymond B Becker
- Cluster of Excellence-Cognitive Interaction Technology (CITEC), Bielefeld University, Germany
| |
Collapse
|
13
|
Qin S, Basak C. Age-related differences in brain activation during working memory updating: An fMRI study. Neuropsychologia 2020; 138:107335. [PMID: 31923524 DOI: 10.1016/j.neuropsychologia.2020.107335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 01/27/2023]
Abstract
Recent neuroimaging studies have reported an age-related reduction in brain activations in response to working memory load in task-sensitive brain regions. The current fMRI study investigated the age-related differences in brain activations of the updating mechanism in working memory, which was not investigated in previous studies. With a hybrid block/event-related design, this study was able to examine changes in BOLD signals (i.e., neuromodulation) to increase in updating, a type of cognitive control that is understudied. Older adults were separated into young-old and old-old cohorts to examine whether, within healthy aging, the neuromodulation to cognitive control decreases with age. Our results show that younger adults activate left precentral gyrus and right cerebellum more during trials that require updating than trials that do not require updating. Although older adults showed reduced neuromodulation in these two regions, the old-old cohort failed to show any significant neuromodulation in response to updating. Moreover, older adults not only showed reduced suppressions of the default mode network (DMN) regions during the task, they also overactivated some of the DMN regions, esp. the old-old, when compared to the younger adults. Older adults also showed overactivations in a region (right precentral gyrus) that is contralateral to a task-sensitive region that was activated in the younger adults during updating. Brain-behavior correlations suggest that age-related overactivations of these DMN regions and the right precentral gyrus are maladaptive to their performance. Our results suggest that not only the neuromodulation in response to updating demands is diminished in healthy aging, older adults also show maladaptive increases in activations of task-irrelevant regions and reduced hemispheric specificity during updating. These effects are most pronounced in old-old cohort, compared to young-old, suggesting that age-related declines in neuromodulation during cognitive control is more pronounced in older cohorts within healthy aging.
Collapse
Affiliation(s)
- Shuo Qin
- University of Texas at Dallas, TX, 75080, USA
| | | |
Collapse
|
14
|
McDonald AP, D'Arcy RCN, Song X. Functional MRI on executive functioning in aging and dementia: A scoping review of cognitive tasks. Aging Med (Milton) 2018; 1:209-219. [PMID: 31942499 PMCID: PMC6880681 DOI: 10.1002/agm2.12037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
Cognitive decline with aging and dementia is especially poignant with regard to the executive functioning that is necessary for activities of daily independent living. The relationship between age-related neurodegeneration in the prefrontal cortex and executive functioning has been uniquely investigated using task-phase functional magnetic resonance imaging (fMRI) to detect brain activity in response to stimuli; however, a comprehensive list of task designs that have been implemented to task-phase fMRI is absent in the literature. The purpose of this review was to recognize what methods have been used to study executive functions with aging and dementia in fMRI tasks, and to describe and categorize them. The following cognitive subdomains were emphasized: cognitive flexibility, planning and decision-making, working memory, cognitive control/inhibition, semantic processing, attention and concentration, emotional functioning, and multitasking. Over 30 different task-phase fMRI designs were found to have been implemented in the literature, all adopted from standard neuropsychological assessments. Cognitive set-shifting and decision-making tasks were particularly well studied in regard to age-related neurodegeneration, while emotional functioning and multitasking designs were found to be the least utilized. Summarizing the information on which tasks have shown the greatest usability will assist in the future design and implementation of effective fMRI experiments targeting executive functioning.
Collapse
Affiliation(s)
- Andrew P. McDonald
- Health Sciences and InnovationFraser Health AuthoritySurreyBritish ColumbiaCanada
- Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ryan C. N. D'Arcy
- Health Sciences and InnovationFraser Health AuthoritySurreyBritish ColumbiaCanada
- ImageTech LaboratorySimon Fraser UniversitySurreyBritish ColumbiaCanada
| | - Xiaowei Song
- Health Sciences and InnovationFraser Health AuthoritySurreyBritish ColumbiaCanada
- ImageTech LaboratorySimon Fraser UniversitySurreyBritish ColumbiaCanada
| |
Collapse
|
15
|
Vasta R, Cutini S, Cerasa A, Gramigna V, Olivadese G, Arabia G, Quattrone A. Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study. Front Aging Neurosci 2018; 9:433. [PMID: 29375363 PMCID: PMC5767724 DOI: 10.3389/fnagi.2017.00433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/15/2017] [Indexed: 01/13/2023] Open
Abstract
Task-switching (TS) paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS) was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years) and 11 elderly participants (57.18 ± 9.29 years) healthy volunteers (55% male, age range: (19-69) years) during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO) and deoxy-hemoglobin (HbR) concentration] of the dorso-lateral prefrontal cortex (DLPFC), the dorsal premotor cortex (PMC), and the dorso-medial part of the superior frontal gyrus (sFG). TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t-test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- (p < 0.01, t = -3.67) and shape-single tasks (p = 0.026, t = -2.54) as well as switching (p = 0.026, t = -2.41) and repetition trials (p = 0.012, t = -2.80). Differences in cortical activation between groups were revealed for HbO mean concentration of switching task in the PMC (p = 0.048, t = 2.94). In the whole group, significant increases of behavioral performance were detected in switching trials, which positively correlated with aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC (p = 0.01, β = -0.321) and of shape single-task in the sFG (p = 0.003, β = 0.342) were the best predictors of age effects. Our findings demonstrated that TS might be a reliable instrument to gather a measure of cognitive resources in older people. Moreover, the fNIRS-related brain activity extracted from frontoparietal cortex might become a useful indicator of aging effects.
Collapse
Affiliation(s)
- Roberta Vasta
- Neuroscience Research Center, University Magna Graecia, Catanzaro, Italy
| | - Simone Cutini
- Department of Developmental Psychology, University of Padova, Padova, Italy
| | - Antonio Cerasa
- Institute of Bioimaging and Molecular Physiology, Neuroimaging Research Center, Consiglio Nazionale Delle Ricerche (CNR), Catanzaro, Italy.,Institute S. Anna, Research in Advanced Neurorehabilitation, Crotone, Italy
| | - Vera Gramigna
- Neuroscience Research Center, University Magna Graecia, Catanzaro, Italy
| | - Giuseppe Olivadese
- Institute of Bioimaging and Molecular Physiology, Neuroimaging Research Center, Consiglio Nazionale Delle Ricerche (CNR), Catanzaro, Italy
| | - Gennarina Arabia
- Institute S. Anna, Research in Advanced Neurorehabilitation, Crotone, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University Magna Graecia, Catanzaro, Italy.,Institute of Bioimaging and Molecular Physiology, Neuroimaging Research Center, Consiglio Nazionale Delle Ricerche (CNR), Catanzaro, Italy.,Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|