1
|
Colombari E, Railo H. Multiple independent components contribute to event-related potential correlates of conscious vision. Conscious Cogn 2024; 126:103785. [PMID: 39536421 DOI: 10.1016/j.concog.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Research has revealed two major event-related potential (ERP) markers of visual awareness: the earlier Visual Awareness Negativity (VAN, around 150-250 ms after stimulus onset), and the following Late Positivity (LP, around 300-500 ms after stimulus onset). Understanding the neural sources that give rise to VAN and LP is important in order to understand what kind of neural processes underlie conscious visual perception. Although the ERPs afford high temporal resolution, their spatial resolution is limited because multiple separate neural sources sum up at the scalp level. In the present study, we sought to characterize the locations and time-courses of independent neural sources underlying the ERP correlates of visual awareness by means of Independent Component Analysis (ICA). ICA allows identifying and localizing the temporal dynamics of different neural sources that contribute to the ERP correlates of conscious perception. The present results show that the cortical sources of VAN are localized to posterior areas including occipital and temporal cortex, while LP reflects a combination of multiple sources distributed among frontal, parietal and occipito-temporal cortex. Our findings suggest that conscious vision correlates with dynamically changing neural sources, developing in part in "accumulative fashion": consciousness-related activity initially arises in few early sources and, subsequently, additional sources are engaged as a function of time. The results further suggest that even early latency neural sources that correlate with conscious perception may also associate with action-related processes.
Collapse
Affiliation(s)
- Elisabetta Colombari
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy.
| | - Henry Railo
- Department of Psychology and Speech Language Pathology, University of Turku, Finland
| |
Collapse
|
2
|
Knight RS, Chen T, Center EG, Gratton G, Fabiani M, Savazzi S, Mazzi C, Beck DM. Bypassing input to V1 in visual awareness: A TMS-EROS investigation. Neuropsychologia 2024; 198:108864. [PMID: 38521150 PMCID: PMC11194103 DOI: 10.1016/j.neuropsychologia.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Early visual cortex (V1-V3) is believed to be critical for normal visual awareness by providing the necessary feedforward input. However, it remains unclear whether visual awareness can occur without further involvement of early visual cortex, such as re-entrant feedback. It has been challenging to determine the importance of feedback activity to these areas because of the difficulties in dissociating this activity from the initial feedforward activity. Here, we applied single-pulse transcranial magnetic stimulation (TMS) over the left posterior parietal cortex to elicit phosphenes in the absence of direct visual input to early visual cortex. Immediate neural activity after the TMS pulse was assessed using the event-related optical signal (EROS), which can measure activity under the TMS coil without artifacts. Our results show that: 1) The activity in posterior parietal cortex 50 ms after TMS was related to phosphene awareness, and 2) Activity related to awareness was observed in a small portion of V1 140 ms after TMS, but in contrast (3) Activity in V2 was a more robust correlate of awareness. Together, these results are consistent with interactive models proposing that sustained and recurrent loops of activity between cortical areas are necessary for visual awareness to emerge. In addition, we observed phosphene-related activations of the anteromedial cuneus and lateral occipital cortex, suggesting a functional network subserving awareness comprising these regions, the parietal cortex and early visual cortex.
Collapse
Affiliation(s)
- Ramisha S Knight
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Aptima, Inc. 2555 University Blvd, Fairborn, OH, USA
| | - Tao Chen
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA.
| | - Evan G Center
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA; Center for Ubiquitous Computing, University of Oulu, Oulu, Finland
| | - Gabriele Gratton
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA
| | - Silvia Savazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Mazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Diane M Beck
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA.
| |
Collapse
|
3
|
Werth R. A Scientific Approach to Conscious Experience, Introspection, and Unconscious Processing: Vision and Blindsight. Brain Sci 2022; 12:1305. [PMID: 36291239 PMCID: PMC9599441 DOI: 10.3390/brainsci12101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Although subjective conscious experience and introspection have long been considered unscientific and banned from psychology, they are indispensable in scientific practice. These terms are used in scientific contexts today; however, their meaning remains vague, and earlier objections to the distinction between conscious experience and unconscious processing, remain valid. This also applies to the distinction between conscious visual perception and unconscious visual processing. Damage to the geniculo-striate pathway or the visual cortex results in a perimetrically blind visual hemifield contralateral to the damaged hemisphere. In some cases, cerebral blindness is not absolute. Patients may still be able to guess the presence, location, shape or direction of movement of a stimulus even though they report no conscious visual experience. This "unconscious" ability was termed "blindsight". The present paper demonstrates how the term conscious visual experience can be introduced in a logically precise and methodologically correct way and becomes amenable to scientific examination. The distinction between conscious experience and unconscious processing is demonstrated in the cases of conscious vision and blindsight. The literature on "blindsight" and its neurobiological basis is reviewed. It is shown that blindsight can be caused by residual functions of neural networks of the visual cortex that have survived cerebral damage, and may also be due to an extrastriate pathway via the midbrain to cortical areas such as areas V4 and MT/V5.
Collapse
Affiliation(s)
- Reinhard Werth
- Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
4
|
Measuring the mental. Conscious Cogn 2021; 90:103106. [PMID: 33740549 DOI: 10.1016/j.concog.2021.103106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/20/2022]
Abstract
Many philosophers have argued that the subjective character of conscious experience results in a fundamental deficit of third-person (henceforth: extrospective) access to first-person experience. By comparing extrospective measurement techniques with measurement techniques in the natural sciences, we will argue that extrospective methods suffer from no such deficit. After a rejection of some principled objections against extrospective methods, a historical comparison with the development of measurement techniques in the natural sciences will show that extrospective measuring methods are still in an early stage of development. However, they can be significantly improved by way of a bootstrapping strategy, similar to that which has proven successful in the development of physical measurement techniques. One reason to expect such improvement is the availability of multiple sources of evidence, which should allow for substantial advances in extrospective measurement techniques. Finally, we will discuss new developments in pain measurement in order to show that the bootstrapping strategy is already bearing fruit.
Collapse
|
5
|
Sanchez-Lopez J, Cardobi N, Pedersini CA, Savazzi S, Marzi CA. What cortical areas are responsible for blindsight in hemianopic patients? Cortex 2020; 132:113-134. [PMID: 32977179 DOI: 10.1016/j.cortex.2020.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/07/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
The presence of above-chance unconscious behavioral responses following stimulus presentation to the blind hemifield of hemianopic patients (blindsight) is a well-known phenomenon. What is still lacking is a systematic study of the neuroanatomical bases of two distinct aspects of blindsight: the unconscious above chance performance and the phenomenological aspects that may be associated. Here, we tested 17 hemianopic patients in two tasks i.e. movement and orientation discrimination of a visual grating presented to the sighted or blind hemifield. We classified patients in four groups on the basis of the presence of above chance unconscious discrimination without or with perceptual awareness reports for stimulus presentation to the blind hemifield. A fifth group was represented by patients with interruption of the Optic Radiation. In the various groups we carried out analyses of lesion extent of various cortical areas, probabilistic tractography as well as assessment of the cortical thickness of the intact hemisphere. All patients had lesions mainly, but not only, in the occipital lobe and the statistical comparison of their extent provided clues as to the critical anatomical substrate of unconscious above-chance performance and of perceptual awareness reports, respectively. In fact, the two areas that turned out to be critical for above-chance performance in the discrimination of moving versus non-moving visual stimuli were the Precuneus and the Posterior Cingulate Gyrus while for perceptual awareness reports the crucial areas were Intracalcarine, Supracalcarine, Cuneus, and the Posterior Cingulate Gyrus. Interestingly, the proportion of perceptual awareness reports was higher in patients with a spared right hemisphere. As to probabilistic tractography, all pathways examined yielded higher positive values for patients with perceptual awareness reports. Finally, the cortical thickness of the intact hemisphere was greater in patients showing above-chance performance than in those at chance. This effect is likely to be a result of neuroplastic compensatory mechanisms.
Collapse
Affiliation(s)
- Javier Sanchez-Lopez
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Nicolò Cardobi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Caterina A Pedersini
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Silvia Savazzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Perception and Awareness (PandA) Laboratory, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| | - Carlo A Marzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy.
| |
Collapse
|
6
|
Mazzi C, Mazzeo G, Savazzi S. Late Positivity Does Not Meet the Criteria to be Considered a Proper Neural Correlate of Perceptual Awareness. Front Syst Neurosci 2020; 14:36. [PMID: 32733211 PMCID: PMC7358964 DOI: 10.3389/fnsys.2020.00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Contrastive analysis has been widely employed in the search for the electrophysiological neural correlates of consciousness. However, despite its clear logic, it has been argued that it may not succeed in isolating neural processes solely involved in the emergence of perceptual awareness. In fact, data from contrastive analysis would be contaminated by potential confounding factors reflecting distinct, though related, processes either preceding or following the conscious perception. At present, the ERP components representing the proper correlates of perceptual awareness still remain to be identified among those correlating with awareness (i.e., Visual Awareness Negativity, VAN and Late Positivity, LP). In order to dissociate visual awareness from post-perceptual confounds specifically related to decision making, we manipulated the response criterion, which affects how a percept is translated into a decision. In particular, while performing an orientation discrimination task, participants were asked to shift their response criterion across sessions. As a consequence, the resulting modulation should concern the ERP component(s) not exclusively reflecting mechanisms regulating the subjective conscious experience itself but rather the processes accompanying it. Electrophysiological results showed that N1 and P3 were sensitive to the response criterion adopted by participants. Additionally, the more the participants shifted their response criterion, the bigger the ERP modulation was; this was consequently indicative of the critical role of these components in the decision-making processes regardless of awareness level. When considering data independently from the response criterion, the aware vs. unaware contrast showed that both VAN and LP were significant. Crucially, the LP component was also modulated by the interaction of awareness and response criterion, while VAN results to be unaffected. In agreement with previous literature, these findings provide evidence supporting the hypothesis that VAN tracks the emergence of visual awareness by encoding the conscious percept, whereas LP reflects the contribution from post-perceptual processes related to response requirements. This excludes a direct functional role of this later component in giving rise to perceptual awareness.
Collapse
Affiliation(s)
- Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gaetano Mazzeo
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Sanchez-Lopez J, Pedersini CA, Di Russo F, Cardobi N, Fonte C, Varalta V, Prior M, Smania N, Savazzi S, Marzi CA. Visually evoked responses from the blind field of hemianopic patients. Neuropsychologia 2019; 128:127-139. [PMID: 28987906 PMCID: PMC5845440 DOI: 10.1016/j.neuropsychologia.2017.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
Hemianopia is a visual field defect characterized by decreased vision or blindness in the contralesional visual field of both eyes. The presence of well documented above-chance unconscious behavioural responses to visual stimuli presented to the blind hemifield (blindsight) has stimulated a great deal of research on the neural basis of this important phenomenon. The present study is concerned with electrophysiological responses from the blind field. Since previous studies found that transient Visual Evoked Potentials (VEPs) are not entirely suitable for this purpose here we propose to use Steady-State VEPs (SSVEPs). A positive result would have important implications for the understanding of the neural bases of conscious vision. We carried out a passive SSVEP stimulation with healthy participants and hemianopic patients. Stimuli consisted of four black-and-white sinusoidal Gabor gratings presented one in each visual field quadrant and flickering one at a time at a 12Hz rate. To assess response reliability a Signal-to-Noise Ratio analysis was conducted together with further analyses in time and frequency domains to make comparisons between groups (healthy participants and patients), side of brain lesion (left and right) and visual fields (sighted and blind). The important overall result was that stimulus presentation to the blind hemifield yielded highly reliable responses with time and frequency features broadly similar to those found for cortical extrastriate areas in healthy controls. Moreover, in the intact hemifield of hemianopics and in healthy controls there was evidence of a role of prefrontal structures in perceptual awareness. Finally, the presence of different patterns of brain reorganization depended upon the side of lesion.
Collapse
Affiliation(s)
- Javier Sanchez-Lopez
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy.
| | - Caterina A Pedersini
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Francesco Di Russo
- Department. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nicolò Cardobi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Cristina Fonte
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Valentina Varalta
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | | | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy
| | - Silvia Savazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy; Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Italy; National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
8
|
Mazzi C, Savazzi S. The Glamor of Old-Style Single-Case Studies in the Neuroimaging Era: Insights From a Patient With Hemianopia. Front Psychol 2019; 10:965. [PMID: 31114532 PMCID: PMC6502964 DOI: 10.3389/fpsyg.2019.00965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/11/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chiara Mazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| | - Silvia Savazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona, Italy
| |
Collapse
|