1
|
Nisar H, Amin R, Khan S, Fatima T, Qamar-Un-Nisa, Jawwad-Us-Salam. Correlation between selenium levels and selenoproteins expression in idiopathic generalized epilepsy: a study from Karachi. BMC Neurol 2025; 25:34. [PMID: 39849427 PMCID: PMC11756058 DOI: 10.1186/s12883-024-03993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Oxidative damage has been implicated in multiple neurodegenerative diseases, including epilepsy. Selenium, in the form of selenoproteins is an integral part of the human antioxidant defense system. Though a relationship between the altered selenium levels and epilepsy has been reported, limited evidence is available about the expression pattern of selenoproteins in epileptic patients. OBJECTIVE This study aimed to determine the serum selenium levels in idiopathic epileptic and healthy individuals. Expression profiling of selenoproteins (GPx1, TRxR1 and SEPW1) both at mRNA and protein levels was also evaluated. METHODS Serum selenium levels of 30 patients with idiopathic generalized epilepsy and their age and gender matched 30 healthy controls were measured. Protein levels of Serum Glutathione Peroxidase 1 (GPx1), Thioredoxin Reductase 1 (TRxR1) and Selenoprotein W (SEPW1) were estimated using ELISA. mRNA expression of GPx1, TRxR1 and SEPW1 were determined using qRT-PCR. RESULTS The mean values for serum selenium levels in cases and controls were 37.6 ± 2.0 µmol/ml and 38.9 ± 2.7 µmol/ml, respectively. Selenium levels in cases were significantly lower as compared to controls (p = 0.031). No statistically significant differences were observed between the serum levels of selenoproteins GPx1, TRxR1 and SEPW1 in epileptic patients and the healthy group. GPx1 and TRxR1 expression was found to be down regulated (0.34 and 0.13 folds respectively) whereas SEPW 1 was found to be 0.04 folds up regulated in epileptic patients compared to the healthy subjects. CONCLUSION Selenium deficiency observed in epileptic patients suggests the association between serum selenium levels and epilepsy. This study provides the information about the selenium status in Pakistani population and helps in understanding the role of selenium in the prevention of epilepsy.
Collapse
Affiliation(s)
- Hareem Nisar
- Sindh Institute of Medical Sciences, Sindh Institute Of Urology And Transplantation, Karachi, Pakistan
| | - Rafat Amin
- Dow College of Biotechnology, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan.
| | - Sadaf Khan
- Dow College of Biotechnology, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Tehseen Fatima
- Dow College of Biotechnology, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Qamar-Un-Nisa
- Department of Neurology, Dr. Ruth K. M. Pfau Civil Hospital, Dow University of Health Sciences, Karachi, Pakistan
| | - Jawwad-Us-Salam
- Department of Neurology, Dow University Hospital, Dow University of health sciences, Karachi, Pakistan
| |
Collapse
|
2
|
Pfisterer U, Petukhov V, Demharter S, Meichsner J, Thompson JJ, Batiuk MY, Asenjo-Martinez A, Vasistha NA, Thakur A, Mikkelsen J, Adorjan I, Pinborg LH, Pers TH, von Engelhardt J, Kharchenko PV, Khodosevich K. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat Commun 2020; 11:5038. [PMID: 33028830 PMCID: PMC7541486 DOI: 10.1038/s41467-020-18752-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, yet its pathophysiology is poorly understood due to the high complexity of affected neuronal circuits. To identify dysfunctional neuronal subtypes underlying seizure activity in the human brain, we have performed single-nucleus transcriptomics analysis of >110,000 neuronal transcriptomes derived from temporal cortex samples of multiple temporal lobe epilepsy and non-epileptic subjects. We found that the largest transcriptomic changes occur in distinct neuronal subtypes from several families of principal neurons (L5-6_Fezf2 and L2-3_Cux2) and GABAergic interneurons (Sst and Pvalb), whereas other subtypes in the same families were less affected. Furthermore, the subtypes with the largest epilepsy-related transcriptomic changes may belong to the same circuit, since we observed coordinated transcriptomic shifts across these subtypes. Glutamate signaling exhibited one of the strongest dysregulations in epilepsy, highlighted by layer-wise transcriptional changes in multiple glutamate receptor genes and strong upregulation of genes coding for AMPA receptor auxiliary subunits. Overall, our data reveal a neuronal subtype-specific molecular phenotype of epilepsy. The pathophysiology of epilepsy is unclear. Here, the authors present single-nuclei transcriptomic profiling of human temporal lobe epilepsy from patients. They identified epilepsy-associated neuronal subtypes, and a panel of dysregulated genes, predicting neuronal circuits contributing to epilepsy.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Viktor Petukhov
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel Demharter
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Johanna Meichsner
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonatan J Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mykhailo Y Batiuk
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ashish Thakur
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jens Mikkelsen
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Istvan Adorjan
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Lars H Pinborg
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 2200, Copenhagen, Denmark.,Epilepsy Clinic, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2200, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
3
|
Strunz M, Jarrell JT, Cohen DS, Rosin ER, Vanderburg CR, Huang X. Modulation of SPARC/Hevin Proteins in Alzheimer's Disease Brain Injury. J Alzheimers Dis 2020; 68:695-710. [PMID: 30883351 PMCID: PMC6481539 DOI: 10.3233/jad-181032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is an age-related progressive form of dementia that features neuronal loss, intracellular tau, and extracellular amyloid-β (Aβ) protein deposition. Neurodegeneration is accompanied by neuroinflammation mainly involving microglia, the resident innate immune cell population of the brain. During AD progression, microglia shift their phenotype, and it has been suggested that they express matricellular proteins such as secreted protein acidic and rich in cysteine (SPARC) and Hevin protein, which facilitate the migration of other immune cells, such as blood-derived dendritic cells. We have detected both SPARC and Hevin in postmortem AD brain tissues and confirmed significant alterations in transcript expression using real-time qPCR. We suggest that an infiltration of myeloid-derived immune cells occurs in the areas of diseased tissue. SPARC is highly expressed in AD brain and collocates to Aβ protein deposits, thus contributing actively to cerebral inflammation and subsequent tissue repair, and Hevin may be downregulated in the diseased state. However, further research is needed to reveal the exact roles of SPARC and Hevin proteins and associated signaling pathways in AD-related neuroinflammation. Nevertheless, normalizing SPARC/Hevin protein expression such as interdicting heightened SPARC protein expression may confer a novel therapeutic opportunity for modulating AD progression.
Collapse
Affiliation(s)
- Maximilian Strunz
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Charles R Vanderburg
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Castro-Torres RD, Ureña-Guerrero ME, Morales-Chacón LM, Lorigados-Pedre L, Estupiñan-Díaz B, Rocha L, Orozco-Suárez S, Rivera-Cervantes MC, Alonso-Vanegas M, Beas-Zárate C. New Aspects of VEGF, GABA, and Glutamate Signaling in the Neocortex of Human Temporal Lobe Pharmacoresistant Epilepsy Revealed by RT-qPCR Arrays. J Mol Neurosci 2020; 70:916-929. [DOI: 10.1007/s12031-020-01519-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
5
|
Kainic acid-induced status epilepticus decreases mGlu 5 receptor and phase-specifically downregulates Homer1b/c expression. Brain Res 2019; 1730:146640. [PMID: 31891692 DOI: 10.1016/j.brainres.2019.146640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/05/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022]
Abstract
Globally, over 50 million people are affected by epilepsy, which is characterized by the occurrence of spontaneous recurrent seizures. Almost one-third of the patients show resistance to current anti-epileptic drugs, making the exploration of new molecular targets necessary. An interesting target may be Homer1, due to its diverse roles in epileptogenesis and synaptic plasticity. Indeed, Homer1 regulates group I metabotropic glutamate (mGlu) receptors (i.e. mGlu1 and mGlu5) scaffolding and signaling in neurons. In the present work, using the systemic kainic acid (KA)-induced status epilepticus (SE) model in adult rats, we investigated the mRNA and protein expression patterns of the mGlu5 receptor, Homer1a and Homer1b/c at 10, 80 and 120 days post-SE (i.e. T10, T80 and T120). Epileptogenesis was validated by electrophysiological recordings of seizures via electroencephalography (EEG) monitoring and through upregulation of glial fibrillary acidic protein. At the protein level, the mGlu5 receptor was downregulated in the late latent phase (T10) and the early- and late exponential growth phase (T80 and T120, respectively), which was best observed in the hippocampal CA1 region. At mRNA level, significant downregulation of the mGlu5 receptor was only detected in the late exponential growth phase. Homer1a expression did not change at any investigated time point. Interestingly, Homer1b/c was only downregulated in the late latent phase, a period where spontaneous seizures are extremely rare. Thus, this phase-specific downregulation may be indicative of an endogenous neuroprotective mechanism. In conclusion, these results suggest that Homer1b/c may be an interesting molecular target to prevent epileptogenesis and/or control seizures.
Collapse
|
6
|
Crans RAJ, Janssens J, Daelemans S, Wouters E, Raedt R, Van Dam D, De Deyn PP, Van Craenenbroeck K, Stove CP. The validation of Short Interspersed Nuclear Elements (SINEs) as a RT-qPCR normalization strategy in a rodent model for temporal lobe epilepsy. PLoS One 2019; 14:e0210567. [PMID: 30629669 PMCID: PMC6328105 DOI: 10.1371/journal.pone.0210567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/26/2018] [Indexed: 01/10/2023] Open
Abstract
Background In gene expression studies via RT-qPCR many conclusions are inferred by using reference genes. However, it is generally known that also reference genes could be differentially expressed between various tissue types, experimental conditions and animal models. An increasing amount of studies have been performed to validate the stability of reference genes. In this study, two rodent-specific Short Interspersed Nuclear Elements (SINEs), which are located throughout the transcriptome, were validated and assessed against nine reference genes in a model of Temporal Lobe Epilepsy (TLE). Two different brain regions (i.e. hippocampus and cortex) and two different disease stages (i.e. acute phase and chronic phase) of the systemic kainic acid rat model for TLE were analyzed by performing expression analyses with the geNorm and NormFinder algorithms. Finally, we performed a rank aggregation analysis and validated the reference genes and the rodent-specific SINEs (i.e. B elements) individually via Gfap gene expression. Results GeNorm ranked Hprt1, Pgk1 and Ywhaz as the most stable genes in the acute phase, while Gusb and B2m were ranked as the most unstable, being significantly upregulated. The two B elements were ranked as most stable for both brain regions in the chronic phase by geNorm. In contrast, NormFinder ranked the B1 element only once as second best in cortical tissue for the chronic phase. Interestingly, using only one of the two algorithms would have led to skewed conclusions. Finally, the rank aggregation method indicated the use of the B1 element as the best option to normalize target genes, independent of the disease progression and brain region. This result was supported by the expression profile of Gfap. Conclusion In this study, we demonstrate the potential of implementing SINEs -notably the B1 element- as a stable normalization factor in a rodent model of TLE, independent of brain region or disease progression.
Collapse
Affiliation(s)
- René A. J. Crans
- Laboratory for GPCR Expression and Signal Transduction (L-GEST) - Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Jana Janssens
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sofie Daelemans
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elise Wouters
- Laboratory for GPCR Expression and Signal Transduction (L-GEST) - Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Peter P. De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University Medical Center Groningen (UMCG), Groningen, the Netherlands
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Kathleen Van Craenenbroeck
- Laboratory for GPCR Expression and Signal Transduction (L-GEST) - Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Christophe P. Stove
- Laboratory for GPCR Expression and Signal Transduction (L-GEST) - Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
7
|
Le Duigou C, Savary E, Morin-Brureau M, Gomez-Dominguez D, Sobczyk A, Chali F, Milior G, Kraus L, Meier JC, Kullmann DM, Mathon B, de la Prida LM, Dorfmuller G, Pallud J, Eugène E, Clemenceau S, Miles R. Imaging pathological activities of human brain tissue in organotypic culture. J Neurosci Methods 2018; 298:33-44. [PMID: 29427611 PMCID: PMC5983351 DOI: 10.1016/j.jneumeth.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Insights into human brain diseases may emerge from tissue obtained after operations on patients. However techniques requiring transduction of transgenes carried by viral vectors cannot be applied to acute human tissue. NEW METHOD We show that organotypic culture techniques can be used to maintain tissue from patients with three different neurological syndromes for several weeks in vitro. Optimized viral vector techniques and promoters for transgene expression are described. RESULTS Region-specific differences in neuronal form, firing pattern and organization as well as pathological activities were maintained over 40-50 days in culture. Both adeno-associated virus and lentivirus based vectors were persistently expressed from ∼10 days after application, providing 30-40 days to exploit genetically expressed constructs. Different promoters, including hSyn, e/hSyn, CMV and CaMKII, provided cell-type specific transgene expression. The Ca probe GCaMP let us explore epileptogenic synchrony and a FRET-based probe was used to follow activity of the kinase mTORC1. COMPARISON WITH EXISTING METHODS The use of a defined culture medium, with low concentrations of amino acids and no growth factors, permitted organotypic culture of tissue from humans aged 3-62 years. Epileptic activity was maintained and excitability changed relatively little until ∼6 weeks in culture. CONCLUSIONS Characteristic morphology and region-specific neuronal activities are maintained in organotypic culture of tissue from patients diagnosed with mesial temporal lobe epilepsy, cortical dysplasia and cortical glioblastoma. Viral vector techniques permit expression of probes for long-term measurements of multi-cellular activity and intra-cellular signaling.
Collapse
Affiliation(s)
- Caroline Le Duigou
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| | - Etienne Savary
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| | - Mélanie Morin-Brureau
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Daniel Gomez-Dominguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, E-28002, Spain
| | - André Sobczyk
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Farah Chali
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Giampaolo Milior
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Larissa Kraus
- Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany; Charite Universitätsmedizin, Clinical and Experimental Epileptology, Berlin, Germany; Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Jochen C Meier
- Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Bertrand Mathon
- Neurochirurgie, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Paris, 75013, France
| | | | - Georg Dorfmuller
- Neurochirurgie, Fondation Ophtalmologique Rothschild, 75019, Paris, France
| | - Johan Pallud
- Neurochirurgie, Hôpital Sainte-Anne, Paris Descartes University, IMA-BRAIN, Inserm, U894 Centre de Psychiatrie et Neurosciences, Paris, 75014, France
| | - Emmanuel Eugène
- Inserm U839, UPMC Univ Paris 6, Institut du Fer-à-Moulin, Paris, 75005, France
| | - Stéphane Clemenceau
- Neurochirurgie, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Paris, 75013, France
| | - Richard Miles
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| |
Collapse
|
8
|
Jones EV, Bernardinelli Y, Zarruk JG, Chierzi S, Murai KK. SPARC and GluA1-Containing AMPA Receptors Promote Neuronal Health Following CNS Injury. Front Cell Neurosci 2018; 12:22. [PMID: 29449802 PMCID: PMC5799273 DOI: 10.3389/fncel.2018.00022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
The proper formation and maintenance of functional synapses in the central nervous system (CNS) requires communication between neurons and astrocytes and the ability of astrocytes to release neuromodulatory molecules. Previously, we described a novel role for the astrocyte-secreted matricellular protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) in regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and plasticity at developing synapses. SPARC is highly expressed by astrocytes and microglia during CNS development but its level is reduced in adulthood. Interestingly, SPARC has been shown to be upregulated in CNS injury and disease. However, the role of SPARC upregulation in these contexts is not fully understood. In this study, we investigated the effect of chronic SPARC administration on glutamate receptors on mature hippocampal neuron cultures and following CNS injury. We found that SPARC treatment increased the number of GluA1-containing AMPARs at synapses and enhanced synaptic function. Furthermore, we determined that the increase in synaptic strength induced by SPARC could be inhibited by Philanthotoxin-433, a blocker of homomeric GluA1-containing AMPARs. We then investigated the effect of SPARC treatment on neuronal health in an injury context where SPARC expression is upregulated. We found that SPARC levels are increased in astrocytes and microglia following middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. Remarkably, chronic pre-treatment with SPARC prevented OGD-induced loss of synaptic GluA1. Furthermore, SPARC treatment reduced neuronal death through Philanthotoxin-433 sensitive GluA1 receptors. Taken together, this study suggests a novel role for SPARC and GluA1 in promoting neuronal health and recovery following CNS damage.
Collapse
Affiliation(s)
- Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | | | - Juan G Zarruk
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Sabrina Chierzi
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
9
|
Born JPL, Matos HDC, de Araujo MA, Castro OW, Duzzioni M, Peixoto-Santos JE, Leite JP, Garcia-Cairasco N, Paçó-Larson ML, Gitaí DLG. Using Postmortem hippocampi tissue can interfere with differential gene expression analysis of the epileptogenic process. PLoS One 2017; 12:e0182765. [PMID: 28783762 PMCID: PMC5544225 DOI: 10.1371/journal.pone.0182765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Neuropathological studies often use autopsy brain tissue as controls to evaluate changes in protein or RNA levels in several diseases. In mesial temporal lobe epilepsy (MTLE), several genes are up or down regulated throughout the epileptogenic and chronic stages of the disease. Given that postmortem changes in several gene transcripts could impact the detection of changes in case-control studies, we evaluated the effect of using autopsy specimens with different postmortem intervals (PMI) on differential gene expression of the Pilocarpine (PILO)induced Status Epilepticus (SE) of MTLE. For this, we selected six genes (Gfap, Ppia, Gad65, Gad67, Npy, and Tnf-α) whose expression patterns in the hippocampus of PILO-injected rats are well known. Initially, we compared hippocampal expression of naïve rats whose hippocampi were harvested immediately after death (0h-PMI) with those harvested at 6h postmortem interval (6h-PMI): Npy and Ppia transcripts increased and Tnf-α transcripts decreased in the 6h-PMI group (p<0.05). We then investigated if these PMI-related changes in gene expression have the potential to adulterate or mask RT-qPCR results obtained with PILO-injected rats euthanized at acute or chronic phases. In the acute group, Npy transcript was significantly higher when compared with 0h-PMI rats, whereas Ppia transcript was lower than 6h-PMI group. When we used epileptic rats (chronic group), the RT-qPCR results showed higher Tnf-α only when compared to 6h-PMI group. In conclusion, our study demonstrates that PMI influences gene transcription and can mask changes in gene transcription seen during epileptogenesis in the PILO-SE model. Thus, to avoid erroneous conclusions, we strongly recommend that researchers account for changes in postmortem gene expression in their experimental design.
Collapse
Affiliation(s)
- João Paulo Lopes Born
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Heloisa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Mykaella Andrade de Araujo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Olagide Wagner Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - José Eduardo Peixoto-Santos
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
10
|
Dixit AB, Banerjee J, Srivastava A, Tripathi M, Sarkar C, Kakkar A, Jain M, Chandra PS. RNA-seq analysis of hippocampal tissues reveals novel candidate genes for drug refractory epilepsy in patients with MTLE-HS. Genomics 2016; 107:178-88. [DOI: 10.1016/j.ygeno.2016.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022]
|
11
|
Mirza N, Appleton R, Burn S, Carr D, Crooks D, du Plessis D, Duncan R, Farah JO, Josan V, Miyajima F, Mohanraj R, Shukralla A, Sills GJ, Marson AG, Pirmohamed M. Identifying the biological pathways underlying human focal epilepsy: from complexity to coherence to centrality. Hum Mol Genet 2015; 24:4306-16. [DOI: 10.1093/hmg/ddv163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
|
12
|
Kaalund SS, Venø MT, Bak M, Møller RS, Laursen H, Madsen F, Broholm H, Quistorff B, Uldall P, Tommerup N, Kauppinen S, Sabers A, Fluiter K, Møller LB, Nossent AY, Silahtaroglu A, Kjems J, Aronica E, Tümer Z. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-convergence on axonal guidance. Epilepsia 2014; 55:2017-27. [PMID: 25410734 DOI: 10.1111/epi.12839] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Mesial temporal lobe epilepsy (MTLE) is one of the most common types of the intractable epilepsies and is most often associated with hippocampal sclerosis (HS), which is characterized by pronounced loss of hippocampal pyramidal neurons. microRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and we hypothesized that miRNAs could be involved in the pathogenesis of MTLE and HS. METHODS miRNA expression was quantified in hippocampal specimens from human patients using miRNA microarray and quantitative real-time polymerase chain reaction RT-PCR, and by RNA-seq on fetal brain specimens from domestic pigs. In situ hybridization was used to show the spatial distribution of miRNAs in the human hippocampus. The potential effect of miRNAs on targets genes was investigated using the dual luciferase reporter gene assay. RESULTS miRNA expression profiling showed that 25 miRNAs were up-regulated and 5 were down-regulated in hippocampus biopsies of MTLE/HS patients compared to controls. We showed that miR-204 and miR-218 were significantly down-regulated in MTLE and HS, and both were expressed in neurons in all subfields of normal hippocampus. Moreover, miR-204 and miR-218 showed strong changes in expression during fetal development of the hippocampus in pigs, and we identified four target genes, involved in axonal guidance and synaptic plasticity, ROBO1, GRM1, SLC1A2, and GNAI2, as bona fide targets of miR-218. GRM1 was also shown to be a direct target of miR-204. SIGNIFICANCE miR-204 and miR-218 are developmentally regulated in the hippocampus and may contribute to the molecular mechanisms underlying the pathogenesis of MTLE and HS.
Collapse
Affiliation(s)
- Sanne S Kaalund
- Department of Cellular and Molecular Medicine, Wilhelm Johannsen Center for Functional Genome Research, University of Copenhagen, Copenhagen, Denmark; Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sosanya NM, Brager DH, Wolfe S, Niere F, Raab-Graham KF. Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis. Neurobiol Dis 2014; 73:96-105. [PMID: 25270294 DOI: 10.1016/j.nbd.2014.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/11/2014] [Accepted: 09/21/2014] [Indexed: 01/12/2023] Open
Abstract
Changes in ion channel expression are implicated in the etiology of epilepsy. However, the molecular leading to long-term aberrant expression of ion channels are not well understood. The mechanistic/mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates activity-dependent protein synthesis in neurons. mTOR is overactive in epilepsy, suggesting that excessive protein synthesis may contribute to the neuronal pathology. In contrast, we found that mTOR activity and the microRNA miR-129-5p reduce the expression of the voltage-gated potassium channel Kv1.1 in an animal model of temporal lobe epilepsy (TLE). When mTOR activity is low, Kv1.1 expression is high and the frequency of behavioral seizures is low. However, as behavioral seizure activity rises, mTOR activity increases and Kv1.1 protein levels drop. In CA1 pyramidal neurons, the reduction in Kv1.1 lowers the threshold for action potential firing. Interestingly, blocking mTOR activity with rapamycin reduces behavioral seizures and temporarily keeps Kv1.1 levels elevated. Overtime, seizure activity increases and Kv1.1 protein decreases in all animals, even those treated with rapamycin. Notably, the concentration of miR-129-5p, the negative regulator of Kv1.1 mRNA translation, increases by 21days post-status epilepticus (SE), sustaining Kv1.1 mRNA translational repression. Our results suggest that following kainic-acid induced status epilepticus there are two phases of Kv1.1 repression: (1) an initial mTOR-dependent repression of Kv1.1 that is followed by (2) a miR-129-5p persistent reduction of Kv1.1.
Collapse
Affiliation(s)
- Natasha M Sosanya
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, USA
| | - Darrin H Brager
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA
| | - Sarah Wolfe
- Institute for Cell and Molecular Biology, University of Texas at Austin, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin University Station C7000, Austin, TX 78712, USA
| | - Farr Niere
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin University Station C7000, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014; 2014:321209. [PMID: 24551460 PMCID: PMC3914553 DOI: 10.1155/2014/321209] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.
Collapse
|
15
|
Validation of suitable reference genes for expression studies in different pilocarpine-induced models of mesial temporal lobe epilepsy. PLoS One 2013; 8:e71892. [PMID: 24009668 PMCID: PMC3751890 DOI: 10.1371/journal.pone.0071892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
It is well recognized that the reference gene in a RT-qPCR should be properly validated to ensure that gene expression is unaffected by the experimental condition. We investigated eight potential reference genes in two different pilocarpine PILO-models of mesial temporal lobe epilepsy (MTLE) performing a stability expression analysis using geNorm, NormFinder and BestKepeer softwares. Then, as a validation strategy, we conducted a relative expression analysis of the Gfap gene. Our results indicate that in the systemic PILO-model Actb, Gapdh, Rplp1, Tubb2a and Polr1a mRNAs were highly stable in hippocampus of rats from all experimental and control groups, whereas Gusb revealed to be the most variable one. In fact, we observed that using Gusb for normalization, the relative mRNA levels of the Gfap gene differed from those obtained with stable genes. On the contrary, in the intrahippocampal PILO-model, all softwares included Gusb as a stable gene, whereas B2m was indicated as the worst candidate gene. The results obtained for the other reference genes were comparable to those observed for the systemic Pilo-model. The validation of these data by the analysis of the relative expression of Gfap showed that the upregulation of the Gfap gene in the hippocampus of rats sacrificed 24 hours after status epilepticus (SE) was undetected only when B2m was used as the normalizer. These findings emphasize that a gene that is stable in one pathology model may not be stable in a different experimental condition related to the same pathology and therefore, the choice of reference genes depends on study design.
Collapse
|
16
|
Bebek N, Özdemir Ö, Sayitoglu M, Hatırnaz O, Baykan B, Gürses C, Sencer A, Karasu A, Tüzün E, Üzün I, Akat S, Cine N, Sargin Kurt G, Imer M, Ozbek U, Canbolat A, Gökyigit A. Expression analysis and clinical correlation of aquaporin 1 and 4 genes in human hippocampal sclerosis. J Clin Neurosci 2013; 20:1564-70. [PMID: 23928039 DOI: 10.1016/j.jocn.2012.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/28/2012] [Accepted: 12/02/2012] [Indexed: 01/26/2023]
Abstract
Mesial temporal sclerosis (MTS) is the most frequent cause of drug resistant symptomatic partial epilepsy. The mechanism and genetic background of this unique pathology are not well understood. Aquaporins (AQP) are regulators of water homeostasis in the brain and are expressed in the human hippocampus. We explored the role of AQP genes in the pathogenetic mechanisms of MTS through an evaluation of gene expression in surgically removed human brain tissue. We analyzed AQP1 and 4 mRNA levels by quantitative real-time polymerase chain reaction and normalized to ABL and cyclophilin genes, followed by immunohistochemistry for AQP4. Relative expressions were calculated according to the delta Ct method and the results were compared using the Mann-Whitney U test. Brain specimens of 23 patients with epilepsy who had undergone surgery for MTS and seven control autopsy specimens were investigated. Clinical findings were concordant with previous studies and 61% of the patients were seizure-free in the postoperative period. AQP1 and 4 gene expression levels did not differ between MTS patients and control groups. Immunofluorescence analysis of AQP4 supported the expression results, showing no difference. Previous studies have reported contradictory results about the expression levels of AQP in MTS. To our knowledge, only one study has suggested upregulation whereas the other indicated downregulation of perivascular AQP4. Our study did not support these findings and may rule out the involvement of AQP in human MTS.
Collapse
Affiliation(s)
- N Bebek
- Neurology Department, Istanbul Faculty of Medicine, Millet cad., 34390 Capa, Istanbul, Turkey; Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Teocchi MA, Ferreira AÉD, da Luz de Oliveira EP, Tedeschi H, D'Souza-Li L. Hippocampal gene expression dysregulation of Klotho, nuclear factor kappa B and tumor necrosis factor in temporal lobe epilepsy patients. J Neuroinflammation 2013; 10:53. [PMID: 23634661 PMCID: PMC3651326 DOI: 10.1186/1742-2094-10-53] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/19/2013] [Indexed: 12/12/2022] Open
Abstract
Background Previous research in animal seizure models indicates that the pleiotropic cytokine TNF is an important effector/mediator of neuroinflammation and cell death. Recently, it has been demonstrated that TNF downregulates Klotho (KL) through the nuclear factor kappa B (NFkB) system in animal models of chronic kidney disease and colitis. KL function in the brain is unclear, although Klotho knockout (Kl−/−) mice exhibit neural degeneration and a reduction of hippocampal synapses. Our aim was to verify if the triad KL-NFKB1-TNF is also dysregulated in temporal lobe epilepsy associated with hippocampal sclerosis (TLE(HS)) patients. Findings We evaluated TNF, NFKB1 and KL relative mRNA expression levels by reverse transcription quantitative PCR (RT-qPCR) in resected hippocampal tissue samples from 14 TLE(HS) patients and compared them to five post mortem controls. Four reference genes were used: GAPDH, HPRT1, ENO2 and TBP. We found that TNF expression was dramatically upregulated in TLE(HS) patients (P <0.005). NFKB1 expression was also increased (P <0.03) while KL was significantly downregulated (P <0.03) in TLE(HS) patients. Hippocampal KL expression had an inverse correlation with NFKB1 and TNF. Conclusions Our data suggest that, similar to other inflammatory diseases, TNF downregulates KL through NFkB in TLE(HS) patients. The remarkable TNF upregulation in patients is a strong indication of hippocampal chronic inflammation. Our finding of hippocampal KL downregulation has wide implications not only for TLE(HS) but also for other neuronal disorders related to neurodegeneration associated with inflammation.
Collapse
Affiliation(s)
- Marcelo Ananias Teocchi
- Laboratory of Pediatric Endocrinology, Center for Investigation in Pediatrics, University of Campinas, PO Box 6111, Campinas, SP 13083-970, Brazil
| | | | | | | | | |
Collapse
|
18
|
Cell death and survival mechanisms are concomitantly active in the hippocampus of patients with mesial temporal sclerosis. Neuroscience 2013; 237:56-65. [DOI: 10.1016/j.neuroscience.2013.01.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 11/24/2022]
|
19
|
Pediatric temporal lobe epilepsy surgery: resection based on etiology and anatomical location. Adv Tech Stand Neurosurg 2012. [PMID: 23250838 DOI: 10.1007/978-3-7091-1360-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Advances in electrophysiological assessment with improved structural and functional neuroimaging have been very helpful in the use of surgery as a tool for drug-resistant epilepsy. Increasing interest in epilepsy surgery has had a major impact on adult patients; a refined evaluation process and new criteria for drug resistance combined with refined surgical techniques resulted in large surgical series in many centers. Pediatric surgery has lagged behind this evolution, possibly because of the diverse semiology and electrophysiology of pediatric epilepsy obscuring the focal nature of the seizures and frustrating the treatment of catastrophic epileptic syndromes specific to children. Unfortunately, refractory -epilepsy is more -devastating in children than in adults as it interferes with all aspects of neural development. Nevertheless, during the last few decades, the efforts of a small number of centers with encouraging results in pediatric epilepsy surgery have motivated pediatric neurologists to gain interest. Although well behind in the number of patients compared with that of adults, pediatric series are increasing exponentially. While temporal lobe epilepsy is the focus of interest in adults, with almost 70 % of resections in the temporal lobe, the pediatric epilepsy spectrum is different. Resective or functional surgery techniques devoted to resistant extratemporal epilepsy are the major improvements in pediatric epilepsy surgery. Temporal lobe epilepsy in adults has been studied extensively but only recently has begun to receive attention in children. Several aspects of temporal lobe epilepsy in childhood remain unclear or controversial in terms of seizure semiology and its pathology. This is reflected in the surgical treatment. Information on the major contributors to a favorable outcome, such as type or extent of resection, in terms of seizure control and morbidity is not available as in adult temporal lobe epilepsy. This chapter discusses the major discrepancies between adult and pediatric temporal lobe epilepsy and outlines the current concepts in surgical treatment. The resection strategy based on the different substrates at different locations in the temporal lobe causing seizures is emphasized with respect to available literature.
Collapse
|
20
|
Campolongo M, Benedetti L, Podhajcer OL, Pitossi F, Depino AM. Hippocampal SPARC regulates depression-related behavior. GENES BRAIN AND BEHAVIOR 2012; 11:966-76. [PMID: 22950524 DOI: 10.1111/j.1601-183x.2012.00848.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/17/2012] [Accepted: 09/02/2012] [Indexed: 12/18/2022]
Abstract
SPARC (secreted protein acidic and rich in cysteine) is a matricellular protein highly expressed during development, reorganization and tissue repair. In the central nervous system, glial cells express SPARC during development and in neurogenic regions of the adult brain. Astrocytes control the glutamate receptor levels in the developing hippocampus through SPARC secretion. To further characterize the role of SPARC in the brain, we analyzed the hippocampal-dependent adult behavior of SPARC KO mice. We found that SPARC KO mice show increased levels of anxiety-related behaviors and reduced levels of depression-related behaviors. The antidepressant-like phenotype could be rescued by adenoviral vector-mediated expression of SPARC in the adult hippocampus, but anxiety-related behavior persisted in these mice. To identify the cellular mechanisms underlying these behavioral alterations, we analyzed neuronal activity and neurogenesis in the dentate gyrus (DG). SPARC KO mice have increased levels of neuronal activity, evidenced as more neurons that express c-Fos after a footshock. SPARC also affects cell proliferation in the subgranular zone of the DG, although it does not affect maturation and survival of new neurons. SPARC expression in the adult DG does not revert the proliferation phenotype in KO mice, but our results suggest a role of SPARC in limiting the survival of new neurons in the DG. This work suggests that SPARC could affect anxiety-related behavior by modulating neuronal activity, and that depression-related behavior is dependent upon the adult expression of SPARC, which affects adult brain function by mechanisms that need to be elucidated.
Collapse
Affiliation(s)
- M Campolongo
- Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina.,Institute for Physiology, Molecular Biology and Neurosciences, CONICET, Buenos Aires, Argentina
| | - L Benedetti
- Leloir Institute Foundation-IIBBA, CONICET, Buenos Aires, Argentina
| | - O L Podhajcer
- Leloir Institute Foundation-IIBBA, CONICET, Buenos Aires, Argentina
| | - F Pitossi
- Leloir Institute Foundation-IIBBA, CONICET, Buenos Aires, Argentina
| | - A M Depino
- Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina.,Institute for Physiology, Molecular Biology and Neurosciences, CONICET, Buenos Aires, Argentina
| |
Collapse
|
21
|
Maurer-Morelli CV, de Vasconcellos JF, Reis-Pinto FC, Rocha CDS, Domingues RR, Yasuda CL, Tedeschi H, De Oliveira E, Cendes F, Lopes-Cendes I. A comparison between different reference genes for expression studies in human hippocampal tissue. J Neurosci Methods 2012; 208:44-7. [DOI: 10.1016/j.jneumeth.2012.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
22
|
Da Silva FHL, Gorter JA, Wadman WJ. Epilepsy as a dynamic disease of neuronal networks. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:35-62. [DOI: 10.1016/b978-0-444-52898-8.00003-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Bando SY, Alegro MC, Amaro E, Silva AV, Castro LHM, Wen HT, Lima LDA, Brentani H, Moreira-Filho CA. Hippocampal CA3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy. PLoS One 2011; 6:e26268. [PMID: 22022585 PMCID: PMC3194819 DOI: 10.1371/journal.pone.0026268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/23/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Prolonged febrile seizures constitute an initial precipitating injury (IPI) commonly associated with refractory mesial temporal lobe epilepsy (RMTLE). In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS) or without (NFS) febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations. METHODOLOGY/PRINCIPAL FINDINGS DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs). Co-expression network analysis showed that: i) CA3 transcriptomic profiles differ according to the IPI; ii) FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi. CONCLUSIONS/SIGNIFICANCE CA3 transcriptional signatures and dentate gyrus morphology fairly correlate with IPI in RMTLE, indicating that FS-RMTLE represents a distinct phenotype. These findings may shed light on the molecular mechanisms underlying refractory epilepsy phenotypes and contribute to the discovery of novel specific drug targets for therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Y. Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Maryana C. Alegro
- Laboratory of Integrated Systems, Escola Politécnica da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Edson Amaro
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Alexandre V. Silva
- Department of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Luiz H. M. Castro
- Clinical Neurology Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Leandro de A. Lima
- Laboratory of Biotechnology, Hospital do Câncer AC Camargo, São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, Instituto Nacional de Psiquiatria do Desenvolvimento and Laboratório de Investigação Médica 23, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
24
|
Mirza N, Vasieva O, Marson AG, Pirmohamed M. Exploring the genomic basis of pharmacoresistance in epilepsy: an integrative analysis of large-scale gene expression profiling studies on brain tissue from epilepsy surgery. Hum Mol Genet 2011; 20:4381-94. [PMID: 21852245 DOI: 10.1093/hmg/ddr365] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Some patients with pharmacoresistant epilepsy undergo therapeutic resection of the epileptic focus. At least 12 large-scale microarray studies on brain tissue from epilepsy surgery have been published over the last 10 years, but they have failed to make a significant impact upon our understanding of pharmacoresistance, because (1) doubts have been raised about their reproducibility, (2) only a small number of the gene expression changes found in each microarray study have been independently validated and (3) the results of different studies have not been integrated to give a coherent picture of the genetic changes involved in epilepsy pharmacoresistance. To overcome these limitations, we (1) assessed the reproducibility of the microarray studies by calculating the overlap between lists of differentially regulated genes from pairs of microarray studies and determining if this was greater than would be expected by chance alone, (2) used an inter-study cross-validation technique to simultaneously verify the expression changes of large numbers of genes and (3) used the combined results of the different microarray studies to perform an integrative analysis based on enriched gene ontology terms, networks and pathways. Using this approach, we respectively (1) demonstrate that there are statistically significant overlaps between the gene expression changes in different publications, (2) verify the differential expression of 233 genes and (3) identify the biological processes, networks and genes likely to be most important in the development of pharmacoresistant epilepsy. Our analysis provides novel biologically plausible candidate genes and pathways which warrant further investigation to assess their causal relevance.
Collapse
Affiliation(s)
- Nasir Mirza
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
25
|
Astrocytes control glutamate receptor levels at developing synapses through SPARC-beta-integrin interactions. J Neurosci 2011; 31:4154-65. [PMID: 21411656 DOI: 10.1523/jneurosci.4757-10.2011] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neurons recruit numerous mechanisms to facilitate the development of synaptic connections. However, little is known about activity-dependent mechanisms that control the timing and fidelity of this process. Here we describe a novel pathway used by neurons to regulate glutamate receptors at maturing central synapses. This pathway relies on communication between neurons and astrocytes and the ability of astrocytes to release the factor SPARC (secreted protein, acidic and rich in cysteine). SPARC expression is dynamically regulated and plays a critical role in determining the level of synaptic AMPARs. SPARC ablation in mice increases excitatory synapse function, causes an abnormal accumulation of surface AMPARs at synapses, and impairs synaptic plasticity during development. We further demonstrate that SPARC inhibits the properties of neuronal β3-integrin complexes, which are intimately coupled to AMPAR stabilization at synapses. Thus neuron-glial signals control glutamate receptor levels at developing synapses to enable activity-driven modifications of synaptic strength.
Collapse
|
26
|
Fang M, Xi ZQ, Wu Y, Wang XF. A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses 2011; 76:871-6. [PMID: 21429675 DOI: 10.1016/j.mehy.2011.02.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/16/2011] [Accepted: 02/20/2011] [Indexed: 01/16/2023]
Abstract
Drug refractory is an important clinical problem in epilepsy, affecting a substantial number of patients globally. Mechanisms underlying drug refractory need to be understood to develop rational therapies. Current two prevailing theories on drug refractory epilepsy (DRE) include the target hypothesis and the transporter hypothesis. However, those hypotheses could not be adequate to explain the mechanisms of all the DRE. Thus, we propose another possible mechanism of DRE, which is neural network hypothesis. It is hypothesized that seizure-induced alterations of brain plasticity including axonal sprouting, synaptic reorganization, neurogenesis and gliosis could contribute to the formation of abnormal neural network, which has not only avoided the inhibitory effect of endogenous antiepileptic system but also prevented the traditional antiepileptic drugs from entering their targets, eventually leading to DRE. We will illustrate this hypothesis at molecular and structural level based on our recent studies and other related researches.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 You Yi Road, Chongqing 400016, China
| | | | | | | |
Collapse
|
27
|
Motti D, Le Duigou C, Eugène E, Chemaly N, Wittner L, Lazarevic D, Krmac H, Marstrand T, Valen E, Sanges R, Stupka E, Sandelin A, Cherubini E, Gustincich S, Miles R. Gene expression analysis of the emergence of epileptiform activity after focal injection of kainic acid into mouse hippocampus. Eur J Neurosci 2011; 32:1364-79. [PMID: 20950280 DOI: 10.1111/j.1460-9568.2010.07403.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report gene profiling data on genomic processes underlying the progression towards recurrent seizures after injection of kainic acid (KA) into the mouse hippocampus. Focal injection enabled us to separate the effects of proepileptic stimuli initiated by KA injection. Both the injected and contralateral hippocampus participated in the status epilepticus. However, neuronal death induced by KA treatment was restricted to the injected hippocampus, although there was some contralateral axonal degeneration. We profiled gene expression changes in dorsal and ventral regions of both the injected and contralateral hippocampus. Changes were detected in the expression of 1526 transcripts in samples from three time-points: (i) during the KA-induced status epilepticus, (ii) at 2 weeks, before recurrent seizures emerged, and (iii) at 6 months after seizures emerged. Grouping genes with similar spatio-temporal changes revealed an early transcriptional response, strong immune, cell death and growth responses at 2 weeks and an activation of immune and extracellular matrix genes persisting at 6 months. Immunostaining for proteins coded by genes identified from array studies provided evidence for gliogenesis and suggested that the proteoglycan biglycan is synthesized by astrocytes and contributes to a glial scar. Gene changes at 6 months after KA injection were largely restricted to tissue from the injection site. This suggests that either recurrent seizures might depend on maintained processes including immune responses and changes in extracellular matrix proteins near the injection site or alternatively might result from processes, such as growth, distant from the injection site and terminated while seizures are maintained.
Collapse
Affiliation(s)
- Dario Motti
- SISSA/ISAS International School for Advanced Studies, Neurobiology Sector, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wierschke S, Gigout S, Horn P, Lehmann TN, Dehnicke C, Bräuer AU, Deisz RA. Evaluating reference genes to normalize gene expression in human epileptogenic brain tissues. Biochem Biophys Res Commun 2010; 403:385-90. [DOI: 10.1016/j.bbrc.2010.10.138] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
29
|
de Lanerolle NC, Lee TS, Spencer DD. Astrocytes and epilepsy. Neurotherapeutics 2010; 7:424-38. [PMID: 20880506 PMCID: PMC5084304 DOI: 10.1016/j.nurt.2010.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 01/07/2023] Open
Abstract
Astrocytes form a significant constituent of seizure foci in the human brain. For a long time it was believed that astrocytes play a significant role in the causation of seizures. With the increase in our understanding of the unique biology of these cells, their precise role in seizure foci is receiving renewed attention. This article reviews the information now available on the role of astrocytes in the hippocampal seizure focus in patients with temporal lobe epilepsy with hippocampal sclerosis. Our intent is to try to integrate the available data. Astrocytes at seizure foci seem to not be a homogeneous population of cells, and in addition to typical glial fibrillary acidic protein, positive reactive astrocytes also include a population of neuron glia-2-like cells The astrocytes in sclerotic hippocampi differ from those in nonsclerotic hippocampi in their membrane physiology, having elevated Na+ channels and reduced inwardly rectifying potassium ion channels, and some having the capacity to generate action potentials. They also have reduced glutamine synthetase and increased glutamate dehydrogenase activity. The molecular interface between the astrocyte and microvasculature is also changed. The astrocytes are also associated with increased expression of many molecules normally concerned with immune and inflammatory functions. A speculative mechanism postulates that neuron glia-2-like cells may be involved in creating a high glutamate environment, whereas the function of more typical reactive astrocytes contribute to maintain high extracellular K+ levels; both factors contributing to the hyperexcitability of subicular neurons to generate epileptiform activity. The functions of the astrocyte vascular interface may be more critical to the processes involved in epileptogenesis.
Collapse
Affiliation(s)
- Nihal C de Lanerolle
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
30
|
Pernot F, Dorandeu F, Beaup C, Peinnequin A. Selection of reference genes for real-time quantitative reverse transcription-polymerase chain reaction in hippocampal structure in a murine model of temporal lobe epilepsy with focal seizures. J Neurosci Res 2010; 88:1000-8. [PMID: 19937810 DOI: 10.1002/jnr.22282] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reference genes are often used to normalize expression of data from real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and only a validation of their stability during a given experimental paradigm leads to reliable interpretations. The present study was thus designed to validate potential reference genes in a mouse model of mesiotemporal lobe epilepsy (MTLE) with focal seizures after unilateral intrahippocampal injection of kainate (KA). Ipsilateral and contralateral hippocampi were removed during nonconvulsive status epilepticus (5 hr), epileptogenesis (7 days), and the chronic period of recurrent focal seizures (21 days). Naive animals were equally studied. The stability of eight potential reference genes (hypoxanthine phosphoribosyltransferase, Hprt1; peptidylprolyl isomerase A, Ppia; TATA box binding protein, Tbp; beta-actin, Actb; acidic ribosomal phosphoprotein P0, Arbp; glyceraldehyde-3-phosphate dehydrogenase, Gapdh; ribosomal RNA 18S, 18S rRNA; and glucuronidase beta, Gusb) were determined using geNorm and NormFinder software. The first five (Hprt1, Ppia, Tbp, Actb, and Arbp) were found to be stable across the different phases of the disease and appeared adequate for normalizing RT-qPCR data in this model. This was in contrast to the other three (18S rRNA, Gapdh, and Gusb), which showed unstable expressions and should be avoided. The analysis of KA-induced changes in the expression of glial fibrillary acidic protein (Gfap) gene resulted in various relative expressions or even a completely different pattern when unstable reference genes were used. These results highlight the absolute need to validate the reference genes for a correct interpretation of mRNA quantification.
Collapse
Affiliation(s)
- Fabien Pernot
- Département de Toxicologie, IRBA-CRSSA, La Tronche, France.
| | | | | | | |
Collapse
|
31
|
Laurén HB, Lopez-Picon FR, Brandt AM, Rios-Rojas CJ, Holopainen IE. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats. PLoS One 2010; 5:e10733. [PMID: 20505763 PMCID: PMC2873964 DOI: 10.1371/journal.pone.0010733] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age group.
Collapse
Affiliation(s)
- Hanna B. Laurén
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
| | - Francisco R. Lopez-Picon
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Annika M. Brandt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarissa J. Rios-Rojas
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Irma E. Holopainen
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
- * E-mail:
| |
Collapse
|
32
|
George AJ, Gordon L, Beissbarth T, Koukoulas I, Holsinger RMD, Perreau V, Cappai R, Tan SS, Masters CL, Scott HS, Li QX. A serial analysis of gene expression profile of the Alzheimer's disease Tg2576 mouse model. Neurotox Res 2010; 17:360-79. [PMID: 19760337 DOI: 10.1007/s12640-009-9112-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/22/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
Serial analysis of gene expression (SAGE), a technique that allows for the simultaneous detection of expression levels of the entire genome without a priori knowledge of gene sequences, was used to examine the transcriptional expression pattern of the Tg2576 mouse model of Alzheimer's disease (AD). Pairwise comparison between the Tg2576 and nontransgenic SAGE libraries identified a number of differentially expressed genes in the Tg2576 SAGE library, some of which were not previously revealed by the microarray studies. Real-time PCR was used to validate a panel of genes selected from the SAGE analysis in the Tg2576 mouse brain, as well as the hippocampus and temporal cortex of sporadic AD and normal age-matched controls. NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 5 (NDUFA5) and FXYD domain-containing ion transport regulator 6 (FXYD6) were found to be significantly decreased in the Tg2576 mouse brain and AD hippocampus. PTEN-induced putative kinase 1 (PINK1), phosphatidylethanolamine binding protein (PEBP), crystalline mu (CRYM), and neurogranin (NRGN) were significantly decreased in AD tissues. The gene ontologies represented in the Tg2576 data were statistically analyzed and demonstrated a significant under-representation of genes involved with G-protein-coupled receptor signaling and odorant binding, while genes significantly over-represented were focused on cellular communication and cellular physiological processes. The novel approach of profiling the Tg2576 mouse brain using SAGE has identified different genes that could subsequently be examined for their potential as peripheral diagnostic and prognostic markers for Alzheimer's disease.
Collapse
Affiliation(s)
- Amee J George
- Department of Pathology, The University of Melbourne and The Mental Health Research Institute of Victoria, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang YY, Smith P, Murphy M, Cook M. Global expression profiling in epileptogenesis: does it add to the confusion? Brain Pathol 2010; 20:1-16. [PMID: 19243383 PMCID: PMC2805866 DOI: 10.1111/j.1750-3639.2008.00254.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 12/14/2022] Open
Abstract
Since the inception of global gene expression profiling platforms in the mid-1990s, there has been a significant increase in publications of differentially expressed genes in the process of epileptogenesis. In particular for mesial temporal lobe epilepsy, the presence of a latency period between the first manifestation of seizures to chronic epilepsy provides the opportunity for therapeutic interventions at the molecular biology level. Using global expression profiling techniques, approximately 2000 genes have been published demonstrating differential expression in mesial temporal epilepsy. The majority of these changes, however, are specific to laboratory or experimental conditions with only 53 genes demonstrating changes in more than two publications. To this end, we review the current status of gene expression profiling in epileptogenesis and suggest standard guidelines to be followed for greater accuracy and reproducibility of results.
Collapse
Affiliation(s)
- Yi Yuen Wang
- Centre for Clinical Neuroscience and Neurological Research, St Vincent's Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
34
|
Expression and localization of voltage dependent potassium channel Kv4.2 in epilepsy associated focal lesions. Neurobiol Dis 2009; 36:81-95. [PMID: 19596445 DOI: 10.1016/j.nbd.2009.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/08/2009] [Accepted: 06/28/2009] [Indexed: 11/22/2022] Open
Abstract
An increasing number of observations suggest an important role for voltage-gated potassium (Kv) channels in epilepsy. We studied the cell-specific distribution of Kv4.2, phosphorylated (p) Kv4.2 and the Kv4.2 interacting protein NCS-1 using immunocytochemistry in different epilepsy-associated focal lesions. In hippocampal sclerosis (HS), Kv4.2 and pKv4.2 immunoreactivity (IR) was reduced in the neuropil in regions with prominent neuronal cell loss. In both HS and malformations of cortical development (MCD), intense labeling was found in neuronal somata, but not in dendrites. Strong NCS-1 IR was observed in neurons in all lesion types. Western blot analysis demonstrated an increase of total Kv4.2 in all lesions and activation of the ERK pathway in HS and ganglioglioma. These findings indicate that Kv4.2 is expressed in both neuronal and glial cells and its regulation may involve potassium channel interacting proteins, alterations in the subcellular localization of the channel, as well as phosphorylation-mediated posttranslational modifications.
Collapse
|
35
|
van Gassen KLI, de Wit M, Koerkamp MJAG, Rensen MGA, van Rijen PC, Holstege FCP, Lindhout D, de Graan PNE. Possible role of the innate immunity in temporal lobe epilepsy. Epilepsia 2007; 49:1055-65. [PMID: 18076643 DOI: 10.1111/j.1528-1167.2007.01470.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Temporal lobe epilepsy (TLE) is a multifactorial disease often involving the hippocampus. So far the etiology of the disease has remained elusive. In some pharmacoresistant TLE patients the hippocampus is surgically resected as treatment. To investigate the involvement of the immune system in human TLE, we performed large-scale gene expression profiling on this human hippocampal tissue. METHODS Microarray analysis was performed on hippocampal specimen from TLE patients with and without hippocampal sclerosis and from autopsy controls (n = 4 per group). We used a common reference pool design to perform an unbiased three-way comparison between the two patient groups and the autopsy controls. Differentially expressed genes were statistically analyzed for significant overrepresentation of gene ontology (GO) classes. RESULTS Three-way analysis identified 618 differentially expressed genes. GO analysis identified immunity and defense genes as most affected in TLE. Particularly, the chemokines CCL3 and CCL4 were highly (>10-fold) upregulated. Other highly affected gene classes include neuropeptides, chaperonins (protein protection), and the ubiquitin/proteasome system (protein degradation). DISCUSSION The strong upregulation of CCL3 and CCL4 implicates these chemokines in the etiology and pathogenesis of TLE. These chemokines, which are mainly expressed by glia, may directly or indirectly affect neuronal excitability. Genes and gene clusters identified here may provide targets for developing new TLE therapies and candidates for genetic research.
Collapse
Affiliation(s)
- Koen L I van Gassen
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aronica E, Boer K, Becker A, Redeker S, Spliet WGM, van Rijen PC, Wittink F, Breit T, Wadman WJ, Lopes da Silva FH, Troost D, Gorter JA. Gene expression profile analysis of epilepsy-associated gangliogliomas. Neuroscience 2007; 151:272-92. [PMID: 18093740 DOI: 10.1016/j.neuroscience.2007.10.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/20/2007] [Accepted: 10/11/2007] [Indexed: 01/08/2023]
Abstract
Gangliogliomas (GG) constitute the most frequent tumor entity in young patients undergoing surgery for intractable epilepsy. The histological composition of GG, with the presence of dysplastic neurons, corroborates their maldevelopmental origin. However, their histogenesis, the pathogenetic relationship with other developmental lesions, and the molecular alterations underlying the epileptogenicity of these tumors remain largely unknown. We performed gene expression analysis using the Affymetrix Gene Chip System (U133 plus 2.0 array). We used GENMAPP and the Gene Ontology database to identify global trends in gene expression data. Our analysis has identified various interesting genes and processes that are differentially expressed in GG when compared with normal tissue. The immune and inflammatory responses were the most prominent processes expressed in GG. Several genes involved in the complement pathway displayed a high level of expression compared with control expression levels. Higher expression was also observed for genes involved in cell adhesion, extracellular matrix and proliferation processes. We observed differential expression of genes as cyclin D1 and cyclin-dependent kinases, essential for neuronal cell cycle regulation and differentiation. Synaptic transmission, including GABA receptor signaling was an under-expressed process compared with control tissue. These data provide some suggestions for the molecular pathogenesis of GG. Furthermore, they indicate possible targets that may be investigated in order to dissect the mechanisms of epileptogenesis and possibly counteract the epileptogenic process in these developmental lesions.
Collapse
Affiliation(s)
- E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lukasiuk K, Pitkänen A. Gene and protein expression in experimental status epilepticus. Epilepsia 2007; 48 Suppl 8:28-32. [DOI: 10.1111/j.1528-1167.2007.01342.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Abstract
Epilepsy is one of the most common neurological disorders. Temporal lobe epilepsy (TLE) represents the most frequent epilepsy syndrome in adult patients with resistance to pharmacological treatment. In TLE, the origin of seizure activity typically involves the hippocampal formation, which displays major neuropathological features, described with the term hippocampal sclerosis (HS). The expansion of neurosurgical epilepsy programs has offered the possibility of disposing of clinically well-characterized hippocampal tissue, so that the analysis of molecular mechanisms underlying the structural and functional reorganization occurring in the hippocampus and neighboring areas in TLE patients can be done on a large scale. The recent development of molecular biological technologies permits the analysis of changes in the expression of a large number of genes. This has opened new perspectives for epilepsy research. However, the hippocampal specimens obtained from patients with TLE most often represent an advanced stage of the pathology. For this reason, animal models that reproduce the clinical and histopathological features of TLE are helpful in detecting the early development of the pathological cascade leading to TLE with HS. An overview of recent data of gene expression profiles in human and experimental TLE is presented along with a discussion of the relevance of functional genomics, to develop new hypotheses and to detect likely candidate genes involved in epileptogenesis, as well as possible target molecules for new therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
39
|
Gorter JA, van Vliet EA, Aronica E, Breit T, Rauwerda H, Lopes da Silva FH, Wadman WJ. Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci 2006; 26:11083-110. [PMID: 17065450 PMCID: PMC6674659 DOI: 10.1523/jneurosci.2766-06.2006] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To get insight into the mechanisms that may lead to progression of temporal lobe epilepsy, we investigated gene expression during epileptogenesis in the rat. RNA was obtained from three different brain regions [CA3, entorhinal cortex (EC), and cerebellum (CB)] at three different time points after electrically induced status epilepticus (SE): acute phase [group D (1 d)], latent period [group W (1 week)], and chronic epileptic period [group M (3-4 months)]. A group that was stimulated but that had not experienced SE and later epilepsy was also included (group nS). Gene expression analysis was performed using the Affymetrix Gene Chip System (RAE230A). We used GENMAPP and Gene Ontology to identify global biological trends in gene expression data. The immune response was the most prominent process changed during all three phases of epileptogenesis. Synaptic transmission was a downregulated process during the acute and latent phases. GABA receptor subunits involved in tonic inhibition were persistently downregulated. These changes were observed mostly in both CA3 and EC but not in CB. Rats that were stimulated but that did not develop spontaneous seizures later on had also some changes in gene expression, but this was not reflected in a significant change of a biological process. These data suggest that the targeting of specific genes that are involved in these biological processes may be a promising strategy to slow down or prevent the progression of epilepsy. Especially genes related to the immune response, such as complement factors, interleukins, and genes related to prostaglandin synthesis and coagulation pathway may be interesting targets.
Collapse
Affiliation(s)
- Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|