1
|
Dahlén AD, Roshanbin S, Aguilar X, Bucher NM, Lopes van den Broek S, Sehlin D, Syvänen S. PET imaging of TREM2 in amyloid-beta induced neuroinflammation. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07358-0. [PMID: 40434494 DOI: 10.1007/s00259-025-07358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE The triggering receptor expressed on myeloid cells 2 (TREM2) has become a promising target for biologics in both monitoring and treating neuroinflammation in Alzheimer's disease (AD). This study aimed to develop and compare bispecific anti-TREM2 antibodies featuring different transferrin receptor (TfR) binders to enhance brain delivery, identifying the most suitable format for in vivo PET imaging of TREM2 in transgenic AD mice. METHODS Three bispecific TREM2-antibody formats were produced and evaluated for their ability to cross the blood-brain barrier (BBB) via TfR-mediated transcytosis and bind TREM2. Blood concentration profiles up to 72 h post-injection (p.i.), and ex vivo brain uptake of iodine-125-labeled antibody constructs were quantified in AppNL-G-F and age-matched wild type (WT) mice using a γ-counter. The best-performing bispecific TREM2-antibody was radiolabeled with iodine-124 and used for in vivo PET imaging of brain TREM2 levels in AppNL-G-F mice at 72 h p.i. Brain TREM2 concentrations were subsequently quantified using ELISA. RESULTS The antibody format carrying two scFv8D3 TfR-binders (IgG-scFv2), demonstrated the highest brain concentrations of all tested bispecific constructs. This antibody also exhibited significantly higher brain concentrations in AppNL-G-F mice compared to WT mice at both 48 and 72 h p.i. This difference was further visualized and quantified through in vivo PET imaging. Moreover, brain concentrations of the antibody ligand correlated with elevated TREM2 levels in brain homogenates. CONCLUSION These findings highlight IgG-scFv2 as a promising radioligand for in vivo PET imaging of TREM2, advancing non-invasive neuroinflammation studies and supporting drug development for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Amelia D Dahlén
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Nadja M Bucher
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Sara Lopes van den Broek
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Section of Molecular Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Mansour H, Azrak R, Cook JJ, Hornburg KJ, Qi Y, Tian Y, Williams RW, Yeh FC, White LE, Johnson GA. The Duke Mouse Brain Atlas: MRI and light sheet microscopy stereotaxic atlas of the mouse brain. SCIENCE ADVANCES 2025; 11:eadq8089. [PMID: 40305623 PMCID: PMC12042906 DOI: 10.1126/sciadv.adq8089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Atlases of the brain are critical resources that make it possible to share data in a common reference frame. Unexpectedly, there is no three-dimensional (3D) stereotaxic atlas of the mouse brain that provides whole brain coverage at macro to single-cell levels. Diffusion tensor images from five perfusion-fixed (in skull) specimens were acquired at 15 micrometers, the highest resolution ever reported. Diffusion tensor imaging yields multiple 3D volumes, each of which highlights unique cytoarchitecture. The averages were mapped into micro-computed tomography of the mouse skull to create external landmarks (bregma and lambda). Light sheet images of the same brains were coregistered, providing cell maps in the same stereotaxic space. The Allen Reference Atlas was registered to the volume to correct the geometric distortion in that atlas and bring it into the stereotaxic space. The resulting multiscalar (13 terabytes) atlas provides a common spatial framework to anneal data across molecular, structural, and functional studies of mice.
Collapse
Affiliation(s)
- Harrison Mansour
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ryan Azrak
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - James J. Cook
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kathryn J. Hornburg
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yi Qi
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yuqi Tian
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonard E. White
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - G. Allan Johnson
- Duke Center for In Vivo Microscopy, Departments of Radiology and Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Takano T, Kang G, Esparza M, Matsumura B, Stevens LJ, Hiroi YJ, Tanifuji T, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Highly demarcated structural alterations in the brain and impaired social incentive learning in Tbx1 heterozygous mice. Mol Psychiatry 2025; 30:1876-1886. [PMID: 39463450 PMCID: PMC12014486 DOI: 10.1038/s41380-024-02797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and changes in brain structures. However, because CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how each gene encoded in the 22q11.2 region contributes to structural alterations, associated mental illnesses, and their dimensions. Our previous studies identified Tbx1, a T-box family transcription factor encoded in the 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes and behavioral alterations relevant to affected structures in congenic Tbx1 heterozygous mice. Our data showed that the volumes of the anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were most robustly reduced in Tbx1 heterozygous mice. In an amygdala-dependent task, Tbx1 heterozygous mice were impaired in their ability to learn the incentive value of a social partner. The volumes of the primary and secondary auditory cortexes were increased, and acoustic, but not non-acoustic, sensorimotor gating was impaired in Tbx1 heterozygous mice. Our findings identify the brain's regional volume alterations and their relevant behavioral dimensions associated with Tbx1 heterozygosity.
Collapse
Affiliation(s)
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | | | - Takeshi Takano
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Gina Kang
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Marisa Esparza
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | | | - Yukiko J Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, UT Health, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| |
Collapse
|
4
|
Humbel M, Tanner C, Girona Alarcón M, Schulz G, Weitkamp T, Scheel M, Kurtcuoglu V, Müller B, Rodgers G. Synchrotron Radiation-Based Tomography of an Entire Mouse Brain with Sub-Micron Voxels: Augmenting Interactive Brain Atlases with Terabyte Data. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416879. [PMID: 40298880 DOI: 10.1002/advs.202416879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Synchrotron radiation-based X-ray microtomography is uniquely suited for post-mortem 3D visualization of organs such as the mouse brain. Tomographic imaging of the entire mouse brain with isotropic cellular resolution requires an extended field-of-view and produces datasets of multiple terabytes in size. These data must be reconstructed, analyzed, and made accessible to domain experts who may have limited image processing knowledge. Extended-field X-ray microtomography is presented with0.65 μ m $0.65 \,\umu \mathrm{m}$ voxel size covering an entire mouse brain. The 4495 projections from 8 × 8 offset acquisitions are stitched to reconstruct a volume of 150003 voxels. The microtomography volume was non-rigidly registered to the Allen Mouse Brain Common Coordinate Framework v3 based on a combination of image intensity and landmark pairs. The data were block-wise transformed and stored in a public repository with a hierarchical format for navigation and overlay with anatomical annotations in online viewers such as Neuroglancer or siibra-explorer. This study demonstrates X-ray imaging and data processing for a full mouse brain, augmenting current atlases by improving resolution in the third dimension by an order of magnitude. The 3.3-teravoxel dataset is publicly available and easily accessible for domain experts via browser-based viewers.
Collapse
Affiliation(s)
- Mattia Humbel
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, Allschwil, 4123, Switzerland
| | - Christine Tanner
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, Allschwil, 4123, Switzerland
- Core Facility Micro- and Nanotomography, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, Allschwil, 4123, Switzerland
| | - Marta Girona Alarcón
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Georg Schulz
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, Allschwil, 4123, Switzerland
- Core Facility Micro- and Nanotomography, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, Allschwil, 4123, Switzerland
| | - Timm Weitkamp
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190, France
| | - Mario Scheel
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91190, France
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Bert Müller
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, Allschwil, 4123, Switzerland
- Biomaterials Science Center, Department of Clinical Research, University Hospital Basel, Spitalstrasse 8/12, Basel, 4031, Switzerland
| | - Griffin Rodgers
- Biomaterials Science Center, Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, Allschwil, 4123, Switzerland
| |
Collapse
|
5
|
Son HJ, Kim S, Kim SY, Jung JH, Lee SH, Kim SJ, Kim C, Hahn A. Three-Dimensional β-Amyloid Burden Correlation Between the Eye and Brain in Alzheimer's Disease Mice Using Light-Sheet Fluorescence Microscopy. Invest Ophthalmol Vis Sci 2025; 66:34. [PMID: 40100204 PMCID: PMC11932423 DOI: 10.1167/iovs.66.3.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose Recent studies have highlighted the significance of peripheral β-amyloid (Aβ) deposition, identifying the eye as a potential early detection site for Alzheimer's disease (AD). However, previous two-dimensional AD ocular studies have been unable to establish a clear correlation between the three-dimensional Aβ accumulation in the entire eyeball and brain while preserving structural integrity. This study employed a combined brain amyloid positron emission tomography/magnetic resonance (PET/MR) and light-sheet fluorescence microscopy (LSFM) platform to assess whether the three-dimensionally measured Aβ burden in the eyeball correlates with that in the brain. Methods Thirteen eyeballs (6 AD, 7 control) and 17 brains (10 AD, 7 control) were collected from ten 44-week-old 5xFAD and seven control mice. The samples underwent tissue clearing and staining with thioflavin S (Aβ), anti-CD11b (microglia), and anti-ACSA-2 (astrocytes) for LSFM imaging and quantified via 3D surface volume. Standardized uptake value ratios from [18F]Flutemetamol PET/MR were also calculated. Results AD eyeballs presented significantly greater plaque-like surface volumes (median, 51,091,002 µm³ [interquartile range, 38,488,272-64,869,828]) than controls (229,293 µm³ [115,863-311,5320]; P = 0.001). AD brains exhibited higher [18F]Flutemetamol uptake and greater plaque-like surface volumes (898,634,368 µm³ [556,263,488-1,105,326,720]) than controls (33,320,178 µm³ [26,842,538-62,716,956]; P < 0.001). A strong positive correlation was observed between the plaque-like surface volumes in the brain and that in the eyeball (r = 0.810, P = 0.001). No significant correlations were found in other morphologic parameters. Conclusions Our observation of a strong correlation between the three-dimensional Aβ burden in the whole eyeball and brain advances our understanding of the systemic nature of Aβ pathology and suggests ocular Aβ as a potential independent predictor of brain Aβ burden.
Collapse
Affiliation(s)
- Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Dankook University College of Medicine, Cheonan, Chungnam, Republic of Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seog-Young Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Jin Hwa Jung
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Soo-Jong Kim
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, Saint Louis, Missouri, United States
| | - Chanwoo Kim
- Department of Nuclear Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Republic of Korea
| | - Alice Hahn
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Zeng L, Cai Z, Liu J, Zhao K, Liang F, Sun T, Li Z, Liu R. miR-32533 Reduces Cognitive Impairment and Amyloid-β Overload by Targeting CREB5-Mediated Signaling Pathways in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409986. [PMID: 39840513 PMCID: PMC11905094 DOI: 10.1002/advs.202409986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/20/2024] [Indexed: 01/23/2025]
Abstract
MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored. Bioinformatics and confirmatory experiments revealed that miR-32533 had a novel 23-base sequence with minimal coding potential, functioning within the Drosha ribonuclease III (Drosha)/Dicer 1, ribonuclease III (Dicer)-dependent canonical pathway and identifiable via northern blot. miR-32533 was abundantly brain-distributed and downregulated in diverse AD-related models, including APP/PS1 and five familial AD (5×FAD) mouse brains and AD patient plasma. Overexpression or inhibition of miR-32533 led to improvements or exacerbations in cognitive dysfunction, respectively, by modulating Aβ production, apoptosis, oxidation, and neuroinflammation through targeting cAMP-responsive element binding protein 5 (CREB5), which interacted with α disintegrin and metalloproteinase 10 (ADAM10), beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), and presenilin 1 (PS1) promoters, thereby enhancing Aβ production through BACE1 and PS1 upregulation while suppressing non-amyloidogenic amyloid precursor protein (APP) processing via ADAM10 downregulation. Furthermore, modulation of the miR-32533/CREB5 axis ameliorated or worsened cognitive impairment by inhibiting or amplifying Aβ overproduction through the BACE1-involved amyloidogenic and ADAM10-involved non-amyloidogenic pathways. Overall, the findings suggest miR-32533 as a regulator of Aβ metabolism, oxidative stress, and neuroinflammation, establishing the miR-32533/CREB5 signaling pathways as potential therapeutic targets for combating Aβ accumulation and cognitive deficits in AD.
Collapse
Affiliation(s)
- Li Zeng
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Zhongdi Cai
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Jianghong Liu
- Department of NeurologyXuan Wu HospitalCapital Medical UniversityBeijing100053P.R. China
| | - Kaiyue Zhao
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Furu Liang
- Department of NeurologyBaotou Central HospitalInner Mongolia014040P. R. China
| | - Ting Sun
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Zhuorong Li
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| | - Rui Liu
- Institute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Medicinal BiotechnologyPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100050P. R. China
| |
Collapse
|
7
|
Katel S, Cicalo J, Vasciaveo V, Carrion J, Leann M, Huerta PT, Marambaud P, Giliberto L, d’Abramo C. AAV-mediated peripheral single chain variable fragments' administration to reduce cerebral tau in adult P301S transgenic mice: mono- vs combination therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638144. [PMID: 40027607 PMCID: PMC11870445 DOI: 10.1101/2025.02.13.638144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Tau is a primary target for immunotherapy in Alzheimer's disease. Recent studies have shown the potential of anti-tau fragment antibodies in lowering pathological tau levels in vitro and in vivo. Here, we compared the effects of single-chain variable fragments (scFv) derived from the well-characterized monoclonal antibodies PHF1 and MC1. We used adeno-associated virus 1 (AAV1) to deliver scFvs to skeletal muscle cells in eight-week-old P301S tau transgenic mice. We evaluated motor and behavioral functions at 16 and 23 weeks of age and measured misfolded, soluble, oligomeric and insoluble brain tau species. Monotherapy with scFv-MC1 improved motor and behavioral functions more effectively than scFv-PHF1 or combination therapy. Brain glucose metabolism also benefited from scFv-MC1 treatment. Surprisingly, combining scFvs targeting early (MC1) and late (PHF1) tau modifications did not produce additive or synergistic effects. These results confirm that intramuscular AAV1-mediated scFv-MC1 gene therapy holds promise as a potential treatment for Alzheimer's disease. Our findings also suggest that combining scFvs targeting different tau epitopes may not necessarily enhance efficacy if administered together in a prevention paradigm. Further research is needed to explore whether other antibodies' combinations and/or administration schedules could improve the efficacy of scFv-MC1 alone.
Collapse
Affiliation(s)
- Sebica Katel
- The Litwin-Zucker Center for Alzheimer’s Disease & Memory Disorders, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Julia Cicalo
- The Litwin-Zucker Center for Alzheimer’s Disease & Memory Disorders, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Valeria Vasciaveo
- The Litwin-Zucker Center for Alzheimer’s Disease & Memory Disorders, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Joseph Carrion
- Laboratory for Behavioral and Molecular Neuroimaging (LBMN) Center for Neurosciences, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Mahadeo Leann
- Laboratory for Behavioral and Molecular Neuroimaging (LBMN) Center for Neurosciences, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Patricio T. Huerta
- Laboratory of Immune & Neural Networks, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Philippe Marambaud
- The Litwin-Zucker Center for Alzheimer’s Disease & Memory Disorders, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Luca Giliberto
- The Litwin-Zucker Center for Alzheimer’s Disease & Memory Disorders, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Institute for Neurology and Neurosurgery, Northwell Health, Manhasset, NY, USA
| | - Cristina d’Abramo
- The Litwin-Zucker Center for Alzheimer’s Disease & Memory Disorders, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
8
|
Kelleher AC, Richardson B, Kumar Banka V, Kazior A, Tan C, Chan S, Khastgir R, Hu H, Youss Z, Mishkit O, Ding YS. Feasibility of F-18 radiolabeled brain-penetrable bi-specific antibody radioligands for in vivo PET imaging of tauopathy. RSC Med Chem 2025:d4md00866a. [PMID: 40008191 PMCID: PMC11848619 DOI: 10.1039/d4md00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
PET imaging offers promise for earlier detection and prognostication of Alzheimer's disease. Recently, antibody-based constructs that penetrate the CNS via the transferrin receptor (TfR) have improved tau-selectivity, something that currently limits small molecule tau PET radiotracers. However, it remains unclear if the slow pharmacokinetics of these constructs (MW >50 kDa) limit target binding detection within the time window available for an F-18 based radiotracer. We synthesized three radio-probes by conjugating [18F]SFB with individual bi-specific antibody constructs: 1) a full-size IgG tau antibody conjugated with a TfR fragment (TAUb), 2) a tau-scFv bispecific antibody (TAUs), and 3) an Aβ-scFv bispecific antibody (Aβs). We scanned a series of sex- and age-matched wild-type (WT) and transgenic mice with tauopathy (PS19). Each paired study consisted of three sets of PET/CT scans: an initial low dose dynamic scan followed by two static scans at 8 h and 12 h after injection of a high dose of the same probe. For TAUs probes, the whole brain uptake was higher in PS19 mice (0.0684 ± 0.0273% ID cc-1, n = 5) compared to WT (0.0513 ± 0.0197% ID cc-1, n = 4) though the difference did not reach statistical significance (p = 0.56). Regional quantification analysis provides supporting evidence that TAUs displayed higher specific binding over Aβs in brain regions of PS19 mice. There was net accumulation of all three probes between 8 h and 12 h, suggesting that F-18 radiolabeled bi-specific antibody constructs may not adequately quantitate deposition of tau aggregates within the available time window for F-18, limited by slow pharmacokinetics and lack of a suitable reference region.
Collapse
Affiliation(s)
- Andrew C Kelleher
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | | | - Vinay Kumar Banka
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Alex Kazior
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Cathy Tan
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Sabrina Chan
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Rumaish Khastgir
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Hao Hu
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Zakia Youss
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Orin Mishkit
- Departments of Radiology, NYU Grossman School of Medicine New York USA
| | - Yu-Shin Ding
- Departments of Radiology, NYU Grossman School of Medicine New York USA
- Departments of Psychiatry, NYU Grossman School of Medicine New York USA
| |
Collapse
|
9
|
Zhu Y, Zhu J, Ni C, Chen A, Li L, Gao Y, Shoffstall AJ, Yu X. Impact of infusion conditions and anesthesia on CSF tracer dynamics in mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634133. [PMID: 39896601 PMCID: PMC11785030 DOI: 10.1101/2025.01.21.634133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Tracer imaging has been instrumental in mapping the brain's solute transport pathways facilitated by cerebrospinal fluid (CSF) flow. However, the impact of tracer infusion parameters on CSF flow remains incompletely understood. This study evaluated the influence of infusion location, rate, and anesthetic regimens on tracer transport using dynamic contrast-enhanced MRI with Gd-DTPA as a CSF tracer. Infusion rate effects were assessed by administering Gd-DTPA into the cisterna magna (ICM) at two rates under isoflurane anesthesia. Anesthetic effects were evaluated by comparing transport patterns between isoflurane and ketamine/xylazine (K/X) anesthesia at the slower rate. Gd-DTPA transport was also examined after lateral ventricle (ICV) infusion, the primary site of CSF production. The results demonstrate that, besides anesthesia, both the location and rate of infusion substantially affected solute transport within the brain. ICV infusion led to rapid, extensive transport into deep brain regions, while slower ICM infusion resulted in more pronounced transport to dorsal brain regions. Cross-correlation and hierarchical clustering analyses of region-specific Gd-DTPA signal time courses revealed that ICM infusion facilitated transport along periarterial spaces, while ICV infusion favored transport across the ventricular-parenchymal interface. These findings underscore the importance of experimental conditions in influencing tracer kinetics and spatial distribution in the brain.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chenxin Ni
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anbang Chen
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yue Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Zhu Y, Wang G, Gu Y, Zhao W, Lu J, Zhu J, MacAskill CJ, Dupuis A, Griswold MA, Ma D, Flask CA, Yu X. 3D MR fingerprinting for dynamic contrast-enhanced imaging of whole mouse brain. Magn Reson Med 2025; 93:67-79. [PMID: 39164799 PMCID: PMC11518651 DOI: 10.1002/mrm.30253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. METHOD We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n = 3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) in the whole mouse brain was demonstrated (n = 5). RESULTS Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor of up to 48. Dynamic contrast-enhanced MRF scans achieved a spatial resolution of 192 × 192 × 500 μm3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 × 192 × 250 μm3) in 30 min. CONCLUSION We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Walter Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiahao Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina J. MacAskill
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Knopper RW, Skoven CS, Eskildsen SF, Østergaard L, Hansen B. The effects of locus coeruleus ablation on mouse brain volume and microstructure evaluated by high-field MRI. Front Cell Neurosci 2024; 18:1498133. [PMID: 39722677 PMCID: PMC11668759 DOI: 10.3389/fncel.2024.1498133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The locus coeruleus (LC) produces most of the brain's noradrenaline (NA). Among its many roles, NA is often said to be neuroprotective and important for brain upkeep. For this reason, loss of LC integrity is thought to impact brain volume and microstructure as well as plasticity broadly. LC dysfunction is also a suspected driver in the development of neurodegenerative diseases. Nevertheless, the impact of LC dysfunction on the gross structure and microstructure of normal brains is not well-studied. We employed high-field ex vivo magnetic resonance imaging (MRI) to investigate brain volumetrics and microstructure in control (CON) mice and mice with LC ablation (LCA) at two ages, representing the developing brain and the fully matured brain. These whole-brain methods are known to be capable of detecting subtle morphological changes and brain microstructural remodeling. We found mice behavior consistent with histologically confirmed LC ablation. However, MRI showed no difference between CON and LCA groups with regard to brain size, relative regional volumes, or regional microstructural indices. Our findings suggest that LC-NA is not needed for postnatal brain maturation and growth in mice. Nor is it required for maintenance in the normal adult mouse brain, as no atrophy or microstructural aberration is detected after weeks of LC dysfunction. This adds clarity to the often-encountered notion that LC-NA is important for brain "trophic support" as it shows that such effects are likely most relevant to mechanisms related to brain plasticity and neuroprotection in the (pre)diseased brain.
Collapse
Affiliation(s)
- Rasmus West Knopper
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Christian Stald Skoven
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Fristed Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Kawai K, Shirakashi R. Water rotational relaxation time measurement by shortwave infrared micro spectroscopy(SWIR) at sub-zero temperatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124707. [PMID: 38964024 DOI: 10.1016/j.saa.2024.124707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/17/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
The shortwave infrared spectroscopy (SWIR) is the noble method which allows to evaluate the rotational relaxation time of water (RRTW) in a sample. Because SWIR requires the reference sample of pure water, the measurement temperature is limited only at above 0 °C. In this study, we expanded this temperature limitation of SWIR by using alternative reference solutions with freezing points below 0 °C, including sugar and glycerol solutions. The results showed that some reference sample solutions are useable for evaluating RRTW in samples below 0 °C. It was found that RRTW in solution measured by newly proposed SWIR agrees with RRTW measured by dielectric spectroscopy in 10% accuracy when it is shorter than 100psec.
Collapse
Affiliation(s)
- Kosei Kawai
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Japan.
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Japan.
| |
Collapse
|
13
|
Dinkel L, Hummel S, Zenatti V, Malara M, Tillmann Y, Colombo A, Monasor LS, Suh JH, Logan T, Roth S, Paeger L, Hoffelner P, Bludau O, Schmidt A, Müller SA, Schifferer M, Nuscher B, Njavro JR, Prestel M, Bartos LM, Wind-Mark K, Slemann L, Hoermann L, Kunte ST, Gnörich J, Lindner S, Simons M, Herms J, Paquet D, Lichtenthaler SF, Bartenstein P, Franzmeier N, Liesz A, Grosche A, Bremova-Ertl T, Catarino C, Beblo S, Bergner C, Schneider SA, Strupp M, Di Paolo G, Brendel M, Tahirovic S. Myeloid cell-specific loss of NPC1 in mice recapitulates microgliosis and neurodegeneration in patients with Niemann-Pick type C disease. Sci Transl Med 2024; 16:eadl4616. [PMID: 39630885 DOI: 10.1126/scitranslmed.adl4616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/12/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Niemann-Pick type C (NPC) disease is an inherited lysosomal storage disorder mainly driven by mutations in the NPC1 gene, causing lipid accumulation within late endosomes/lysosomes and resulting in progressive neurodegeneration. Although microglial activation precedes neuronal loss, it remains elusive whether loss of the membrane protein NPC1 in microglia actively contributes to NPC pathology. In a mouse model with depletion of NPC1 in myeloid cells, we report severe alterations in microglial lipidomic profiles, including the enrichment of bis(monoacylglycero)phosphate, increased cholesterol, and a decrease in cholesteryl esters. Lipid dyshomeostasis was associated with microglial hyperactivity, marked by an increase in translocator protein 18 kDa (TSPO). These hyperactive microglia initiated a pathological cascade resembling NPC-like phenotypes, including a shortened life span, motor impairments, astrogliosis, neuroaxonal pathology, and increased neurofilament light chain (NF-L), a neuronal injury biomarker. As observed in the mouse model, patients with NPC showed increased NF-L in the blood and microglial hyperactivity, as visualized by TSPO-PET imaging. Reduced TSPO expression in blood-derived macrophages of patients with NPC was measured after N-acetyl-l-leucine treatment, which has been recently shown to have beneficial effects in patients with NPC, suggesting that TSPO is a potential marker to monitor therapeutic interventions for NPC. Conclusively, these results demonstrate that myeloid dysfunction, driven by the loss of NPC1, contributes to NPC disease and should be further investigated for therapeutic targeting and disease monitoring.
Collapse
Affiliation(s)
- Lina Dinkel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Selina Hummel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Valerio Zenatti
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Mariagiovanna Malara
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Yannik Tillmann
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | | | - Jung H Suh
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Todd Logan
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Patricia Hoffelner
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Planegg-Martinsried, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Planegg-Martinsried, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Brigitte Nuscher
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jasenka Rudan Njavro
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Prestel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Karin Wind-Mark
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Luna Slemann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Leonie Hoermann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute of Neuronal Cell Biology (TUM-NZB), Technical University of Munich, 80802 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University München, 81377 Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, SE-413 90 Mölndal and Gothenburg, Sweden
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatiana Bremova-Ertl
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Neurology, University Hospital Bern, 3010 Bern, Switzerland
| | - Claudia Catarino
- Friedrich Baur Institute, Department of Neurology, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Skadi Beblo
- Center for Pediatric Research Leipzig, Department of Women and Child Health, Hospital for Children and Adolescents, University Hospital Leipzig; Leipzig University Center for Rare Diseases, 04103 Leipzig, Germany
| | - Caroline Bergner
- Department of Neurology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Susanne A Schneider
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Strupp
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | | | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| |
Collapse
|
14
|
Hernández-Martín N, Martínez MG, Bascuñana P, Fernández de la Rosa R, García-García L, Gómez F, Solas M, Martín ED, Pozo MA. Astrocytic Ca 2+ activation by chemogenetics mitigates the effect of kainic acid-induced excitotoxicity on the hippocampus. Glia 2024; 72:2217-2230. [PMID: 39188024 DOI: 10.1002/glia.24607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Astrocytes play a multifaceted role regulating brain glucose metabolism, ion homeostasis, neurotransmitters clearance, and water dynamics being essential in supporting synaptic function. Under different pathological conditions such as brain stroke, epilepsy, and neurodegenerative disorders, excitotoxicity plays a crucial role, however, the contribution of astrocytic activity in protecting neurons from excitotoxicity-induced damage is yet to be fully understood. In this work, we evaluated the effect of astrocytic activation by Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) on brain glucose metabolism in wild-type (WT) mice, and we investigated the effects of sustained astrocyte activation following an insult induced by intrahippocampal (iHPC) kainic acid (KA) injection using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) positron emission tomography (PET) imaging, along with behavioral test, nuclear magnetic resonance (NMR) spectroscopy and histochemistry. Astrocytic Ca2+ activation increased the 18F-FDG uptake, but this effect was not found when the study was performed in knock out mice for type-2 inositol 1,4,5-trisphosphate receptor (Ip3r2-/-) nor in floxed mice to abolish glucose transporter 1 (GLUT1) expression in hippocampal astrocytes (GLUT1ΔGFAP). Sustained astrocyte activation after KA injection reversed the brain glucose hypometabolism, restored hippocampal function, prevented neuronal death, and increased hippocampal GABA levels. The findings of our study indicate that astrocytic GLUT1 function is crucial for regulating brain glucose metabolism. Astrocytic Ca2+ activation has been shown to promote adaptive changes that significantly contribute to mitigating the effects of KA-induced damage. This evidence suggests a protective role of activated astrocytes against KA-induced excitotoxicity.
Collapse
Affiliation(s)
- Nira Hernández-Martín
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | | | - Pablo Bascuñana
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Rubén Fernández de la Rosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Bioimac, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis García-García
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisca Gómez
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Maite Solas
- Facultad de Farmacia, Universidad de Navarra, Pamplona, Spain
| | | | - Miguel A Pozo
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Reddy DS, Zhu N, Challa T, Gajjela S, Desai H, Ramakrishnan S, Wu X. A Comprehensive Stereology Method for Quantitative Evaluation of Neuronal Injury, Neurodegeneration, and Neurogenesis in Brain Disorders. Curr Protoc 2024; 4:e70053. [PMID: 39698918 PMCID: PMC11706765 DOI: 10.1002/cpz1.70053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Neuronal injury, neurodegeneration, and neuroanatomical changes are key pathological features of various neurological disorders, including epilepsy, stroke, traumatic brain injury, Parkinson's disease, autism, and Alzheimer's disease. Accurate quantification of neurons and interneurons in different brain regions is critical for understanding the progression of neurodegenerative disorders in animal models. Traditional scoring methods are often superficial, biased, and unreliable for evaluating neuropathology. Stereology, a quantitative tool that uses 3-dimensional visualization of cells, provides a robust protocol for evaluating neuronal injury and neurodegeneration. This article presents a comprehensive and optimized stereology protocol for unbiased quantification of neuronal injury, neurodegeneration, and neurogenesis in rat and mouse models. This protocol involves precise counting of injured neurons, surviving neurons, and interneurons through immunohistochemical processing of brain sections for NeuN(+) principal neurons, parvalbumin (PV+) interneurons, doublecortin (DCX+) newborn neurons, and Fluoro-Jade B (FJB+)-stained injured cells. Predefined hippocampal and amygdala regions were identified and analyzed using a Visiopharm stereology software-driven compound microscope. Cell density and absolute cell numbers were determined using the optical fractionation method. Our stereology protocol accurately estimated 1.5 million total NeuN(+) principal neurons and 0.05 million PV(+) interneurons in the rat hippocampus, as well as 1.2 million total principal neurons and 0.025 million interneurons in the mouse hippocampus. FJB(+) counting provided a quantitative index of damaged neurons, and the stereology of DCX(+) neurons demonstrated the extent of neurogenesis. Overall, this stereology protocol enables precise, accurate, and unbiased counting of total neurons in any brain region. This offers a reliable quantitative tool for studying neuronal injury and protection in various models of acute brain injury, neurotoxicity, and chronic neurological disorders. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in rat brain sections Basic Protocol 2: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in mouse brain sections Basic Protocol 3: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala in rats Basic Protocol 4: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala regions in mice Basic Protocol 5: Brain fixation and histology processing Basic Protocol 6: Immunochemistry of principal neurons, interneurons, and newborn neurons Basic Protocol 7: Fluoro-Jade B staining of injured neurons.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Neo Zhu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Trisha Challa
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Sai Gajjela
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Hetvi Desai
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
16
|
Straumann N, Combes BF, Dean Ben XL, Sternke‐Hoffmann R, Gerez JA, Dias I, Chen Z, Watts B, Rostami I, Shi K, Rominger A, Baumann CR, Luo J, Noain D, Nitsch RM, Okamura N, Razansky D, Ni R. Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo. Brain Pathol 2024; 34:e13288. [PMID: 38982662 PMCID: PMC11483525 DOI: 10.1111/bpa.13288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.
Collapse
Affiliation(s)
- Nadja Straumann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Benjamin F. Combes
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Xose Luis Dean Ben
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | | | - Juan A. Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
| | - Ines Dias
- Neurology DepartmentUniversity Hospital ZurichZurichSwitzerland
| | - Zhenyue Chen
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Benjamin Watts
- Photon Science DivisionPaul Scherrer InstituteVilligenSwitzerland
| | - Iman Rostami
- Microscopic Anatomy and Structural BiologyUniversity of BernBernSwitzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Axel Rominger
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| | | | - Jinghui Luo
- Department of Biology and ChemistryPaul Scherrer InstituteVilligenSwitzerland
| | - Daniela Noain
- Neurology DepartmentUniversity Hospital ZurichZurichSwitzerland
| | - Roger M. Nitsch
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Daniel Razansky
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Ruiqing Ni
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Institute for Biomedical EngineeringUniversity of Zurich & ETH ZurichZurichSwitzerland
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| |
Collapse
|
17
|
Bartos LM, Kunte ST, Wagner S, Beumers P, Schaefer R, Zatcepin A, Li Y, Griessl M, Hoermann L, Wind-Mark K, Bartenstein P, Tahirovic S, Ziegler S, Brendel M, Gnörich J. Astroglial glucose uptake determines brain FDG-PET alterations and metabolic connectivity during healthy aging in mice. Neuroimage 2024; 300:120860. [PMID: 39332748 DOI: 10.1016/j.neuroimage.2024.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
PURPOSE 2-Fluorodeoxyglucose-PET (FDG-PET) is a powerful tool to study glucose metabolism in mammalian brains, but cellular sources of glucose uptake and metabolic connectivity during aging are not yet understood. METHODS Healthy wild-type mice of both sexes (2-21 months of age) received FDG-PET and cell sorting after in vivo tracer injection (scRadiotracing). FDG uptake per cell was quantified in isolated microglia, astrocytes and neurons. Cerebral FDG uptake and metabolic connectivity were determined by PET. A subset of mice received measurement of blood glucose levels to study associations with cellular FDG uptake during aging. RESULTS Cerebral FDG-PET signals in healthy mice increased linearly with age. Cellular FDG uptake of neurons increased between 2 and 12 months of age, followed by a strong decrease towards late ages. Contrarily, FDG uptake in microglia and astrocytes exhibited a U-shaped function with respect to age, comprising the predominant cellular source of higher cerebral FDG uptake in the later stages. Metabolic connectivity was closely associated with the ratio of glucose uptake in astroglial cells relative to neurons. Cellular FDG uptake was not associated with blood glucose levels and increasing FDG brain uptake as a function of age was still observed after adjusting for blood glucose levels. CONCLUSION Trajectories of astroglial glucose uptake drive brain FDG-PET alterations and metabolic connectivity during aging.
Collapse
Affiliation(s)
- Laura M Bartos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wagner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Philipp Beumers
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rebecca Schaefer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | - Yunlei Li
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maria Griessl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Leonie Hoermann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Germany.
| |
Collapse
|
18
|
Zatcepin A, Gnörich J, Rauchmann BS, Bartos LM, Wagner S, Franzmeier N, Malpetti M, Xiang X, Shi Y, Parhizkar S, Grosch M, Wind-Mark K, Kunte ST, Beyer L, Meyer C, Brösamle D, Wendeln AC, Osei-Sarpong C, Heindl S, Liesz A, Stoecklein S, Biechele G, Finze A, Eckenweber F, Lindner S, Rominger A, Bartenstein P, Willem M, Tahirovic S, Herms J, Buerger K, Simons M, Haass C, Rupprecht R, Riemenschneider MJ, Albert NL, Beyer M, Neher JJ, Paeger L, Levin J, Höglinger GU, Perneczky R, Ziegler SI, Brendel M. Regional desynchronization of microglial activity is associated with cognitive decline in Alzheimer's disease. Mol Neurodegener 2024; 19:64. [PMID: 39238030 PMCID: PMC11375924 DOI: 10.1186/s13024-024-00752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Boris-Stephan Rauchmann
- Institute of Neuroradiology, University Hospital LMU, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wagner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Xianyuan Xiang
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, ShenzhenShenzhen, 518055, China
| | - Yuan Shi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Samira Parhizkar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Meyer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Desirée Brösamle
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany
| | - Ann-Christin Wendeln
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Collins Osei-Sarpong
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselpital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, Regensburg, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Munich, 69120, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseasesand , University of Bonn and West German Genome Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Immunogenomics & Neurodegeneration, Bonn, Germany
| | - Jonas J Neher
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Neuroimmunology and Neurodegenerative Diseases, Göttingen, Germany
- Dept. of Cellular Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Metabolic Biochemistry, Faculty of Medicine, Biomedical Center Munich (BMC), LMU Munich, Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, W6 8RP, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
19
|
Palandira SP, Falvey A, Carrion J, Zeng Q, Chaudhry S, Grossman K, Turecki L, Nguyen N, Brines M, Chavan SS, Metz CN, Al-Abed Y, Chang EH, Ma Y, Eidelberg D, Vo A, Tracey KJ, Pavlov VA. Early brain neuroinflammatory and metabolic changes identified by dual tracer microPET imaging in mice with acute liver injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610840. [PMID: 39282308 PMCID: PMC11398324 DOI: 10.1101/2024.09.02.610840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Acute liver injury (ALI) that progresses into acute liver failure (ALF) is a life-threatening condition with an increasing incidence and associated costs. Acetaminophen (N-acetyl-p-aminophenol, APAP) overdosing is among the leading causes of ALI and ALF in the Northern Hemisphere. Brain dysfunction defined as hepatic encephalopathy is one of the main diagnostic criteria for ALF. While neuroinflammation and brain metabolic alterations significantly contribute to hepatic encephalopathy, their evaluation at early stages of ALI remained challenging. To provide insights, we utilized post-mortem analysis and non-invasive brain micro positron emission tomography (microPET) imaging of mice with APAP-induced ALI. Methods Male C57BL/6 mice were treated with vehicle or APAP (600 mg/kg, i.p.). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver damage (using H&E staining), hepatic and serum IL-6 levels, and hippocampal IBA1 (using immunolabeling) were evaluated at 24h and 48h. Vehicle and APAP treated animals also underwent microPET imaging utilizing a dual tracer approach, including [11C]-peripheral benzodiazepine receptor ([11C]PBR28) to assess microglia/astrocyte activation and [18F]-fluoro-2-deoxy-2-D-glucose ([18F]FDG) to assess energy metabolism. Brain images were pre-processed and evaluated using conjunction and individual tracer uptake analysis. Results APAP-induced ALI and hepatic and systemic inflammation were detected at 24h and 48h by significantly elevated serum ALT and AST levels, hepatocellular damage, and increased hepatic and serum IL-6 levels. In parallel, increased microglial numbers, indicative for neuroinflammation were observed in the hippocampus of APAP-treated mice. MicroPET imaging revealed overlapping increases in [11C]PBR28 and [18F]FDG uptake in the hippocampus, thalamus, and habenular nucleus indicating microglial/astroglial activation and increased energy metabolism in APAP-treated mice (vs. vehicle-treated mice) at 24h. Similar significant increases were also found in the hypothalamus, thalamus, and cerebellum at 48h. The individual tracer uptake analyses (APAP vs vehicle) at 24h and 48h confirmed increases in these brain areas and indicated additional tracer- and region-specific effects including hippocampal alterations. Conclusion Peripheral manifestations of APAP-induced ALI in mice are associated with brain neuroinflammatory and metabolic alterations at relatively early stages of disease progression, which can be non-invasively evaluated using microPET imaging and conjunction analysis. These findings support further PET-based investigations of brain function in ALI/ALF that may inform timely therapeutic interventions.
Collapse
Affiliation(s)
- Santhoshi P. Palandira
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Joseph Carrion
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Qiong Zeng
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Saher Chaudhry
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kira Grossman
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lauren Turecki
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nha Nguyen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sangeeta S. Chavan
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al-Abed
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Eric H. Chang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yilong Ma
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - David Eidelberg
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - An Vo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
20
|
Gnörich J, Koehler M, Wind-Mark K, Klaus C, Zatcepin A, Palumbo G, Lalia M, Monasor LS, Beyer L, Eckenweber F, Scheifele M, Gildehaus FJ, von Ungern-Sternberg B, Barthel H, Sabri O, Bartenstein P, Herms J, Tahirovic S, Franzmeier N, Ziegler S, Brendel M. Towards multicenter β-amyloid PET imaging in mouse models: A triple scanner head-to-head comparison. Neuroimage 2024; 297:120748. [PMID: 39069223 DOI: 10.1016/j.neuroimage.2024.120748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
AIM β-amyloid (Aβ) small animal PET facilitates quantification of fibrillar amyloidosis in Alzheimer's disease (AD) mouse models. Thus, the methodology is receiving growing interest as a monitoring tool in preclinical drug trials. In this regard, harmonization of data from different scanners at multiple sites would allow the establishment large collaborative cohorts and may facilitate efficacy comparison of different treatments. Therefore, we objected to determine the level of agreement of Aβ-PET quantification by a head-to-head comparison of three different state-of-the-art small animal PET scanners, which could help pave the way for future multicenter studies. METHODS Within a timeframe of 5 ± 2 weeks, transgenic APPPS1 (n = 9) and wild-type (WT) (n = 8) mice (age range: 13-16 months) were examined three times by Aβ-PET ([18F]florbetaben) using a Siemens Inveon DPET, a MedisonanoScan PET/MR, and a MedisonanoScan PET/CT with harmonized reconstruction protocols. Cortex-to-white-matter 30-60 min p.i. standardized uptake value ratios (SUVRCTX/WM) were calculated to compare binding differences, effect sizes (Cohen's d) and z-score values of APPPS1 relative to WT mice. Correlation coefficients (Pearson's r) were calculated for the agreement of individual SUVR between different scanners. Voxel-wise analysis was used to determine the agreement of spatial pathology patterns. For validation of PET imaging against the histological gold standard, individual SUVR values were subject to a correlation analysis with area occupancy of methoxy‑X04 staining. RESULTS All three small animal PET scanners yielded comparable group differences between APPPS1 and WT mice (∆PET=20.4 % ± 2.9 %, ∆PET/MR=18.4 % ± 4.5 %, ∆PET/CT=18.1 % ± 3.3 %). Voxel-wise analysis confirmed a high degree of congruency of the spatial pattern (Dice coefficient (DC)PETvs.PET/MR=83.0 %, DCPETvs.PET/CT=69.3 %, DCPET/MRvs.PET/CT=81.9 %). Differences in the group level variance of the three scanners resulted in divergent z-scores (zPET=11.5 ± 1.6; zPET/MR=5.3 ± 1.3; zPET/CT=3.4 ± 0.6) and effect sizes (dPET=8.5, dPET/MR=4.5, dPET/CT=4.1). However, correlations at the individual mouse level were still strong between scanners (rPETvs.PET/MR=0.96, rPETvs.PET/CT=0.91, rPET/MRvs.PET/CT=0.87; all p ≤ 0.0001). Methoxy-X04 staining exhibited a significant correlation across all three PET machines combined (r = 0.76, p < 0.0001) but also at individual level (PET: r = 0.81, p = 0.026; PET/MR: r = 0.89, p = 0.0074; PET/CT: r = 0.93, p = 0.0028). CONCLUSIONS Our comparison of standardized small animal Aβ-PET acquired by three different scanners substantiates the possibility of moving towards a multicentric approach in preclinical AD research. The alignment of image acquisition and analysis methods achieved good overall comparability between data sets. Nevertheless, differences in variance of sensitivity and specificity of different scanners may limit data interpretation at the individual mouse level and deserves methodological optimization.
Collapse
Affiliation(s)
- Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.
| | - Mara Koehler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Carolin Klaus
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Giovanna Palumbo
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Manvir Lalia
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Laura Sebastian Monasor
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Graduate School of Systemic Neuroscience, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Center of Neuropathology and Prion Research, University of Munich, Munich Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Center of Neuropathology and Prion Research, University of Munich, Munich Germany.
| |
Collapse
|
21
|
Bai P, Lan Y, Liu Y, Mondal P, Gomm A, Xu Y, Wang Y, Wang Y, Kang L, Pan L, Bagdasarian FA, Hallisey M, Lobo F, Varela B, Choi SH, Gomperts SN, Wey H, Shen S, Tanzi RE, Wang C, Zhang C. Development of a New Positron Emission Tomography Imaging Radioligand Targeting RIPK1 in the Brain and Characterization in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309021. [PMID: 38923244 PMCID: PMC11348174 DOI: 10.1002/advs.202309021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic stratagem for neurodegenerative disorders, particularly Alzheimer's disease (AD). A positron emission tomography (PET) probe enabling brain RIPK1 imaging can provide a powerful tool to unveil the neuropathology associated with RIPK1. Herein, the development of a new PET radioligand, [11C]CNY-10 is reported, which may enable brain RIPK1 imaging. [11C]CNY-10 is radiosynthesized with a high radiochemical yield (41.8%) and molar activity (305 GBq/µmol). [11C]CNY-10 is characterized by PET imaging in rodents and a non-human primate, demonstrating good brain penetration, binding specificity, and a suitable clearance kinetic profile. It is performed autoradiography of [11C]CNY-10 in human AD and healthy control postmortem brain tissues, which shows strong radiosignal in AD brains higher than healthy controls. Subsequently, it is conducted further characterization of RIPK1 in AD using [11C]CNY-10-based PET studies in combination with immunohistochemistry leveraging the 5xFAD mouse model. It is found that AD mice revealed RIPK1 brain signal significantly higher than WT control mice and that RIPK1 is closely related to amyloid plaques in the brain. The studies enable further translational studies of [11C]CNY-10 for AD and potentially other RIPK1-related human studies.
Collapse
Affiliation(s)
- Ping Bai
- Department of Pulmonary and Critical Care MedicineTargeted Tracer Research and Development LaboratoryInstitute of Respiratory HealthFrontiers Science Center for Disease‐related Molecular NetworkPrecision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Prasenjit Mondal
- Genetics and Aging Research UnitMcCance Center for Brain HealthMassGeneral Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical School114 16th StreetCharlestownMA02129USA
| | - Ashley Gomm
- Genetics and Aging Research UnitMcCance Center for Brain HealthMassGeneral Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical School114 16th StreetCharlestownMA02129USA
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Yanli Wang
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Yongle Wang
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Leyi Kang
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Lili Pan
- Department of Nuclear MedicineLaboratory of Clinical Nuclear MedicineWest China HospitalSichuan UniversityChengdu610041China
| | - Frederick A. Bagdasarian
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Madelyn Hallisey
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Fleur Lobo
- Department of Pulmonary and Critical Care MedicineTargeted Tracer Research and Development LaboratoryInstitute of Respiratory HealthFrontiers Science Center for Disease‐related Molecular NetworkPrecision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Breanna Varela
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Se Hoon Choi
- Genetics and Aging Research UnitMcCance Center for Brain HealthMassGeneral Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical School114 16th StreetCharlestownMA02129USA
| | - Stephen N. Gomperts
- Department of NeurologyMassachusetts General HospitalHarvard Medical School114 16th StreetCharlestownMA02129USA
| | - Hsiao‐Ying Wey
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Shiqian Shen
- Department of AnesthesiaCritical Care and Pain Medicine Massachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain HealthMassGeneral Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical School114 16th StreetCharlestownMA02129USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Can Zhang
- Genetics and Aging Research UnitMcCance Center for Brain HealthMassGeneral Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical School114 16th StreetCharlestownMA02129USA
| |
Collapse
|
22
|
Currey L, Mitchell B, Al-Khalily M, McElnea SJ, Kozulin P, Harkins D, Pelenyi A, Fenlon L, Suarez R, Kurniawan ND, Burne TH, Harris L, Thor S, Piper M. Polycomb repressive complex 2 is critical for mouse cortical glutamatergic neuron development. Cereb Cortex 2024; 34:bhae268. [PMID: 38960704 PMCID: PMC11221884 DOI: 10.1093/cercor/bhae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) regulates corticogenesis, yet the consequences of mutations to this epigenetic modifier in the mature brain are poorly defined. Importantly, PRC2 core genes are haploinsufficient and causative of several human neurodevelopmental disorders. To address the role of PRC2 in mature cortical structure and function, we conditionally deleted the PRC2 gene Eed from the developing mouse dorsal telencephalon. Adult homozygotes displayed smaller forebrain structures. Single-nucleus transcriptomics revealed that glutamatergic neurons were particularly affected, exhibiting dysregulated gene expression profiles, accompanied by aberrations in neuronal morphology and connectivity. Remarkably, homozygous mice performed well on challenging cognitive tasks. In contrast, while heterozygous mice did not exhibit clear anatomical or behavioral differences, they displayed dysregulation of neuronal genes and altered neuronal morphology that was strikingly different from homozygous phenotypes. Collectively, these data reveal how alterations to PRC2 function shape the mature brain and reveal a dose-specific role for PRC2 in determining glutamatergic neuron identity.
Collapse
Affiliation(s)
- Laura Currey
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin Mitchell
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Majd Al-Khalily
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Sarah-Jayne McElnea
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Kozulin
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexandra Pelenyi
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura Fenlon
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rodrigo Suarez
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Thomas H Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD 4076, Australia
| | - Lachlan Harris
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Cancer Neuroscience Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
23
|
Lindhardt TB, Skoven CS, Bordoni L, Østergaard L, Liang Z, Hansen B. Anesthesia-related brain microstructure modulations detected by diffusion magnetic resonance imaging. NMR IN BIOMEDICINE 2024; 37:e5033. [PMID: 37712335 DOI: 10.1002/nbm.5033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Recent studies have shown significant changes to brain microstructure during sleep and anesthesia. In vivo optical microscopy and magnetic resonance imaging (MRI) studies have attributed these changes to anesthesia and sleep-related modulation of the brain's extracellular space (ECS). Isoflurane anesthesia is widely used in preclinical diffusion MRI (dMRI) and it is therefore important to investigate if the brain's microstructure is affected by anesthesia to an extent detectable with dMRI. Here, we employ diffusion kurtosis imaging (DKI) to assess brain microstructure in the awake and anesthetized mouse brain (n = 22). We find both mean diffusivity (MD) and mean kurtosis (MK) to be significantly decreased in the anesthetized mouse brain compared with the awake state (p < 0.001 for both). This effect is observed in both gray matter and white matter. To further investigate the time course of these changes we introduce a method for time-resolved fast DKI. With this, we show the time course of the microstructural alterations in mice (n = 5) as they transition between states in an awake-anesthesia-awake paradigm. We find that the decrease in MD and MK occurs rapidly after delivery of gas isoflurane anesthesia and that values normalize only slowly when the animals return to the awake state. Finally, time-resolved fast DKI is employed in an experimental mouse model of brain edema (n = 4), where cell swelling causes the ECS volume to decrease. Our results show that isoflurane affects DKI parameters and metrics of brain microstructure and point to isoflurane causing a reduction in the ECS volume. The demonstrated DKI methods are suitable for in-bore perturbation studies, for example, for investigating microstructural modulations related to sleep/wake-dependent functions of the glymphatic system. Importantly, our study shows an effect of isoflurane anesthesia on rodent brain microstructure that has broad relevance to preclinical dMRI.
Collapse
Affiliation(s)
- Thomas Beck Lindhardt
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, Aarhus, Denmark
- University of the Chinese Academy of Sciences, Beijing, China
| | - Christian Stald Skoven
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Luca Bordoni
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Letten Center, University of Oslo, Oslo, Norway
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Neuroradiology Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Zhifeng Liang
- CAS Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Poxleitner M, Hoffmann SHL, Berezhnoy G, Ionescu TM, Gonzalez-Menendez I, Maier FC, Seyfried D, Ehrlichmann W, Quintanilla-Martinez L, Schmid AM, Reischl G, Trautwein C, Maurer A, Pichler BJ, Herfert K, Beziere N. Western diet increases brain metabolism and adaptive immune responses in a mouse model of amyloidosis. J Neuroinflammation 2024; 21:129. [PMID: 38745337 PMCID: PMC11092112 DOI: 10.1186/s12974-024-03080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.
Collapse
Affiliation(s)
- Marilena Poxleitner
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tudor M Ionescu
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Florian C Maier
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dominik Seyfried
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Walter Ehrlichmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Department of Pathology and Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany.
- Cluster of Excellence CMFI (EXC 2124) "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
25
|
Bai P, Bagdasarian FA, Xu Y, Wang Y, Wang Y, Gomm A, Zhou Y, Wu R, Wey HY, Tanzi RE, Zhang C, Lan Y, Wang C. Molecular Imaging of Alzheimer's Disease-Related Sigma-1 Receptor in the Brain via a Novel Ru-Mediated Aromatic 18F-deoxyfluorination Probe. J Med Chem 2024; 67:6207-6217. [PMID: 38607332 DOI: 10.1021/acs.jmedchem.3c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.
Collapse
Affiliation(s)
- Ping Bai
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Frederick A Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yanli Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yongle Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Yanting Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Rui Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu, Sichuan 610041, China
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
26
|
Ma X, Xing Y, Zhai R, Du Y, Yan H. Development and advancements in rodent MRI-based brain atlases. Heliyon 2024; 10:e27421. [PMID: 38510053 PMCID: PMC10950579 DOI: 10.1016/j.heliyon.2024.e27421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Rodents, particularly mice and rats, are extensively utilized in fundamental neuroscience research. Brain atlases have played a pivotal role in this field, evolving from traditional printed histology atlases to digital atlases incorporating diverse imaging datasets. Magnetic resonance imaging (MRI)-based brain atlases, also known as brain maps, have been employed in specific studies. However, the existence of numerous versions of MRI-based brain atlases has impeded their standardized application and widespread use, despite the consensus within the academic community regarding their significance in mice and rats. Furthermore, there is a dearth of comprehensive and systematic reviews on MRI-based brain atlases for rodents. This review aims to bridge this gap by providing a comprehensive overview of the advancements in MRI-based brain atlases for rodents, with a specific focus on mice and rats. It seeks to explore the advantages and disadvantages of histologically printed brain atlases in comparison to MRI brain atlases, delineate the standardized methods for creating MRI brain atlases, and summarize their primary applications in neuroscience research. Additionally, this review aims to assist researchers in selecting appropriate versions of MRI brain atlases for their studies or refining existing MRI brain atlas resources, thereby facilitating the development and widespread adoption of standardized MRI-based brain atlases in rodents.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yao Xing
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Renkuan Zhai
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Yingying Du
- Wuhan United Imaging Life Science Instrument Co., Ltd., Wuhan, 430071, China
| | - Huanhuan Yan
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518048, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
27
|
Schlein E, Rokka J, Odell LR, van den Broek SL, Herth MM, Battisti UM, Syvänen S, Sehlin D, Eriksson J. Synthesis and evaluation of fluorine-18 labelled tetrazines as pre-targeting imaging agents for PET. EJNMMI Radiopharm Chem 2024; 9:21. [PMID: 38446356 PMCID: PMC10917718 DOI: 10.1186/s41181-024-00250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. RESULTS The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. CONCLUSION This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.
Collapse
Affiliation(s)
- Eva Schlein
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden
| | | | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden.
- PET Centre, Uppsala University Hospital, 751 85, Uppsala, Sweden.
| |
Collapse
|
28
|
Knyzeliene A, MacAskill MG, Alcaide-Corral CJ, Morgan TEF, Henry MC, Lucatelli C, Pimlott SL, Sutherland A, Tavares AAS. [ 18F]LW223 has low non-displaceable binding in murine brain, enabling high sensitivity TSPO PET imaging. J Cereb Blood Flow Metab 2024; 44:397-406. [PMID: 37795635 PMCID: PMC10870961 DOI: 10.1177/0271678x231205661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023]
Abstract
Neuroinflammation is associated with a number of brain diseases, making it a common feature of cerebral pathology. Among the best-known biomarkers for neuroinflammation in Positron Emission Tomography (PET) research is the 18 kDa translocator protein (TSPO). This study aims to investigate the binding kinetics of a novel TSPO PET radiotracer, [18F]LW223, in mice and specifically assess its volume of non-displaceable binding (VND) in brain as well as investigate the use of simplified analysis approaches for quantification of [18F]LW223 PET data. Adult male mice were injected with [18F]LW223 and varying concentrations of LW223 (0.003-0.55 mg/kg) to estimate VND of [18F]LW223. Dynamic PET imaging with arterial input function studies and radiometabolite studies were conducted. Simplified quantification methods, standard uptake values (SUV) and apparent volume of distribution (VTapp), were investigated. [18F]LW223 had low VND in the brain (<10% of total binding) and low radiometabolism (∼15-20%). The 2-tissue compartment model provided the best fit for [18F]LW223 PET data, although its correlation with SUV90-120min or VTapp allowed for [18F]LW223 brain PET data quantification in healthy animals while using simpler experimental and analytical approaches. [18F]LW223 has the required properties to become a successful TSPO PET radiotracer.
Collapse
Affiliation(s)
- Agne Knyzeliene
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Mark G MacAskill
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Carlos J Alcaide-Corral
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Timaeus EF Morgan
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | | | | | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow, UK
| | | | - Adriana AS Tavares
- BHF-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Pagnon de la Vega M, Syvänen S, Giedraitis V, Hooley M, Konstantinidis E, Meier SR, Rokka J, Eriksson J, Aguilar X, Spires-Jones TL, Lannfelt L, Nilsson LNG, Erlandsson A, Hultqvist G, Ingelsson M, Sehlin D. Altered amyloid-β structure markedly reduces gliosis in the brain of mice harboring the Uppsala APP deletion. Acta Neuropathol Commun 2024; 12:22. [PMID: 38317196 PMCID: PMC10845526 DOI: 10.1186/s40478-024-01734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
Deposition of amyloid beta (Aβ) into plaques is a major hallmark of Alzheimer's disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aβ. We recently identified the Uppsala APP mutation (APPUpp), which causes Aβ pathology by a triple mechanism: increased β-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aβ conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aβ pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aβ pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased β-secretase cleavage and suppressed α-secretase cleavage, resulting in AβUpp42 dominated diffuse plaque pathology appearing from the age of 5-6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aβ pathology in all models, whereas the Aβ protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aβ pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AβUpp42 aggregates were found to affect their interaction with anti-Aβ antibodies and profoundly modify the Aβ-mediated glial response, which may be important aspects to consider for further development of AD therapies.
Collapse
Affiliation(s)
- María Pagnon de la Vega
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Monique Hooley
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Evangelos Konstantinidis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Silvio R Meier
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Tara L Spires-Jones
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Lars N G Nilsson
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | | | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Ruch F, Gnörich J, Wind K, Köhler M, Zatcepin A, Wiedemann T, Gildehaus FJ, Lindner S, Boening G, von Ungern-Sternberg B, Beyer L, Herms J, Bartenstein P, Brendel M, Eckenweber F. Validity and value of metabolic connectivity in mouse models of β-amyloid and tauopathy. Neuroimage 2024; 286:120513. [PMID: 38191101 DOI: 10.1016/j.neuroimage.2024.120513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Among functional imaging methods, metabolic connectivity (MC) is increasingly used for investigation of regional network changes to examine the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) or movement disorders. Hitherto, MC was mostly used in clinical studies, but only a few studies demonstrated the usefulness of MC in the rodent brain. The goal of the current work was to analyze and validate metabolic regional network alterations in three different mouse models of neurodegenerative diseases (β-amyloid and tau) by use of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) imaging. We compared the results of FDG-µPET MC with conventional VOI-based analysis and behavioral assessment in the Morris water maze (MWM). The impact of awake versus anesthesia conditions on MC read-outs was studied and the robustness of MC data deriving from different scanners was tested. MC proved to be an accurate and robust indicator of functional connectivity loss when sample sizes ≥12 were considered. MC readouts were robust across scanners and in awake/ anesthesia conditions. MC loss was observed throughout all brain regions in tauopathy mice, whereas β-amyloid indicated MC loss mainly in spatial learning areas and subcortical networks. This study established a methodological basis for the utilization of MC in different β-amyloid and tau mouse models. MC has the potential to serve as a read-out of pathological changes within neuronal networks in these models.
Collapse
Affiliation(s)
- François Ruch
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Mara Köhler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Wiedemann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franz-Joseph Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Center of Neuropathology and Prion Research, University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Knyzeliene A, Wimberley C, MacAskill MG, Alcaide-Corral CJ, Morgan TEF, Henry MC, Lucatelli C, Pimlott SL, Sutherland A, Tavares AAS. Sexually dimorphic murine brain uptake of the 18 kDa translocator protein PET radiotracer [ 18F]LW223. Brain Commun 2024; 6:fcae008. [PMID: 38304004 PMCID: PMC10833650 DOI: 10.1093/braincomms/fcae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The 18 kDa translocator protein is a well-known biomarker of neuroinflammation, but also plays a role in homeostasis. PET with 18 kDa translocator protein radiotracers [11C]PBR28 in humans and [18F]GE180 in mice has demonstrated sex-dependent uptake patterns in the healthy brain, suggesting sex-dependent 18 kDa translocator protein expression, although humans and mice had differing results. This study aimed to assess whether the 18 kDa translocator protein PET radiotracer [18F]LW223 exhibited sexually dimorphic uptake in healthy murine brain and peripheral organs. Male and female C57Bl6/J mice (13.6 ± 5.4 weeks, 26.8 ± 5.4 g, mean ± SD) underwent 2 h PET scanning post-administration of [18F]LW223 (6.7 ± 3.6 MBq). Volume of interest and parametric analyses were performed using standard uptake values (90-120 min). Statistical differences were assessed by unpaired t-test or two-way ANOVA with Šidak's test (alpha = 0.05). The uptake of [18F]LW223 was significantly higher across multiple regions of the male mouse brain, with the most pronounced difference detected in hypothalamus (P < 0.0001). Males also exhibited significantly higher [18F]LW223 uptake in the heart when compared to females (P = 0.0107). Data support previous findings on sexually dimorphic 18 kDa translocator protein radiotracer uptake patterns in mice and highlight the need to conduct sex-controlled comparisons in 18 kDa translocator protein PET imaging studies.
Collapse
Affiliation(s)
- Agne Knyzeliene
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Catriona Wimberley
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark G MacAskill
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carlos J Alcaide-Corral
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timaeus E F Morgan
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Martyn C Henry
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Sally L Pimlott
- West of Scotland PET Centre, Greater Glasgow and Clyde NHS Trust, Glasgow G12 0YN, UK
| | | | - Adriana A S Tavares
- British Heart Foundation-University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
32
|
McClain SP, Ma X, Johnson DA, Johnson CA, Layden AE, Yung JC, Lubejko ST, Livrizzi G, He XJ, Zhou J, Chang-Weinberg J, Ventriglia E, Rizzo A, Levinstein M, Gomez JL, Bonaventura J, Michaelides M, Banghart MR. In vivo photopharmacology with light-activated opioid drugs. Neuron 2023; 111:3926-3940.e10. [PMID: 37848025 PMCID: PMC11188017 DOI: 10.1016/j.neuron.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of in vivo photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors in vivo, we developed photoactivatable oxymorphone (PhOX) and photoactivatable naloxone (PhNX), photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone. Photoactivation of PhOX in multiple brain areas produced local changes in receptor occupancy, brain metabolic activity, neuronal calcium activity, neurochemical signaling, and multiple pain- and reward-related behaviors. Combining PhOX photoactivation with optical recording of extracellular dopamine revealed adaptations in the opioid sensitivity of mesolimbic dopamine circuitry in response to chronic morphine administration. This work establishes a general experimental framework for using in vivo photopharmacology to study the neural basis of drug action.
Collapse
Affiliation(s)
- Shannan P McClain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiang Ma
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Desiree A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Caroline A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aryanna E Layden
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean C Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan T Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - X Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jingjing Zhou
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Janie Chang-Weinberg
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emilya Ventriglia
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Arianna Rizzo
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat 08907, Catalonia, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat 08907, Catalonia, Spain
| | - Marjorie Levinstein
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat 08907, Catalonia, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat 08907, Catalonia, Spain
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular, Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Cobelo-Gómez S, Sánchez-Iglesias S, Rábano A, Senra A, Aguiar P, Gómez-Lado N, García-Varela L, Burgueño-García I, Lampón-Fernández L, Fernández-Pombo A, Díaz-López EJ, Prado-Moraña T, San Millán B, Araújo-Vilar D. A murine model of BSCL2-associated Celia's encephalopathy. Neurobiol Dis 2023; 187:106300. [PMID: 37717662 DOI: 10.1016/j.nbd.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
Celia's encephalopathy or progressive encephalopathy with/without lipodystrophy is a neurodegenerative disease with a fatal prognosis in childhood. It is generally caused by the c.985C > T variant in the BSCL2 gene, leading to the skipping of exon 7 and resulting in an aberrant seipin protein (Celia-seipin). To precisely define the temporal evolution and the mechanisms involved in neurodegeneration, lipodystrophy and fatty liver in Celia's encephalopathy, our group has generated the first global knock-in murine model for the aberrant human transcript of BSCL2 (Bscl2Celia/Celia) using a strategy based on the Cre/loxP recombination system. In order to carry out a characterization at the neurological, adipose tissue and hepatic level, behavioral studies, brain PET, metabolic, histological and molecular studies were performed. Around 12% of homozygous and 5.4% of heterozygous knock-in mice showed severe neurological symptoms early in life, and their life expectancy was dramatically reduced. Severe generalized lipodystrophy and mild hepatic steatosis were present in these affected animals, while serum triglycerides and glucose metabolism were normal, with no insulin resistance. Furthermore, the study revealed a reduction in brain glucose uptake, along with patchy loss of Purkinje cells and the presence of intranuclear inclusions in cerebellar cortex cells. Homozygous, non-severely-affected knock-in mice showed a decrease in locomotor activity and greater anxiety compared with their wild type littermates. Bscl2Celia/Celia is the first murine model of Celia's encephalopathy which partially recapitulates the phenotype and severe neurodegenerative picture suffered by these patients. This model will provide a helpful tool to investigate both the progressive encephalopathy with/without lipodystrophy and congenital generalized lipodystrophy.
Collapse
Affiliation(s)
- Silvia Cobelo-Gómez
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Alberto Rábano
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Noemí Gómez-Lado
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Lara García-Varela
- Molecular Imaging and Medical Physics, University of Santiago de Compostela-IDIS, Spain; Nuclear Medicine and Molecular Imaging Group, IDIS, University Clinical Hospital of Santiago de Compostela, Spain
| | - Iván Burgueño-García
- Alzheimer's Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Laura Lampón-Fernández
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Everardo Josué Díaz-López
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Teresa Prado-Moraña
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Beatriz San Millán
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain; Pathology Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group. Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CIMUS, University of Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain.
| |
Collapse
|
34
|
Zhu Y, Wang G, Kolluru C, Gu Y, Gao H, Zhang J, Wang Y, Wilson DL, Zhu X, Flask CA, Yu X. Transport pathways and kinetics of cerebrospinal fluid tracers in mouse brain observed by dynamic contrast-enhanced MRI. Sci Rep 2023; 13:13882. [PMID: 37620371 PMCID: PMC10449788 DOI: 10.1038/s41598-023-40896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Recent studies have suggested the glymphatic system as a key mechanism of waste removal in the brain. Dynamic contrast-enhanced MRI (DCE-MRI) using intracisternally administered contrast agents is a promising tool for assessing glymphatic function in the whole brain. In this study, we evaluated the transport kinetics and distribution of three MRI contrast agents with vastly different molecular sizes in mice. Our results demonstrate that oxygen-17 enriched water (H217O), which has direct access to parenchymal tissues via aquaporin-4 water channels, exhibited significantly faster and more extensive transport compared to the two gadolinium-based contrast agents (Gd-DTPA and GadoSpin). Time-lagged correlation and clustering analyses also revealed different transport pathways for Gd-DTPA and H217O. Furthermore, there were significant differences in transport kinetics of the three contrast agents to the lateral ventricles, reflecting the differences in forces that drive solute transport in the brain. These findings suggest the size-dependent transport pathways and kinetics of intracisternally administered contrast agents and the potential of DCE-MRI for assessing multiple aspects of solute transport in the glymphatic system.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jing Zhang
- Department of Biostatistics, Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Yunmei Wang
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Department of Radiology, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Xiaofeng Zhu
- Department of Biostatistics, Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Chris A Flask
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Department of Radiology, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Radiology, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Physiology and Biophysics, Case Western Reserve University, Wickenden 430, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
35
|
Vogler L, Ballweg A, Bohr B, Briel N, Wind K, Antons M, Kunze LH, Gnörich J, Lindner S, Gildehaus FJ, Baumann K, Bartenstein P, Boening G, Ziegler SI, Levin J, Zwergal A, Höglinger GU, Herms J, Brendel M. Assessment of synaptic loss in mouse models of β-amyloid and tau pathology using [ 18F]UCB-H PET imaging. Neuroimage Clin 2023; 39:103484. [PMID: 37541098 PMCID: PMC10407951 DOI: 10.1016/j.nicl.2023.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVE In preclinical research, the use of [18F]Fluorodesoxyglucose (FDG) as a biomarker for neurodegeneration may induce bias due to enhanced glucose uptake by immune cells. In this study, we sought to investigate synaptic vesicle glycoprotein 2A (SV2A) PET with [18F]UCB-H as an alternative preclinical biomarker for neurodegenerative processes in two mouse models representing the pathological hallmarks of Alzheimer's disease (AD). METHODS A total of 29 PS2APP, 20 P301S and 12 wild-type mice aged 4.4 to 19.8 months received a dynamic [18F]UCB-H SV2A-PET scan (14.7 ± 1.5 MBq) 0-60 min post injection. Quantification of tracer uptake in cortical, cerebellar and brainstem target regions was implemented by calculating relative volumes of distribution (VT) from an image-derived-input-function (IDIF). [18F]UCB-H binding was compared across all target regions between transgenic and wild-type mice. Additional static scans were performed in a subset of mice to compare [18F]FDG and [18F]GE180 (18 kDa translocator protein tracer as a surrogate for microglial activation) standardized uptake values (SUV) with [18F]UCB-H binding at different ages. Following the final scan, a subset of mouse brains was immunohistochemically stained with synaptic markers for gold standard validation of the PET results. RESULTS [18F]UCB-H binding in all target regions was significantly reduced in 8-months old P301S transgenic mice when compared to wild-type controls (temporal lobe: p = 0.014; cerebellum: p = 0.0018; brainstem: p = 0.0014). Significantly lower SV2A tracer uptake was also observed in 13-months (temporal lobe: p = 0.0080; cerebellum: p = 0.006) and 19-months old (temporal lobe: p = 0.0042; cerebellum: p = 0.011) PS2APP transgenic versus wild-type mice, whereas the brainstem revealed no significantly altered [18F]UCB-H binding. Immunohistochemical analyses of post-mortem mouse brain tissue confirmed the SV2A PET findings. Correlational analyses of [18F]UCB-H and [18F]FDG using Pearson's correlation coefficient revealed a significant negative association in the PS2APP mouse model (R = -0.26, p = 0.018). Exploratory analyses further stressed microglial activation as a potential reason for this inverse relationship, since [18F]FDG and [18F]GE180 quantification were positively correlated in this cohort (R = 0.36, p = 0.0076). CONCLUSION [18F]UCB-H reliably depicts progressive synaptic loss in PS2APP and P301S transgenic mice, potentially qualifying as a more reliable alternative to [18F]FDG as a biomarker for assessment of neurodegeneration in preclinical research.
Collapse
Affiliation(s)
- Letizia Vogler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Anna Ballweg
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Bernd Bohr
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nils Briel
- Center for Neuropathology, LMU Munich, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Melissa Antons
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Lea H Kunze
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany; German Center for Vertigo and Balance Disorders (DSGZ), University Hospital of Munich, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
36
|
Jimenez H, Carrion J, Adrien L, Wolin A, Eun J, Cinamon E, Chang EH, Davies P, Vo A, Koppel J. The Impact of Muscarinic Antagonism on Psychosis-Relevant Behaviors and Striatal [ 11C] Raclopride Binding in Tau Mouse Models of Alzheimer's Disease. Biomedicines 2023; 11:2091. [PMID: 37626588 PMCID: PMC10452133 DOI: 10.3390/biomedicines11082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023] Open
Abstract
Psychosis that occurs over the course of Alzheimer's disease (AD) is associated with increased caregiver burden and a more rapid cognitive and functional decline. To find new treatment targets, studies modeling psychotic conditions traditionally employ agents known to induce psychosis, utilizing outcomes with cross-species relevance, such as locomotive activity and sensorimotor gating, in rodents. In AD, increased burdens of tau pathology (a diagnostic hallmark of the disease) and treatment with anticholinergic medications have, separately, been reported to increase the risk of psychosis. Recent evidence suggests that muscarinic antagonists may increase extracellular tau. Preclinical studies in AD models have not previously utilized muscarinic cholinergic antagonists as psychotomimetic agents. In this report, we utilize a human-mutant-tau model (P301L/COMTKO) and an over-expressed non-mutant human tau model (htau) in order to compare the impact of antimuscarinic (scopolamine 10 mg/kg/day) treatment with dopaminergic (reboxetine 20 mg/kg/day) treatment, for 7 days, on locomotion and sensorimotor gating. Scopolamine increased spontaneous locomotion, while reboxetine reduced it; neither treatment impacted sensorimotor gating. In the P301L/COMTKO, scopolamine treatment was associated with decreased muscarinic M4 receptor expression, as quantified with RNA-seq, as well as increased dopamine receptor D2 signaling, as estimated with Micro-PET [11C] raclopride binding. Scopolamine also increased soluble tau in the striatum, an effect that partially mediated the observed increases in locomotion. Studies of muscarinic agonists in preclinical tau models are warranted to determine the impact of treatment-on both tau and behavior-that may have relevance to AD and other tauopathies.
Collapse
Affiliation(s)
- Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Joseph Carrion
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Adam Wolin
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - John Eun
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Ezra Cinamon
- Department of Biochemistry, Queens College, Flushing, NY 11355, USA;
| | - Eric H. Chang
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - An Vo
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| |
Collapse
|
37
|
Straumann N, Combes BF, Dean Ben XL, Sternke-Hoffmann R, Gerez JA, Dias I, Chen Z, Watts B, Rostami I, Shi K, Rominger A, Baumann CR, Luo J, Noain D, Nitsch RM, Okamura N, Razansky D, Ni R. Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546962. [PMID: 37425954 PMCID: PMC10327184 DOI: 10.1101/2023.06.28.546962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. Methods Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. Results THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. Conclusion We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.
Collapse
Affiliation(s)
- Nadja Straumann
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Benjamin F. Combes
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Xose Luis Dean Ben
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | | | - Juan A. Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Ines Dias
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Benjamin Watts
- Photon Science Division, Paul Scherrer Institute, Villigen, Switzerland
| | - Iman Rostami
- Microscopic Anatomy and Structural Biology, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniela Noain
- Neurology Department, University Hospital Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Xiong M, Roshanbin S, Sehlin D, Hansen HD, Knudsen GM, Rokka J, Eriksson J, Syvänen S. Synaptic density in aging mice measured by [ 18F]SynVesT-1 PET. Neuroimage 2023:120230. [PMID: 37355199 DOI: 10.1016/j.neuroimage.2023.120230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [18F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice. Wild type C57BL/6 mice divided into three age groups (4-5 months (n = 7), 12-14 months (n = 11), 17-19 months (n = 7)) were PET scanned with [18F]SynVesT-1. Brain retention of [18F]SynVesT-1 expressed as the volume of distribution (VIDIF) was calculated using an image-derived input function. Estimates of VIDIF were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [18F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers. We found that [18F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [18F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed.
Collapse
Affiliation(s)
- Mengfei Xiong
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sahar Roshanbin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Hanne D Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Johanna Rokka
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jonas Eriksson
- PET Centre, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
39
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Kang G, Matsumura B, Stevens LJ, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Structural alterations in the amygdala and impaired social incentive learning in a mouse model of a genetic variant associated with neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545013. [PMID: 37398198 PMCID: PMC10312713 DOI: 10.1101/2023.06.14.545013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and their dimensions and changes in brain structures and behavior. However, as CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how the genes in the 22q11.2 region individually contribute to structural alterations and associated mental illnesses and their dimensions. Our previous studies have identified Tbx1 , a T-box family transcription factor encoded in 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes in congenic Tbx1 heterozygous mice. Our data show that the volumes of anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were reduced in Tbx1 heterozygous mice. Moreover, we examined the behavioral consequences of an altered volume of the amygdala. Tbx1 heterozygous mice were impaired for their ability to detect the incentive value of a social partner in a task that depends on the amygdala. Our findings identify the structural basis for a specific social dimension associated with loss-of-function variants of TBX1 and 22q11.2 CNV.
Collapse
|
40
|
Arefin TM, Lee CH, Liang Z, Rallapalli H, Wadghiri YZ, Turnbull DH, Zhang J. Towards reliable reconstruction of the mouse brain corticothalamic connectivity using diffusion MRI. Neuroimage 2023; 273:120111. [PMID: 37060936 PMCID: PMC10149621 DOI: 10.1016/j.neuroimage.2023.120111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography has yielded intriguing insights into brain circuits and their relationship to behavior in response to gene mutations or neurological diseases across a number of species. Still, existing tractography approaches suffer from limited sensitivity and specificity, leading to uncertain interpretation of the reconstructed connections. Hence, in this study, we aimed to optimize the imaging and computational pipeline to achieve the best possible spatial overlaps between the tractography and tracer-based axonal projection maps within the mouse brain corticothalamic network. We developed a dMRI-based atlas of the mouse forebrain with structural labels imported from the Allen Mouse Brain Atlas (AMBA). Using the atlas and dMRI tractography, we first reconstructed detailed node-to-node mouse brain corticothalamic structural connectivity matrices using different imaging and tractography parameters. We then investigated the effects of each condition for accurate reconstruction of the corticothalamic projections by quantifying the similarities between the tractography and the tracer data from the Allen Mouse Brain Connectivity Atlas (AMBCA). Our results suggest that these parameters significantly affect tractography outcomes and our atlas can be used to investigate macroscopic structural connectivity in the mouse brain. Furthermore, tractography in mouse brain gray matter still face challenges and need improved imaging and tractography methods.
Collapse
Affiliation(s)
- Tanzil Mahmud Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States; Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Choong Heon Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Zifei Liang
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Harikrishna Rallapalli
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Youssef Z Wadghiri
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Daniel H Turnbull
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, 660 First Ave., New York City, NY, United States.
| |
Collapse
|
41
|
Ballweg A, Klaus C, Vogler L, Katzdobler S, Wind K, Zatcepin A, Ziegler SI, Secgin B, Eckenweber F, Bohr B, Bernhardt A, Fietzek U, Rauchmann BS, Stoecklein S, Quach S, Beyer L, Scheifele M, Simmet M, Joseph E, Lindner S, Berg I, Koglin N, Mueller A, Stephens AW, Bartenstein P, Tonn JC, Albert NL, Kümpfel T, Kerschensteiner M, Perneczky R, Levin J, Paeger L, Herms J, Brendel M. [ 18F]F-DED PET imaging of reactive astrogliosis in neurodegenerative diseases: preclinical proof of concept and first-in-human data. J Neuroinflammation 2023; 20:68. [PMID: 36906584 PMCID: PMC10007845 DOI: 10.1186/s12974-023-02749-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 03/13/2023] Open
Abstract
OBJECTIVES Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions. METHODS A cross-sectional cohort of 24 transgenic (PS2APP) and 25 wild-type mice (age range: 4.3-21.0 months) underwent 60 min dynamic [18F]fluorodeprenyl-D2 ([18F]F-DED), static 18 kDa translocator protein (TSPO, [18F]GE-180) and β-amyloid ([18F]florbetaben) PET imaging. Quantification was performed via image derived input function (IDIF, cardiac input), simplified non-invasive reference tissue modelling (SRTM2, DVR) and late-phase standardized uptake value ratios (SUVr). Immunohistochemical (IHC) analyses of glial fibrillary acidic protein (GFAP) and MAO-B were performed to validate PET imaging by gold standard assessments. Patients belonging to the Alzheimer's disease continuum (AD, n = 2), Parkinson's disease (PD, n = 2), multiple system atrophy (MSA, n = 2), autoimmune encephalitis (n = 1), oligodendroglioma (n = 1) and one healthy control underwent 60 min dynamic [18F]F-DED PET and the data were analyzed using equivalent quantification strategies. RESULTS We selected the cerebellum as a pseudo-reference region based on the immunohistochemical comparison of age-matched PS2APP and WT mice. Subsequent PET imaging revealed that PS2APP mice showed elevated hippocampal and thalamic [18F]F-DED DVR when compared to age-matched WT mice at 5 months (thalamus: + 4.3%; p = 0.048), 13 months (hippocampus: + 7.6%, p = 0.022) and 19 months (hippocampus: + 12.3%, p < 0.0001; thalamus: + 15.2%, p < 0.0001). Specific [18F]F-DED DVR increases of PS2APP mice occurred earlier when compared to signal alterations in TSPO and β-amyloid PET and [18F]F-DED DVR correlated with quantitative immunohistochemistry (hippocampus: R = 0.720, p < 0.001; thalamus: R = 0.727, p = 0.002). Preliminary experience in patients showed [18F]F-DED VT and SUVr patterns, matching the expected topology of reactive astrogliosis in neurodegenerative (MSA) and neuroinflammatory conditions, whereas the patient with oligodendroglioma and the healthy control indicated [18F]F-DED binding following the known physiological MAO-B expression in brain. CONCLUSIONS [18F]F-DED PET imaging is a promising approach to assess reactive astrogliosis in AD mouse models and patients with neurological diseases.
Collapse
Affiliation(s)
- Anna Ballweg
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Carolin Klaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Letizia Vogler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Birkan Secgin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Bernd Bohr
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Alexander Bernhardt
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Marcel Simmet
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Emanuel Joseph
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Isabella Berg
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | | | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
42
|
Gnörich J, Reifschneider A, Wind K, Zatcepin A, Kunte ST, Beumers P, Bartos LM, Wiedemann T, Grosch M, Xiang X, Fard MK, Ruch F, Werner G, Koehler M, Slemann L, Hummel S, Briel N, Blume T, Shi Y, Biechele G, Beyer L, Eckenweber F, Scheifele M, Bartenstein P, Albert NL, Herms J, Tahirovic S, Haass C, Capell A, Ziegler S, Brendel M. Depletion and activation of microglia impact metabolic connectivity of the mouse brain. J Neuroinflammation 2023; 20:47. [PMID: 36829182 PMCID: PMC9951492 DOI: 10.1186/s12974-023-02735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
AIM We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.
Collapse
Affiliation(s)
- Johannes Gnörich
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anika Reifschneider
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin Wind
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Artem Zatcepin
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian T. Kunte
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Philipp Beumers
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Laura M. Bartos
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Thomas Wiedemann
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Grosch
- grid.5252.00000 0004 1936 973XGerman Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xianyuan Xiang
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany ,grid.9227.e0000000119573309CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Maryam K. Fard
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Francois Ruch
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Georg Werner
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mara Koehler
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Luna Slemann
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Selina Hummel
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Nils Briel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tanja Blume
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuan Shi
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gloria Biechele
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Leonie Beyer
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Florian Eckenweber
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Maximilian Scheifele
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Peter Bartenstein
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L. Albert
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Jochen Herms
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anja Capell
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sibylle Ziegler
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
43
|
Perens J, Salinas CG, Roostalu U, Skytte JL, Gundlach C, Hecksher-Sørensen J, Dahl AB, Dyrby TB. Multimodal 3D Mouse Brain Atlas Framework with the Skull-Derived Coordinate System. Neuroinformatics 2023; 21:269-286. [PMID: 36809643 DOI: 10.1007/s12021-023-09623-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Magnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets. Consequently, there is an unmet need for tools that will facilitate fast and accurate translation of LSFM recorded brains to in vivo, non-distorted templates. In this study, we have developed a bidirectional multimodal atlas framework that includes brain templates based on both imaging modalities, region delineations from the Allen's Common Coordinate Framework, and a skull-derived stereotaxic coordinate system. The framework also provides algorithms for bidirectional transformation of results obtained using either MR or LSFM (iDISCO cleared) mouse brain imaging while the coordinate system enables users to easily assign in vivo coordinates across the different brain templates.
Collapse
Affiliation(s)
- Johanna Perens
- Gubra ApS, Hørsholm, Denmark.,Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | | | | | | | - Carsten Gundlach
- Neutrons and X-rays for Materials Physics, Department of Physics, Technical University Denmark, Kongens Lyngby, Denmark
| | | | - Anders Bjorholm Dahl
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
44
|
Zhu Y, Wang G, Kolluru C, Gu Y, Gao H, Zhang J, Wang Y, Wilson DL, Zhu X, Flask CA, Yu X. Transport Pathways and Kinetics of Cerebrospinal Fluid Tracers in Mouse Brain Observed by Dynamic Contrast-Enhanced MRI. RESEARCH SQUARE 2023:rs.3.rs-2544475. [PMID: 36798228 PMCID: PMC9934740 DOI: 10.21203/rs.3.rs-2544475/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Background: Recent studies have suggested the glymphatic system as a solute transport pathway and waste removal mechanism in the brain. Imaging intracisternally administered tracers provides the opportunity of assessing various aspects of the glymphatic function. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the evaluation of both the kinetics and spatial distribution of tracer transport in the whole brain. However, assessing mouse glymphatic function by DCE-MRI has been challenged by the small size of a mouse brain and the limited volume of fluids that can be delivered intracisternally without significantly altering the intracranial pressure. Further, previous studies in rats suggest that assessment of glymphatic function by DCE-MRI is dependent on the molecular size of the contrast agents. Methods: We established and validated an intracisternal infusion protocol in mice that allowed the measurements of the entire time course of contrast agent transport for 2 hours. The transport kinetics and distribution of three MRI contrast agents with drastically different molecular weights (MWs): Gd-DTPA (MW=661.8 Da, n=7), GadoSpin-P (MW=200 kDa, n=6), and oxygen-17 enriched water (H 2 17 O, MW=19 Da, n=7), were investigated. Results: The transport of H 2 17 O was significantly faster and more extensive than the two gadolinium-based contrast agents. Time-lagged correlation analysis and clustering analysis comparing the kinetics of Gd-DTPA and H 2 17 O transport also showed different cluster patterns and lag time between different regions of the brain, suggesting different transport pathways for H 2 17 O because of its direct access to parenchymal tissues via the aquaporin-4 water channels. Further, there were also significant differences in the transport kinetics of the three tracers to the lateral ventricles, which reflects the differences in forces that drive tracer transport in the brain. Conclusions: Comparison of the transport kinetics and distribution of three MRI contrast agents with different molecular sizes showed drastically different transport profiles and clustering patterns, suggesting that the transport pathways and kinetics in the glymphatic system are size-dependent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xin Yu
- Case Western Reserve University
| |
Collapse
|
45
|
McClain SP, Ma X, Johnson DA, Johnson CA, Layden AE, Yung JC, Lubejko ST, Livrizzi G, Jenny He X, Zhou J, Ventriglia E, Rizzo A, Levinstein M, Gomez JL, Bonaventura J, Michaelides M, Banghart MR. In vivo photopharmacology with light-activated opioid drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526901. [PMID: 36778286 PMCID: PMC9915677 DOI: 10.1101/2023.02.02.526901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditional methods for site-specific drug delivery in the brain are slow, invasive, and difficult to interface with recordings of neural activity. Here, we demonstrate the feasibility and experimental advantages of in vivo photopharmacology using "caged" opioid drugs that are activated in the brain with light after systemic administration in an inactive form. To enable bidirectional manipulations of endogenous opioid receptors in vivo , we developed PhOX and PhNX, photoactivatable variants of the mu opioid receptor agonist oxymorphone and the antagonist naloxone. Photoactivation of PhOX in multiple brain areas produced local changes in receptor occupancy, brain metabolic activity, neuronal calcium activity, neurochemical signaling, and multiple pain- and reward-related behaviors. Combining PhOX photoactivation with optical recording of extracellular dopamine revealed adaptations in the opioid sensitivity of mesolimbic dopamine circuitry during chronic morphine administration. This work establishes a general experimental framework for using in vivo photopharmacology to study the neural basis of drug action. Highlights A photoactivatable opioid agonist (PhOX) and antagonist (PhNX) for in vivo photopharmacology. Systemic pro-drug delivery followed by local photoactivation in the brain. In vivo photopharmacology produces behavioral changes within seconds of photostimulation. In vivo photopharmacology enables all-optical pharmacology and physiology.
Collapse
|
46
|
Tian Y, Cook JJ, Johnson GA. Restoring morphology of light sheet microscopy data based on magnetic resonance histology. Front Neurosci 2023; 16:1011895. [PMID: 36685227 PMCID: PMC9846533 DOI: 10.3389/fnins.2022.1011895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
The combination of cellular-resolution whole brain light sheet microscopy (LSM) images with an annotated atlas enables quantitation of cellular features in specific brain regions. However, most existing methods register LSM data with existing canonical atlases, e.g., The Allen Brain Atlas (ABA), which have been generated from tissue that has been distorted by removal from the skull, fixation and physical handling. This limits the accuracy of the regional morphologic measurement. Here, we present a method to combine LSM data with magnetic resonance histology (MRH) of the same specimen to restore the morphology of the LSM images to the in-skull geometry. Our registration pipeline which maps 3D LSM big data (terabyte per dataset) to MRH of the same mouse brain provides registration with low displacement error in ∼10 h with limited manual input. The registration pipeline is optimized using multiple stages of transformation at multiple resolution scales. A three-step procedure including pointset initialization, automated ANTs registration with multiple optimized transformation stages, and finalized application of the transforms on high-resolution LSM data has been integrated into a simple, structured, and robust workflow. Excellent agreement has been seen between registered LSM data and reference MRH data both locally and globally. This workflow has been applied to a collection of datasets with varied combinations of MRH contrasts from diffusion tensor images and LSM with varied immunohistochemistry, providing a routine method for streamlined registration of LSM images to MRH. Lastly, the method maps a reduced set of the common coordinate framework (CCFv3) labels from the Allen Brain Atlas onto the geometrically corrected full resolution LSM data. The pipeline maintains the individual brain morphology and allows more accurate regional annotations and measurements of volumes and cell density.
Collapse
|
47
|
DeBay DR, Phi TT, Bowen CV, Burrell SC, Darvesh S. No difference in cerebral perfusion between the wild-type and the 5XFAD mouse model of Alzheimer's disease. Sci Rep 2022; 12:22174. [PMID: 36550188 PMCID: PMC9780330 DOI: 10.1038/s41598-022-26713-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Neuroimaging with [2,2-dimethyl-3-[(2R,3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(2R,3E)-3-hydroxyiminobutan-2-yl]azanide;oxo(99Tc)technetium-99(3+) ([99mTc]HMPAO) single photon emission computed tomography (SPECT) is used in Alzheimer's disease (AD) to evaluate regional cerebral blood flow (rCBF). Hypoperfusion in select temporoparietal regions has been observed in human AD. However, it is unknown whether AD hypoperfusion signatures are also present in the 5XFAD mouse model. The current study was undertaken to compare baseline brain perfusion between 5XFAD and wild-type (WT) mice using [99mTc]HMPAO SPECT and determine whether hypoperfusion is recapitulated in 5XFAD mice. 5XFAD and WT mice underwent a 45 min SPECT scan, 20 min after [99mTc]HMPAO administration. Whole brain and regional standardized uptake values (SUV) and regional relative standardized uptake values (SUVR) with whole brain reference were compared between groups. Brain perfusion was similar between WT and 5XFAD brains. Whole brain [99mTc]HMPAO retention revealed no significant difference in SUV (5XFAD, 0.372 ± 0.762; WT, 0.640 ± 0.955; p = 0.536). Similarly, regional analysis revealed no significant differences in [99mTc]HMPAO metrics between groups (SUV: 0.357 ≤ p ≤ 0.640; SUVR: 0.595 ≤ p ≤ 0.936). These results suggest apparent discrepancies in rCBF between human AD and the 5XFAD model. Establishing baseline perfusion patterns in 5XFAD mice is essential to inform pre-clinical diagnostic and therapeutic drug discovery programs.
Collapse
Affiliation(s)
- Drew R. DeBay
- grid.55602.340000 0004 1936 8200Department of Medical Neuroscience, Dalhousie University, Halifax, NS Canada ,grid.414870.e0000 0001 0351 6983Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre, Halifax, NS Canada
| | - Tân-Trào Phi
- grid.55602.340000 0004 1936 8200Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
| | - Chris V. Bowen
- grid.55602.340000 0004 1936 8200Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada ,grid.414870.e0000 0001 0351 6983Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre, Halifax, NS Canada
| | - Steven C. Burrell
- grid.55602.340000 0004 1936 8200Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
| | - Sultan Darvesh
- grid.55602.340000 0004 1936 8200Department of Medical Neuroscience, Dalhousie University, Halifax, NS Canada ,grid.414870.e0000 0001 0351 6983Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre, Halifax, NS Canada ,Department of Medicine (Neurology and Geriatric Medicine), Halifax, NS Canada ,Department of Chemistry and Physics, Mount St. Vincent University, Halifax, NS Canada
| |
Collapse
|
48
|
Duchon A, del Mar Muñiz Moreno M, Chevalier C, Nalesso V, Andre P, Fructuoso-Castellar M, Mondino M, Po C, Noblet V, Birling MC, Potier MC, Herault Y. Ts66Yah, a mouse model of Down syndrome with improved construct and face validity. Dis Model Mech 2022; 15:282398. [PMID: 36374158 PMCID: PMC9789398 DOI: 10.1242/dmm.049721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). The understanding of genotype-phenotype relationships, the identification of driver genes and various proofs of concept for therapeutics have benefited from mouse models. The premier model, named Ts(1716)65Dn/J (Ts65Dn), displayed phenotypes related to human DS features. It carries an additional minichromosome with the Mir155 to Zbtb21 region of mouse chromosome 16, homologous to Hsa21, encompassing around 90 genes, fused to the centromeric part of mouse chromosome 17 from Pisd-ps2/Scaf8 to Pde10a, containing 46 genes not related to Hsa21. Here, we report the investigation of a new model, Ts66Yah, generated by CRISPR/Cas9 without the genomic region unrelated to Hsa21 on the minichromosome. As expected, Ts66Yah replicated DS cognitive features. However, certain phenotypes related to increased activity, spatial learning and molecular signatures were changed, suggesting genetic interactions between the Mir155-Zbtb21 and Scaf8-Pde10a intervals. Thus, Ts66Yah mice have stronger construct and face validity than Ts65Dn mice for mimicking consequences of DS genetic overdosage. Furthermore, this study is the first to demonstrate genetic interactions between triplicated regions homologous to Hsa21 and others unrelated to Hsa21. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Maria del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Claire Chevalier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Valérie Nalesso
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Philippe Andre
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Marta Fructuoso-Castellar
- Paris Brain Institute ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France,Centre National de la Recherche Scientifique, UMR 7225, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Mary Mondino
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Chrystelle Po
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Vincent Noblet
- Université de Strasbourg, CNRS UMR 7357, ICube, FMTS, 67000 Strasbourg, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Marie-Claude Potier
- Paris Brain Institute ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France,Institut National de la Santé et de la Recherche Médicale, U1127, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France,Centre National de la Recherche Scientifique, UMR 7225, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France,Sorbonne Université, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France,Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France,Author for correspondence ()
| |
Collapse
|
49
|
Palandira SP, Carrion J, Turecki L, Falvey A, Zeng Q, Liu H, Tsaava T, Herschberg D, Brines M, Chavan SS, Chang EH, Vo A, Ma Y, Metz CN, Al-Abed Y, Tracey KJ, Pavlov VA. A dual tracer [ 11C]PBR28 and [ 18F]FDG microPET evaluation of neuroinflammation and brain energy metabolism in murine endotoxemia. Bioelectron Med 2022; 8:18. [PMID: 36451231 PMCID: PMC9710165 DOI: 10.1186/s42234-022-00101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Brain metabolic alterations and neuroinflammation have been reported in several peripheral inflammatory conditions and present significant potential for targeting with new diagnostic approaches and treatments. However, non-invasive evaluation of these alterations remains a challenge. METHODS Here, we studied the utility of a micro positron emission tomography (microPET) dual tracer ([11C]PBR28 - for microglial activation and [18F]FDG for energy metabolism) approach to assess brain dysfunction, including neuroinflammation in murine endotoxemia. MicroPET imaging data were subjected to advanced conjunction and individual analyses, followed by post-hoc analysis. RESULTS There were significant increases in [11C]PBR28 and [18F]FDG uptake in the hippocampus of C57BL/6 J mice 6 h following LPS (2 mg/kg) intraperitoneal (i.p.) administration compared with saline administration. These results confirmed previous postmortem observations. In addition, patterns of significant simultaneous activation were demonstrated in the hippocampus, the thalamus, and the hypothalamus in parallel with other tracer-specific and region-specific alterations. These changes were observed in the presence of robust systemic inflammatory responses manifested by significantly increased serum cytokine levels. CONCLUSIONS Together, these findings demonstrate the applicability of [11C]PBR28 - [18F]FDG dual tracer microPET imaging for assessing neuroinflammation and brain metabolic alterations in conditions "classically" characterized by peripheral inflammatory and metabolic pathogenesis.
Collapse
Affiliation(s)
| | - Joseph Carrion
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lauren Turecki
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Qiong Zeng
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Hui Liu
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tea Tsaava
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Dov Herschberg
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sangeeta S Chavan
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Eric H Chang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - An Vo
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yilong Ma
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al-Abed
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
50
|
Zarrouki F, Goutal S, Vacca O, Garcia L, Tournier N, Goyenvalle A, Vaillend C. Abnormal Expression of Synaptic and Extrasynaptic GABAA Receptor Subunits in the Dystrophin-Deficient mdx Mouse. Int J Mol Sci 2022; 23:ijms232012617. [PMID: 36293496 PMCID: PMC9604073 DOI: 10.3390/ijms232012617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neurodevelopmental disorder primarily caused by the loss of the full-length Dp427 dystrophin in both muscle and brain. The basis of the central comorbidities in DMD is unclear. Brain dystrophin plays a role in the clustering of central gamma-aminobutyric acid A receptors (GABAARs), and its loss in the mdx mouse alters the clustering of some synaptic subunits in central inhibitory synapses. However, the diversity of GABAergic alterations in this model is still fragmentary. In this study, the analysis of in vivo PET imaging of a benzodiazepine-binding site radioligand revealed that the global density of central GABAARs is unaffected in mdx compared with WT mice. In contrast, semi-quantitative immunoblots and immunofluorescence confocal imaging in tissue sections revealed complex and differential patterns of alterations of the expression levels and/or clustered distribution of a variety of synaptic and extrasynaptic GABAAR subunits in the hippocampus, cerebellum, cortex, and spinal cord. Hence, dystrophin loss not only affects the stabilization of synaptic GABAARs but also influences the subunit composition of GABAARs subtypes at both synaptic and extrasynaptic sites. This study provides new molecular outcome measures and new routes to evaluate the impact of treatments aimed at compensating alterations of the nervous system in DMD.
Collapse
Affiliation(s)
- Faouzi Zarrouki
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Sébastien Goutal
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Ophélie Vacca
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Nicolas Tournier
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France
- Correspondence:
| |
Collapse
|