1
|
Priyadarshini CS, Balaji T, Kumar JA, Subramanian M, Sundaramurthi I, Meera M. Chlorpyrifos and its metabolite modulates angiogenesis in the chorioallantoic membrane of chick embryo. J Basic Clin Physiol Pharmacol 2019; 31:jbcpp-2019-0041. [PMID: 31622248 DOI: 10.1515/jbcpp-2019-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Background Chlorpyrifos (CPF) is an organophosphate insecticide, acaricide, and miticide used primarily to control foliage and soilborne insect pests on a variety of food and feed crops. Since trace amounts of these compounds are found in water and food products, they easily enter into the organ system unnoticed. In the same way, the compound or its metabolite gets transmitted from the parent to the embryo mainly through blood vessels. Since blood vessels form the major route of transport, it is pertinent to study the effect of these compounds during angiogenesis. The effect of CPF and 3,5,6-trichloro-2-pyridinol (TCPy) on the angiogenesis of chick embryo was evaluated in the chorioallantoic membrane (CAM) using an ex vivo model. Methods Nine-day-old incubated eggs where inoculated with various doses of CPF and TCPy. After 48 h of incubation, the CAM layers were retrieved and analyzed using angiogenesis software to obtain the density of blood vessels. Histomorphometric studies were performed to measure the thickness of vessel walls. The expression of VEGF, VEGFR2, and N-cadherin genes responsible for angiogenesis were analyzed. Results The exposure to the parent compound CPF and its metabolite TCPy promoted angiogenesis in groups administered with lower concentration of the pesticide and its metabolite, whereas a decline in angiogenesis was observed at higher concentrations. These observations were made by analyzing the density, histomorphometry results, and semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) results. The density, thickness, and lumen size of blood vessels in the groups with low concentration of CPF and TCPy were 28.34, 9 μm, and 30 μm, respectively, whereas in the groups with higher CPF and TCPy concentrations, they were 12, 3 μm, and 9 μm, respectively. Conclusions Hence, CPF and its metabolites interfere with angiogenesis in the CAM of chick embryos. Because of their estrogen-mimicking ability, pesticides are the prime etiological suspects of increasing alteration in blood vessel formation. These results may be of help in future studies on the effect of CPF in embryonic growth, wound healing, diabetes, and tumors.
Collapse
Affiliation(s)
- C Swathi Priyadarshini
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Thotakura Balaji
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India, Mobile: +91 7358449857
| | - Jyothi Ashok Kumar
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Manickam Subramanian
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Indumathi Sundaramurthi
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - M Meera
- Department of Medical Biotechnology, Faculty of Allied Health Science, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
2
|
Rojas-Mayorquín AE, Torres-Ruíz NM, Gudiño-Cabrera G, Ortuño-Sahagún D. Subtractive hybridization identifies genes differentially expressed by olfactory ensheathing cells and neural stem cells. Int J Dev Neurosci 2009; 28:75-82. [PMID: 19772911 DOI: 10.1016/j.ijdevneu.2009.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/16/2009] [Accepted: 08/17/2009] [Indexed: 01/22/2023] Open
Abstract
The in vitro differentiation of embryonic stem cells into glia has received relatively limited attention to date when compared with the interest in the generation of neurons. We are interested in a particular glial phenotype, the aldynoglia, and their differentiation from multipotential neural precursors (MNP), since this type of glia can promote neuronal regeneration. We constructed cDNA libraries from cultures of purified olfactory ensheathing cells (OEC), an aldynoglia cell type, and MNP to perform subtractive hybridization. As a result, we isolated four genes from the OEC: one tenascin C (Tn-C) isoform, Insulin-like growth factor binding protein 5 (Igfbp-5), cytochrome oxidase subunit I (COX1) and a phosphodiesterase for cyclic nucleotides (CNPase). With the exception of CNPase, these genes are expressed more strongly in the OEC than in the MNP and moreover, the expression of all four is induced when MNP were exposed to OEC conditioned media. The data suggest a role for these genes in MNP differentiation, and their products appear to represent characteristic proteins of the aldynoglia phenotype.
Collapse
Affiliation(s)
- Argelia Esperanza Rojas-Mayorquín
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, C.U.C.B.A, Universidad de Guadalajara, 45020 Guadalajara, Jalisco, México
| | | | | | | |
Collapse
|
3
|
Hecht J, Kuhl H, Haas SA, Bauer S, Poustka AJ, Lienau J, Schell H, Stiege AC, Seitz V, Reinhardt R, Duda GN, Mundlos S, Robinson PN. Gene identification and analysis of transcripts differentially regulated in fracture healing by EST sequencing in the domestic sheep. BMC Genomics 2006; 7:172. [PMID: 16822315 PMCID: PMC1578570 DOI: 10.1186/1471-2164-7-172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 07/05/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sheep is an important model animal for testing novel fracture treatments and other medical applications. Despite these medical uses and the well known economic and cultural importance of the sheep, relatively little research has been performed into sheep genetics, and DNA sequences are available for only a small number of sheep genes. RESULTS In this work we have sequenced over 47 thousand expressed sequence tags (ESTs) from libraries developed from healing bone in a sheep model of fracture healing. These ESTs were clustered with the previously available 10 thousand sheep ESTs to a total of 19087 contigs with an average length of 603 nucleotides. We used the newly identified sequences to develop RT-PCR assays for 78 sheep genes and measured differential expression during the course of fracture healing between days 7 and 42 postfracture. All genes showed significant shifts at one or more time points. 23 of the genes were differentially expressed between postfracture days 7 and 10, which could reflect an important role for these genes for the initiation of osteogenesis. CONCLUSION The sequences we have identified in this work are a valuable resource for future studies on musculoskeletal healing and regeneration using sheep and represent an important head-start for genomic sequencing projects for Ovis aries, with partial or complete sequences being made available for over 5,800 previously unsequenced sheep genes.
Collapse
Affiliation(s)
- Jochen Hecht
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|