Nedelkou A, Hatzitaki V, Chatzinikolaou K, Grouios G. Does somatosensory feedback from the plantar foot sole contribute to verticality perception?
Somatosens Mot Res 2021;
38:214-222. [PMID:
34256655 DOI:
10.1080/08990220.2021.1949977]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM OF THE STUDY
In upright standing, the human foot sole is the only point of contact with the ground conveying information about the pressure distribution under the feet. We examined how the altered somatosensory input from the plantar foot receptors, when standing on a soft surface, affects the subjective estimation of the earth vertical in different sensory contexts.
MATERIALS AND METHODS
Twelve (12) healthy young females (mean age: 21.8 ± 2.4 years) adjusted the orientation of a visual line (35 × 1.5 cm) representing the roll orientation of a hand-held (attached on a 24.9 × 4 cm cylinder) or head-attached electromagnetic tracking sensor (Nest of Birds, Ascension Technologies Inc., VT. USA, 60 Hz) under two visual conditions (eyes open, eyes closed) while standing on a soft or firm surface. The mean absolute (accuracy) and variable (precision) error in the verticality estimate was depicted in the sensor's roll deviation from the gravitational vertical.
RESULTS
The accuracy and the precision of the estimate decreased in the absence of vision, while standing on the soft surface and when the estimate was provided by an active hand rather than head rotation. The surface effect was significant only in the absence of vision and when the estimate was provided by the hand.
CONCLUSIONS
The contribution of the plantar foot mechanoreceptors to gravity perception is sensory context dependent. Perception of the earth vertical is more accurate when estimated by active head rotation due to the integration of the vestibular and neck proprioceptive afferents.
Collapse