1
|
Traub RD, Tu Y, Whittington MA. Cell assembly formation and structure in a piriform cortex model. Rev Neurosci 2021; 33:111-132. [PMID: 34271607 DOI: 10.1515/revneuro-2021-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/19/2021] [Indexed: 11/15/2022]
Abstract
The piriform cortex is rich in recurrent excitatory synaptic connections between pyramidal neurons. We asked how such connections could shape cortical responses to olfactory lateral olfactory tract (LOT) inputs. For this, we constructed a computational network model of anterior piriform cortex with 2000 multicompartment, multiconductance neurons (500 semilunar, 1000 layer 2 and 500 layer 3 pyramids; 200 superficial interneurons of two types; 500 deep interneurons of three types; 500 LOT afferents), incorporating published and unpublished data. With a given distribution of LOT firing patterns, and increasing the strength of recurrent excitation, a small number of firing patterns were observed in pyramidal cell networks: first, sparse firings; then temporally and spatially concentrated epochs of action potentials, wherein each neuron fires one or two spikes; then more synchronized events, associated with bursts of action potentials in some pyramidal neurons. We suggest that one function of anterior piriform cortex is to transform ongoing streams of input spikes into temporally focused spike patterns, called here "cell assemblies", that are salient for downstream projection areas.
Collapse
Affiliation(s)
- Roger D Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
| | - Yuhai Tu
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
| | | |
Collapse
|
2
|
Tokura Y. Direct and indirect action modes of acetylcholine in cholinergic urticaria. Allergol Int 2021; 70:39-44. [PMID: 32565175 DOI: 10.1016/j.alit.2020.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023] Open
Abstract
Cholinergic urticaria (CholU) manifests small, itchy and/or painful wheals occurring upon perspiration and mechanically involving acetylcholine (Ach). Although a considerable number of studies have been conducted, the pathomechanisms underlying perspiration-associated release of histamine remain to be elucidated. We have proposed that CholU can be categorized into two major subtypes: Ach-indirectly induced, sweat allergic type and Ach-directly induced, depressed sweating type. In the former type, Ach evokes perspiration, and some sweat antigen(s) leaking from the sweat ducts to the dermis may stimulate mast cells to release histamine. In this scenario, the ducts might be damaged or obstructed for sweat leakage, and patients frequently exhibit positive autologous sweat skin test, representing "sweat allergy (hypersensitivity)". On the other hand, the latter Ach-mast cell directly interacting type, typically seen as "CholU with anhidrosis and/or hypohidrosis (CUAH)", eccrine sweat gland epithelial cells lack cholinergic receptor M3 expression. The expression of cholinergic receptors is completely absent in the anhidrotic areas and only slightly expressed in the hypohidrotic areas. In the hypohidrotic area, where pinpoint wheal occurs, it is hypothesized that released Ach cannot be completely trapped by cholinergic receptors of eccrine glands and overflows to the adjacent mast cells, leading to wheal formation. Thus, sweat allergy is not a requirement in this depressed sweating type. Although some additional complications, such as angioedema, anaphylaxis, and cold urticaria, have been documented, these two types represent the modes of action of Ach in this enigmatic urticaria.
Collapse
|
3
|
Suresh J, Radojicic M, Pesce LL, Bhansali A, Wang J, Tryba AK, Marks JD, van Drongelen W. Network burst activity in hippocampal neuronal cultures: the role of synaptic and intrinsic currents. J Neurophysiol 2016; 115:3073-89. [PMID: 26984425 DOI: 10.1152/jn.00995.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
The goal of this work was to define the contributions of intrinsic and synaptic mechanisms toward spontaneous network-wide bursting activity, observed in dissociated rat hippocampal cell cultures. This network behavior is typically characterized by short-duration bursts, separated by order of magnitude longer interburst intervals. We hypothesize that while short-timescale synaptic processes modulate spectro-temporal intraburst properties and network-wide burst propagation, much longer timescales of intrinsic membrane properties such as persistent sodium (Nap) currents govern burst onset during interburst intervals. To test this, we used synaptic receptor antagonists picrotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP) to selectively block GABAA, AMPA, and NMDA receptors and riluzole to selectively block Nap channels. We systematically compared intracellular activity (recorded with patch clamp) and network activity (recorded with multielectrode arrays) in eight different synaptic connectivity conditions: GABAA + NMDA + AMPA, NMDA + AMPA, GABAA + AMPA, GABAA + NMDA, AMPA, NMDA, GABAA, and all receptors blocked. Furthermore, we used mixed-effects modeling to quantify the aforementioned independent and interactive synaptic receptor contributions toward spectro-temporal burst properties including intraburst spike rate, burst activity index, burst duration, power in the local field potential, network connectivity, and transmission delays. We found that blocking intrinsic Nap currents completely abolished bursting activity, demonstrating their critical role in burst onset within the network. On the other hand, blocking different combinations of synaptic receptors revealed that spectro-temporal burst properties are uniquely associated with synaptic functionality and that excitatory connectivity is necessary for the presence of network-wide bursting. In addition to confirming the critical contribution of direct excitatory effects, mixed-effects modeling also revealed distinct combined (nonlinear) contributions of excitatory and inhibitory synaptic activity to network bursting properties.
Collapse
Affiliation(s)
- Jyothsna Suresh
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Computational Neuroscience, The University of Chicago, Chicago, Illinois;
| | - Mihailo Radojicic
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Lorenzo L Pesce
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; The Computation Institute, The University of Chicago, Chicago, Illinois; and
| | - Anita Bhansali
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Janice Wang
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Andrew K Tryba
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Jeremy D Marks
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| | - Wim van Drongelen
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Computational Neuroscience, The University of Chicago, Chicago, Illinois; The Computation Institute, The University of Chicago, Chicago, Illinois; and Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Vaughan DN, Jackson GD. The piriform cortex and human focal epilepsy. Front Neurol 2014; 5:259. [PMID: 25538678 PMCID: PMC4259123 DOI: 10.3389/fneur.2014.00259] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/22/2014] [Indexed: 11/28/2022] Open
Abstract
It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.
Collapse
Affiliation(s)
- David N Vaughan
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
5
|
Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays. BMC Neurosci 2013; 14:38. [PMID: 23530974 PMCID: PMC3644495 DOI: 10.1186/1471-2202-14-38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 03/08/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. RESULTS Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. CONCLUSIONS We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.
Collapse
|
6
|
Bito T, Sawada Y, Tokura Y. Pathogenesis of cholinergic urticaria in relation to sweating. Allergol Int 2012; 61:539-44. [PMID: 23093795 DOI: 10.2332/allergolint.12-rai-0485] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Indexed: 11/20/2022] Open
Abstract
Cholinergic urticaria (CU) has clinically characteristic features, and has been frequently described in the literature. However, despite its comparatively old history, the pathogenesis and classification remains to be clarified. CU patients are occasionally complicated by anhidrosis and/or hypohidrosis. This reduced-sweat type should be included in the classification because the therapeutic approaches are different from the ordinary CU. It is also well-known that autologous sweat is involved in the occurrence of CU. More than half of CU patients may have sweat hypersensitivity. We attempt to classify CU and address the underlying mechanisms of CU based on the published data and our findings. The first step for classification of CU seems to discriminate the presence or absence of hypersensitivity to autologous sweat. The second step is proposed to determine whether the patients can sweat normally or not. With these data, the patients could be categorized into three subtypes: (1) CU with sweat hypersensitivity; (2) CU with acquired anhidrosis and/or hypohidrosis; (3) idiopathic CU. The pathogenesis of each subtype is also discussed in this review.
Collapse
Affiliation(s)
- Toshinori Bito
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Hyogo, Japan. −u.ac.jp
| | | | | |
Collapse
|
7
|
Myatt DR, Hadlington T, Ascoli GA, Nasuto SJ. Neuromantic - from semi-manual to semi-automatic reconstruction of neuron morphology. Front Neuroinform 2012; 6:4. [PMID: 22438842 PMCID: PMC3305991 DOI: 10.3389/fninf.2012.00004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 02/20/2012] [Indexed: 02/05/2023] Open
Abstract
The ability to create accurate geometric models of neuronal morphology is important for understanding the role of shape in information processing. Despite a significant amount of research on automating neuron reconstructions from image stacks obtained via microscopy, in practice most data are still collected manually. This paper describes Neuromantic, an open source system for three dimensional digital tracing of neurites. Neuromantic reconstructions are comparable in quality to those of existing commercial and freeware systems while balancing speed and accuracy of manual reconstruction. The combination of semi-automatic tracing, intuitive editing, and ability of visualizing large image stacks on standard computing platforms provides a versatile tool that can help address the reconstructions availability bottleneck. Practical considerations for reducing the computational time and space requirements of the extended algorithm are also discussed.
Collapse
Affiliation(s)
- Darren R Myatt
- School of Systems Engineering, University of Reading Reading, UK
| | | | | | | |
Collapse
|
8
|
Aitchison E, Weston SE, Constanti A, Whalley BJ. Anticholinesterase-induced epileptiform activity in immature rat piriform cortex slices, in vitro. Neurosci Lett 2010; 473:252-6. [PMID: 20193741 DOI: 10.1016/j.neulet.2010.02.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/28/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Acute in vitro brain slice models are commonly used to study epileptiform seizure generation and to test anti-epileptic drug action. Seizure-like activity can be readily induced by manipulating external ionic concentrations or by adding convulsant agents to the bathing medium. We previously showed that epileptiform bursting was induced in slices of immature (P14-28) rat piriform cortex (PC) by applying oxotremorine-M, a potent muscarinic receptor agonist. Here, we examined whether raising levels of endogenous acetylcholine (ACh) by exposure to anticholinesterases, could also induce epileptiform events in immature (P12-14) or early postnatal (P7-9) rat PC brain slices. METHODS The effects of anticholinesterases were investigated in rat PC neurons using both extracellular MEA (P7-9 slices) and intracellular (P12-14 slices) recording methods. RESULTS In P7-9 slices, eserine (20 microM) or neostigmine (20 microM) induced low amplitude, low frequency bursting activity in all three PC cell layers (I-III), particularly layer III, where neuronal muscarinic responsiveness is known to predominate. In P12-14 neurons, neostigmine produced a slow depolarization together with an increase in input resistance and evoked cell firing. Depolarizing postsynaptic potentials evoked by intrinsic fibre stimulation were selectively depressed although spontaneous bursting was not observed. Neostigmine effects were blocked by atropine (1 microM), confirming their muscarinic nature. We conclude that elevation of endogenous ACh by anticholinesterases can induce bursting in early postnatal PC brain slices, further highlighting the epileptogenic capacity of this brain region. However, this tendency declines with further development, possibly as local inhibitory circuit mechanisms become more dominant.
Collapse
Affiliation(s)
- Eleanor Aitchison
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK
| | | | | | | |
Collapse
|
9
|
Hill AJ, Weston SE, Jones NA, Smith I, Bevan SA, Williamson EM, Stephens GJ, Williams CM, Whalley BJ. Δ⁹-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia 2010; 51:1522-32. [PMID: 20196794 DOI: 10.1111/j.1528-1167.2010.02523.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We assessed the anticonvulsant potential of the phytocannabinoid Δ⁹-tetrahydrocannabivarin (Δ⁹-THCV) by investigating its effects in an in vitro piriform cortex (PC) brain slice model of epileptiform activity, on cannabinoid CB1 receptor radioligand-binding assays and in a generalized seizure model in rats. METHODS Δ⁹-THCV was applied before (10 μm Δ⁹-THCV) or during (10-50 μm Δ⁹-THCV) epileptiform activity induced by Mg²(+) -free extracellular media in adult rat PC slices and measured using multielectrode array (MEA) extracellular electrophysiologic techniques. The actions of Δ⁹-THCV on CB1 receptors were examined using [³H]SR141716A competition binding and [³⁵S]GTPγS assays in rat cortical membranes. Effects of Δ⁹-HCV (0.025-2.5 mg/kg) on pentylenetetrazole (PTZ)-induced seizures in adult rats were also assessed. RESULTS After induction of stable spontaneous epileptiform activity, acute Δ⁹ -THCV application (≥ 20 μm) significantly reduced burst complex incidence and the amplitude and frequency of paroxysmal depolarizing shifts (PDSs). Furthermore, slices pretreated with 10 μm Δ⁹-THCV prior to induction of epileptiform activity exhibited significantly reduced burst complex incidence and PDS peak amplitude. In radioligand-binding experiments, Δ⁹-THCV acted as a CB1 receptor ligand, displacing 0.5 nm [³H]SR141716A with a Ki∼290 nm, but exerted no agonist stimulation of [³⁵S]GTPγS binding. In PTZ-induced seizures in vivo, 0.25 mg/kg Δ⁹-THCV significantly reduced seizure incidence. DISCUSSION These data demonstrate that Δ⁹-THCV exerts antiepileptiform and anticonvulsant properties, actions that are consistent with a CB1 receptor-mediated mechanism and suggest possible therapeutic application in the treatment of pathophysiologic hyperexcitability states.
Collapse
Affiliation(s)
- Andrew J Hill
- School of Pharmacy, University of Reading, Whiteknights, Reading, Berkshire, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Whalley BJ, Stephens GJ, Constanti A. Investigation of the effects of the novel anticonvulsant compound carisbamate (RWJ-333369) on rat piriform cortical neurones in vitro. Br J Pharmacol 2009; 156:994-1008. [PMID: 19226287 PMCID: PMC2697724 DOI: 10.1111/j.1476-5381.2008.00110.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/13/2008] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Carisbamate is being developed for adjuvant treatment of partial onset epilepsy. Carisbamate produces anticonvulsant effects in primary generalized, complex partial and absence-type seizure models, and exhibits neuroprotective and antiepileptogenic properties in rodent epilepsy models. Phase IIb clinical trials of carisbamate demonstrated efficacy against partial onset seizures; however, its mechanisms of action remain unknown. Here, we report the effects of carisbamate on membrane properties, evoked and spontaneous synaptic transmission and induced epileptiform discharges in layer II-III neurones in piriform cortical brain slices. EXPERIMENTAL APPROACH Effects of carisbamate were investigated in rat piriform cortical neurones by using intracellular electrophysiological recordings. KEY RESULTS Carisbamate (50-400 micromol x L(-1)) reversibly decreased amplitude, duration and rise-time of evoked action potentials and inhibited repetitive firing, consistent with use-dependent Na+ channel block; 150-400 micromol x L(-1) carisbamate reduced neuronal input resistance, without altering membrane potential. After microelectrode intracellular Cl(-) loading, carisbamate depolarized cells, an effect reversed by picrotoxin. Carisbamate (100-400 micromol x L(-1)) also selectively depressed lateral olfactory tract-afferent evoked excitatory synaptic transmission (opposed by picrotoxin), consistent with activation of a presynaptic Cl(-) conductance. Lidocaine (40-320 micromol x L(-1)) mimicked carisbamate, implying similar modes of action. Carisbamate (300-600 micromol x L(-1)) had no effect on spontaneous GABA(A) miniature inhibitory postsynaptic currents and at lower concentrations (50-200 micromol x L(-1)) inhibited Mg2+-free or 4-aminopyridine-induced seizure-like discharges. CONCLUSIONS AND IMPLICATIONS Carisbamate blocked evoked action potentials use-dependently, consistent with a primary action on Na+ channels and increased Cl(-) conductances presynaptically and, under certain conditions, postsynaptically to selectively depress excitatory neurotransmission in piriform cortical layer Ia-afferent terminals.
Collapse
Affiliation(s)
- B J Whalley
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, UK.
| | | | | |
Collapse
|
11
|
Patel NA, Weston SE, Constanti A, Halliwell JV, Whalley BJ. Cholinergic modulation of intrinsic fibre-evoked excitatory transmission contains a nicotinic component in immature but not adult rat piriform cortex, in vitro. Neurosci Lett 2007; 425:43-8. [PMID: 17723269 DOI: 10.1016/j.neulet.2007.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/18/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022]
Abstract
The piriform cortex (PC) is highly prone to epileptogenesis, particularly in immature animals, where decreased muscarinic modulation of PC intrinsic fibre excitatory neurotransmission is implicated as a likely cause. However, whether higher levels of acetylcholine (ACh) release occur in immature vs. adult PC remains unclear. We investigated this using in vitro extracellular electrophysiological recording techniques. Intrinsic fibre-evoked extracellular field potentials (EFPs) were recorded from layers II to III in PC brain slices prepared from immature (P14-18) and adult (P>40) rats. Adult and immature PC EFPs were suppressed by eserine (1 microM) or neostigmine (1 microM) application, with a greater suppression in immature (approximately 40%) than adult (approximately 30%) slices. Subsequent application of atropine (1 microM) reversed EFP suppression, producing supranormal (approximately 12%) recovery in adult slices, suggesting that suppression was solely muscarinic ACh receptor-mediated and that some 'basal' cholinergic 'tone' was present. Conversely, atropine only partially reversed anticholinesterase effects in immature slices, suggesting the presence of additional non-muscarinic modulation. Accordingly, nicotine (50 microM) caused immature field suppression (approximately 30%) that was further enhanced by neostigmine, whereas it had no effect on adult EFPs. Unlike atropine, nicotinic antagonists, mecamylamine and methyllycaconitine, induced immature supranormal field recovery (approximately 20%) following anticholinesterase-induced suppression (with no effect on adult slices), confirming that basal cholinergic 'tone' was also present. We suggest that nicotinic inhibitory cholinergic modulation occurs in the immature rat PC intrinsic excitatory fibre system, possibly to complement the existing, weak muscarinic modulation, and could be another important developmentally regulated system governing immature PC susceptibility towards epileptogenesis.
Collapse
Affiliation(s)
- Neekhil A Patel
- Department of Pharmacology, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
12
|
Whalley BJ, Constanti A. Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility. Neuroscience 2006; 140:939-56. [PMID: 16616427 DOI: 10.1016/j.neuroscience.2006.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Aging/physiology
- Animals
- Animals, Newborn
- Causality
- Epilepsy/physiopathology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Female
- Male
- Muscarinic Agonists/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Olfactory Pathways/cytology
- Olfactory Pathways/growth & development
- Organ Culture Techniques
- Oxotremorine/pharmacology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor, Muscarinic M1/agonists
- Receptor, Muscarinic M1/metabolism
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- B J Whalley
- Department of Pharmacology, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
13
|
Howarth FC, Qureshi MA. Effects of carbenoxolone on heart rhythm, contractility and intracellular calcium in streptozotocin-induced diabetic rat. Mol Cell Biochem 2006; 289:21-9. [PMID: 16583133 DOI: 10.1007/s11010-006-9143-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 01/23/2006] [Indexed: 11/24/2022]
Abstract
Cardiac dysfunction is a frequently reported complication of clinical and experimental diabetes mellitus. Streptozotocin (STZ)-induced diabetes in rat is associated with a variety of cardiac defects including disturbances to heart rhythm and prolonged time-course of cardiac muscle contraction and/or relaxation. The effects of carbenoxolone (CBX), a selective gap junction inhibitor, on heart rhythm and contractility in STZ-induced diabetic rat have been investigated. Heart rate was significantly (P < 0.05) reduced in Langendorff perfused spontaneously beating diabetic rat heart (171+/-12 BPM) compared to age-matched controls (229+/- 9 BPM) and further reduced by 10(-5) M CBX in diabetic (20%) and in control (17%) hearts. Action potential durations (APDs), recorded on the epicardial surface of the left ventricle, were prolonged in paced (6 Hz) diabetic compared to control hearts. Perfusion of hearts with CBX caused further prolongation of APDs and to a greater extent in control compared to diabetic heart. Percentage prolongation at 70% from the peak of the action potential amplitude after CBX was 18% in diabetic compared to 48% in control heart. CBX had no significant effect on resting cell length or amplitude of ventricular myocyte shortening in diabetic or control rats. However, resting fura-2 ratio (indicator for intracellular Ca(2+) concentration) and amplitude of the Ca(2+) transient were significantly (P < 0.05) reduced by CBX in diabetic rats but not in controls. In conclusion the larger effects of CBX on APD in control ventricle and the normalizing effects of CBX on intracellular Ca(2+) in ventricular myocytes from diabetic rat suggest that there may be alterations in gap junction electrophysiology in STZ-induced diabetic rat heart.
Collapse
Affiliation(s)
- F C Howarth
- Department of Physiology, Faculty of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, U.A.E.
| | | |
Collapse
|