1
|
González-Benítez N, Martín-Rodríguez I, Cuesta I, Arrayás M, White JF, Molina MC. Endophytic Microbes Are Tools to Increase Tolerance in Jasione Plants Against Arsenic Stress. Front Microbiol 2021; 12:664271. [PMID: 34690941 PMCID: PMC8527096 DOI: 10.3389/fmicb.2021.664271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
Seed microbiota is becoming an emergent area of research. Host plant microbial diversity is increasingly well described, yet relatively little is known about the stressors driving plant endomicrobiota at the metaorganism level. The present work examines the role of horizontal and vertical transmission of bacterial microbiota in response to abiotic stress generated by arsenic. Horizontal transmission is achieved by bioaugmentation with the endophyte Rhodococcus rhodochrous, while vertical transmission comes via maternal inheritance from seeds. To achieve this goal, all experiments were conducted with two Jasione species. J. montana is tolerant to arsenic (As), whereas J. sessiliflora, being phylogenetically close to J. montana, was not previously described as As tolerant. The Jasione core bacterial endophytes are composed of genera Pseudomonas, Ralstonia, Undibacterium, Cutibacterium, and Kocuria and family Comamanadaceae across different environmental conditions. All these operational taxonomic units (OTUs) coexisted from seeds to the development of the seedling, independently of As stress, or bioaugmentation treatment and Jasione species. R. rhodochrous colonized efficiently both species, driving the endomicrobiota structure of Jasione with a stronger effect than As stress. Despite the fact that most of the OTUs identified inside Jasione seeds and seedlings belonged to rare microbiota, they represent a large bacterial reservoir offering important physiological and ecological traits to the host. Jasione traits co-regulated with R. rhodochrous, and the associated microbiota improved the host response to As stress. NGS-Illumina tools provided further knowledge about the ecological and functional roles of plant endophytes.
Collapse
Affiliation(s)
- Natalia González-Benítez
- Department of Biology, Geology, Physics, and Inorganic Chemistry, Universidad Rey Juan Carlos, Madrid, Spain
| | - Irene Martín-Rodríguez
- Department of Biology, Geology, Physics, and Inorganic Chemistry, Universidad Rey Juan Carlos, Madrid, Spain
| | - Isabel Cuesta
- Unidad de Bioinformática, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Arrayás
- Área de Electromagnetismo, Universidad Rey Juan Carlos, Madrid, Spain
| | - James Francis White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - María Carmen Molina
- Department of Biology, Geology, Physics, and Inorganic Chemistry, Universidad Rey Juan Carlos, Madrid, Spain.,Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
2
|
A Gnotobiotic Model to Examine Plant and Microbiome Contributions to Survival under Arsenic Stress. Microorganisms 2020; 9:microorganisms9010045. [PMID: 33375331 PMCID: PMC7823691 DOI: 10.3390/microorganisms9010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
So far, the relative importance of the plant and its microbiome in the development of early stages of plant seedling growth under arsenic stress has not been studied. To test the role of endophytic bacteria in increasing plant success under arsenic stress, gnotobiotic seeds of J. montana were inoculated with two endophytic bacteria: Pantoea conspicua MC-K1 (PGPB and As resistant bacteria) and Arthrobacter sp. MC-D3A (non-helper and non-As resistant bacteria) and an endobacteria mixture. In holobiotic seedlings (with seed-vectored microbes intact), neither the capacity of germination nor development of roots and lateral hairs was affected at 125 μM As(V). However, in gnotobiotic seedlings, the plants are negatively impacted by absence of a microbiome and presence of arsenic, resulting in reduced growth of roots and root hairs. The inoculation of a single PGPB (P. conspicua-MCK1) shows a tendency to the recovery of the plant, both in arsenic enriched and arsenic-free media, while the inoculation with Arthrobacter sp. does not help in the recovery of the plants. Inoculation with a bacterial mixture allows recovery of plants in arsenic free media; however, plants did not recover under arsenic stress, probably because of a bacterial interaction in the mixture.
Collapse
|
3
|
Ultrastructural features of aberrant glial cells isolated from the spinal cord of paralytic rats expressing the amyotrophic lateral sclerosis-linked SOD1G93A mutation. Cell Tissue Res 2017; 370:391-401. [PMID: 28864831 DOI: 10.1007/s00441-017-2681-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
In the rat model of amyotrophic lateral sclerosis expressing the G93A superoxide dismutase-1 mutation, motor neuron death and rapid paralysis progression are associated with the emergence of a population of aberrant glial cells (AbAs) that proliferate in the degenerating spinal cord. Targeting of AbAs with anti-neoplasic drugs reduced paralysis progression, suggesting a pathogenic potential contribution of these cells accelerating paralysis progression. In the present study, analyze the cellular and ultrastructural features of AbAs following their isolation and establishment in culture during several passages. We found that AbAs exhibit permanent loss of contact inhibition, absence of intermediate filaments and abundance of microtubules, together with an important production of extracellular matrix components. Remarkably, AbAs also exhibited exacerbated ER stress together with a significant abundance of lipid droplets, as well as autophagic and secretory vesicles, all characteristic features of cellular stress and inflammatory activation. Taken together, the present data show AbA cells as a unique aberrant phenotype for a glial cell that might explain their pathogenic and neurotoxic effects.
Collapse
|
4
|
Hamilton KS, Gopal KV, Moore EJ, Gross GW. Pharmacological response sensitization in nerve cell networks exposed to the antibiotic gentamicin. Eur J Pharmacol 2016; 794:92-99. [PMID: 27864104 DOI: 10.1016/j.ejphar.2016.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/26/2022]
Abstract
Gentamicin is an aminoglycoside antibiotic that is used in clinical, organismic, and agricultural applications to combat gram-negative, aerobic bacteria. The clinical use of gentamicin is widely linked to various toxicities, but there is a void in our knowledge about the neuromodulatory or neurotoxicity effects of gentamicin. This investigation explored the electrophysiologic effects of gentamicin on GABAergic pharmacological profiles in spontaneously active neuronal networks in vitro derived from auditory cortices of E16 mouse embryos and grown on microelectrode arrays. Using the GABAA agonist muscimol as the test substance, responses from networks to dose titrations of muscimol were compared in the presence and absence of 100µM gentamicin (the recommended concentration for cell culture conditions). Spike-rate based EC50 values were generated using sigmoidal fit concentration response curves (CRCs). Exposure to 100µM gentamicin exhibited a muscimol EC50±S.E.M. of 80±6nM (n=10). The EC50 value obtained in the absence of gentamicin was 124±11nM (n=10). The 35% increase in potency suggests network sensitization to muscimol in the presence of gentamicin. Action potential (AP) waveform analyses of neurons exposed to gentamicin demonstrated a concentration-dependent decrease in AP amplitudes (extracellular recordings), possibly reflecting gentamicin effects on voltage-gated ion channels. These in vitro results reveal alteration of pharmacological responses by antibiotics that could have significant influence on the behavior and performance of animals.
Collapse
Affiliation(s)
- Kevin S Hamilton
- Department of Audiology & Speech-Language Pathology, University of North Texas, 1155 Union Circle #305010, Denton, TX 76203, USA; Center for Network Neuroscience, University of North Texas, 1155 Union Circle #305010, Denton, TX 76203, USA.
| | - Kamakshi V Gopal
- Department of Audiology & Speech-Language Pathology, University of North Texas, 1155 Union Circle #305010, Denton, TX 76203, USA; Center for Network Neuroscience, University of North Texas, 1155 Union Circle #305010, Denton, TX 76203, USA.
| | - Ernest J Moore
- Department of Audiology & Speech-Language Pathology, University of North Texas, 1155 Union Circle #305010, Denton, TX 76203, USA; Center for Network Neuroscience, University of North Texas, 1155 Union Circle #305010, Denton, TX 76203, USA.
| | - Guenter W Gross
- Dept. of Biological Sciences, University of North Texas, 1155 Union Circle #305010, Denton, TX 76203, USA; Center for Network Neuroscience, University of North Texas, 1155 Union Circle #305010, Denton, TX 76203, USA.
| |
Collapse
|
5
|
Koh JY, Iwabuchi S, Huang Z, Harata NC. Rapid genotyping of animals followed by establishing primary cultures of brain neurons. J Vis Exp 2015. [PMID: 25742545 DOI: 10.3791/51879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Collapse
Affiliation(s)
- Jin-Young Koh
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine; Department of Psychiatry, University of Iowa Carver College of Medicine
| | - Sadahiro Iwabuchi
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | | | - N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine;
| |
Collapse
|
6
|
Ultrastructural characterization of rat neurons in primary culture. Neuroscience 2011; 200:248-60. [PMID: 22079571 DOI: 10.1016/j.neuroscience.2011.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/14/2011] [Accepted: 10/04/2011] [Indexed: 11/23/2022]
Abstract
Few studies have addressed the ultrastructure and morphology of neurons in primary pure culture. We therefore use immunohistochemistry and electron microscopy to investigate the ultrastructure of cultured neurons during extended incubation in vitro. Rat cerebral cortex neurons were cultured in Neurobasal™ medium. Adherent cells developed as networks of single neurons or clusters depending on the plating density. Almost all surviving cells were neurons as demonstrated by neurofilament immunolabeling. The number of cultured neurons increased substantially to 14-21 days in vitro (DIV) and then plateaued and subsequently declined. From DIV 1-10 neurons extended large neurites, followed by the development of fine and dense neurites, and neurones survived until DIV 30-50. Notably, numerous mitochondria were observed along fibrous elements within neurites, suggestive of active intracellular trafficking. Electron microscopy also revealed that multiple types of synapses were formed between neurons. These ultrastructural results confirm previous reports of electrophysiological activity in cultured neurons. However many neurons contained distorted mitochondria and abnormal organelles including multilamellar vesicles and multivesicular myeloid bodies. The proportion of neurons containing abnormal organelles increased significantly in culture medium supplemented with antibiotics. On long-term culture neuronal death and apoptotic nuclei were observed. Despite the presence of abnormal organelles, the ultrastructure of cultured neurons was very similar to that of in vivo neurons; in vitro culture therefore provides a useful tool for studies on neuronal development, aging, and neurotransmission.
Collapse
|
7
|
Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 2011; 93:313-40. [PMID: 21216273 DOI: 10.1016/j.pneurobio.2011.01.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of "geometrically simpler" cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer's, Huntington's, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
8
|
Czarna M, Mathy G, Mac'Cord A, Dobson R, Jarmuszkiewicz W, Sluse-Goffart CM, Leprince P, De Pauw E, Sluse FE. Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of development. Proteomics 2010; 10:6-22. [PMID: 20013782 DOI: 10.1002/pmic.200900352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2-D DIGE technology allowed the detection of around 2000 protein spots on each 2-D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CM Ros showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation-induced development.
Collapse
Affiliation(s)
- Malgorzata Czarna
- Laboratory of Bioenergetics and Cellular Physiology, University of Liege, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Basile A, Sorbo S, Aprile G, Conte B, Cobianchi RC, Pisani T, Loppi S. Heavy metal deposition in the Italian "triangle of death" determined with the moss Scorpiurum circinatum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2255-2260. [PMID: 19446383 DOI: 10.1016/j.envpol.2009.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 05/27/2023]
Abstract
In this study, a biomonitoring project using the moss Scorpiurum circinatum was carried out to evaluate the deposition and biological effects of heavy metals in the area of Acerra (Naples, S Italy), one of the vertices of the sadly called "Italian triangle of death" owing to the dramatic increase in tumours. The results clearly indicated that the study area is heavily polluted by heavy metals, a large proportion of which is likely present in the atmosphere in particulate form. The ultrastructural organization of exposed samples was essentially preserved, but cell membrane pits, cytoplasm vesicles and concentric multilamellar/multivesicular bodies, probably induced by pollution, were found, which may be involved in the tolerance mechanisms to metal pollution in this moss species. Although severe biological effects were not found at the ultrastructural level in the exposed moss, effects on humans, especially after long-term exposure, are to be expected.
Collapse
|
10
|
Nadrigny F, Li D, Kemnitz K, Ropert N, Koulakoff A, Rudolph S, Vitali M, Giaume C, Kirchhoff F, Oheim M. Systematic colocalization errors between acridine orange and EGFP in astrocyte vesicular organelles. Biophys J 2007; 93:969-80. [PMID: 17416619 PMCID: PMC1913145 DOI: 10.1529/biophysj.106.102673] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 01/22/2007] [Indexed: 11/18/2022] Open
Abstract
Dual-color imaging of acridine orange (AO) and EGFP fused to a vesicular glutamate transporter or the vesicle-associated membrane proteins 2 or 3 has been used to visualize a supposedly well-defined subpopulation of glutamatergic astrocytic secretory vesicles undergoing regulated exocytosis. However, AO metachromasy results in the concomitant emission of green and red fluorescence from AO-stained tissue. Therefore, the question arises whether AO and EGFP fluorescence can be distinguished reliably. We used evanescent-field imaging with spectral fluorescence detection as well as fluorescence lifetime imaging microscopy to demonstrate that green fluorescent AO monomers inevitably coexist with red fluorescing AO dimers, at the level of single astroglial vesicles. The green monomer emission spectrally overlaps with that of EGFP and produces a false apparent colocalization on dual-color images. On fluorophore abundance maps calculated from spectrally resolved and unmixed single-vesicle spectral image stacks, EGFP is obscured by the strong green monomer fluorescence, precluding the detection of EGFP. Hence, extreme caution is required when deriving quantitative colocalization information from images of dim fluorescing EGFP-tagged organelles colabeled with bright and broadly emitting dyes like AO. We finally introduce FM4-64/EGFP dual-color imaging as a remedy for imaging a distinct population of astroglial fusion-competent secretory vesicles.
Collapse
|