1
|
Abiramalatha T, Ramaswamy VV, Ponnala AK, Kallem VR, Murkunde YV, Punnoose AM, Vivekanandhan A, Pullattayil AK, Amboiram P. Emerging neuroprotective interventions in periventricular leukomalacia: A systematic review of preclinical studies. Expert Opin Investig Drugs 2022; 31:305-330. [PMID: 35143732 DOI: 10.1080/13543784.2022.2040479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Periventricular leukomalacia (PVL) is a result of various antenatal, intrapartum, or postnatal insults to the developing brain and is an important harbinger of cerebral palsy in preterm neonates. There is no proven therapy for PVL. This calls for appraisal of targeted therapies that have been investigated in animal models to evaluate their relevance in clinical research context. AREAS COVERED This systematic review identifies interventions that were evaluated in preclinical studies for neuroprotective efficacy against PVL. We identified 142 studies evaluating various interventions in PVL animal models. (Search method is detailed in section 2). EXPERT OPINION Interventions that have yielded significant results in preclinical research, and that have been evaluated in a limited number of clinical trials include stem cells, erythropoietin, and melatonin. Many other therapeutic modalities evaluated in preclinical studies have been identified, but more data on their neuroprotective potential in PVL must be garnered before they can be considered for clinical trials. Because most of the tested interventions had only a partial efficacy, a combination of interventions that could be synergistic should be investigated in future preclinical studies. Furthermore, since the nature and pattern of perinatal insults to preterm brain predisposing it to PVL are substantially variable, individualised approaches for the choice of appropriate neuroprotective interventions tailored to different sub-groups of preterm neonates should be explored.
Collapse
Affiliation(s)
- Thangaraj Abiramalatha
- Consultant Neonatologist, Kovai Medical Center and Hospital (KMCH).,Department of Pediatrics and Neonatology, KMCH Institute of Health Sciences and Research, Coimbatore, India
| | | | - Andelsivj Kumar Ponnala
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Yogeshkumar V Murkunde
- Centre for Toxicology and Developmental Research (CEFTE), Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Alan Mathew Punnoose
- Department of Stem Cell Research and Regenerative Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Prakash Amboiram
- Department of Neonatology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
2
|
Ransom BR, Goldberg MP, Arai K, Baltan S. White Matter Pathophysiology. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Huang J, Yang J, Zou X, Zuo S, Wang J, Cheng J, Zhu H, Li W, Shi M, Zhao G, Liu Z. Ginkgolide B promotes oligodendrocyte precursor cell differentiation and survival via Akt/CREB/bcl-2 signaling pathway after white matter lesion. Exp Biol Med (Maywood) 2021; 246:1198-1209. [PMID: 33557607 PMCID: PMC8142115 DOI: 10.1177/1535370221989955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
White matter lesion (WML) is caused by chronic cerebral hypoperfusion, which are usually associated with cognitive impairment. Evidence from recent studies has shown that ginkgolide B has a neuroprotective effect that could be beneficial for the treatment of ischemia; however, it is not clear whether ginkgolide B has a protective effect on WML. Our data show that ginkgolide B can promote the differentiation of oligodendrocyte precursor cell (OPC) into oligodendrocytes and promote oligodendrocyte survival following a WML. Ginkgolide B (5, 10, 20 mg/kg) or saline is administered intraperitoneally every day after WML. After 4 weeks, the data of Morris water maze suggested that rats' memory and learning abilities were impaired, and the administration of ginkgolide B enhanced behavioral achievement. Also, treatment with ginkgolide B significantly attenuated this loss of myelin. Our result suggests that ginkgolide B promotes the differentiation of OPC into oligodendrocytes. We also found that ginkgolide B ameliorates oligodendrocytes apoptosis. Furthermore, ginkgolide B enhanced the expression of phosphorylated Akt and CREB. In conclusion, our data firstly show that ginkgolide B promotes oligodendrocyte genesis and oligodendrocyte myelin following a WML, possibly involving the Akt and CREB pathways.
Collapse
Affiliation(s)
- Jian Huang
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Yang
- Department of Nephrology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xingju Zou
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shilun Zuo
- Department of Neurology, Second Affiliated Hospital of Army Military Medical University, Chongqing 400038, China
| | - Jing Wang
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Cheng
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Zhu
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weiwang Li
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhirong Liu
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
4
|
Ransom BR, Goldberg MP, Arai K, Baltan S. White Matter Pathophysiology. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Omouendze PL, Henry VJ, Porte B, Dupré N, Carmeliet P, Gonzalez BJ, Marret S, Leroux P. Hypoxia-ischemia or excitotoxin-induced tissue plasminogen activator- dependent gelatinase activation in mice neonate brain microvessels. PLoS One 2013; 8:e71263. [PMID: 23940734 PMCID: PMC3735506 DOI: 10.1371/journal.pone.0071263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/26/2013] [Indexed: 12/02/2022] Open
Abstract
Hypoxia-ischemia (HI) and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9) activity links in HI and excitotoxicity lesion models in 5 day–old pups in wild type and in t-PA or its inhibitor (PAI-1) genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O2). Excitotoxic lesions were produced by intra parenchymal cortical (i.c.) injections of 10 µg ibotenate (Ibo). Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA−/− and enhanced in PAI-1−/− mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA−/− mice. In PAI-1−/− mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1−/− and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM) induced DQ-gelatin activation in vessels. The effect was not detected in t-PA−/−mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL). In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have neuroprotection potential against neonatal brain injuries.
Collapse
Affiliation(s)
- Priscilla L. Omouendze
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Vincent J. Henry
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Baptiste Porte
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Nicolas Dupré
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bruno J. Gonzalez
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Stéphane Marret
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
- Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Philippe Leroux
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
- * E-mail:
| |
Collapse
|
6
|
Molecular Pathophysiology of White Matter Anoxic-Ischemic Injury. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Neuroprotective effects vary across nonsteroidal antiinflammatory drugs in a mouse model of developing excitotoxic brain injury. Neuroscience 2010; 167:716-23. [PMID: 20188153 DOI: 10.1016/j.neuroscience.2010.02.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/26/2010] [Accepted: 02/18/2010] [Indexed: 11/23/2022]
Abstract
Glutamate excitotoxicity is among the main cellular mechanisms leading to perinatal insults in human newborns. We used intracerebral injection of the glutamatergic glutamate N-methyl-D-aspartate-receptor agonist ibotenate to produce excitotoxic lesions mimicking the acquired white matter lesions seen in human preterm infants. We evaluated whether nonsteroidal antiinflammatory drugs (NSAIDs) protected against glutamate excitotoxicity. Aspirin (0.01-100 microg/d), indomethacin (0.1-10 microg/d), paracetamol (10-100 microg/d), or NS-398 (12.5 microg/d) was given daily before ibotenate (P1 to P5) or after ibotenate (P5 to P9). Lesion size was measured on Cresyl Violet-stained brain sections collected on P10. None of the drugs tested alone or in combination increased lesion size. Pretreatment with low- or high-dose aspirin and post-treatment with paracetamol or NS-398 protected against white matter lesions, whereas cortical lesions were decreased by pretreatment with low- or high-dose aspirin or post-treatment with NS-398. The corticosteroid betamethasone (0.18 microg/d) was neuroprotective when given before or after ibotenate and this effect was reversed by concomitant aspirin therapy (10 microg/d). In conclusion, perinatal NSAID administration may have beneficial effects on brain injury if appropriately timed.
Collapse
|
8
|
Legros H, Launay S, Roussel BD, Marcou-Labarre A, Calbo S, Catteau J, Leroux P, Boyer O, Ali C, Marret S, Vivien D, Laudenbach V. Newborn- and adult-derived brain microvascular endothelial cells show age-related differences in phenotype and glutamate-evoked protease release. J Cereb Blood Flow Metab 2009; 29:1146-58. [PMID: 19367295 DOI: 10.1038/jcbfm.2009.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Few data are available on the involvement of brain microvascular endothelial cells (BMECs) in excitotoxic neonatal brain lesions. Therefore, we developed an original approach for investigating mouse-derived BMECs in vitro. We hypothesized that newborn and adult BMEC cultures would show age-related differences in phenotype and sensitivity to glutamate. Expression of the monocarboxylate transporter, MCT1, was higher in neonatal than in adult BMECs, whereas expression of the glucose transporter, GLUT1, was higher in adult than in neonatal BMECs that overexpressed the N-methyl-D-aspartate receptor NR1 subunit (NMDAR1) compared with adult BMECs. The ability of neonatal and adult BMECs to be activated by glutamate was confirmed through intracellular calcium ([Ca2+]i) recording. The glutamate-induced [Ca2+]i increase was blocked by the selective NMDAR antagonist, MK-801. Significant glutamate-evoked concentration-dependent release of tissue-type plasminogen activator (t-PA) and matrix metalloproteinases (MMPs) activities was found in supernatants of neonatal, but not in adult BMECs. The glutamate-mediated release of t-PA, MMP-2, and MMP-9 proteolytic activities in neonatal BMECs was blocked by MK-801. Conceivably, this protease release from neonatal BMECs may participate in neonatal brain lesions.
Collapse
Affiliation(s)
- Hélène Legros
- EA 4309 Neovasc Microvascular Endothelium and Neonatal Brain Lesions, IHURBM, IFRMP 23, School of Medicine and Pharmacy, University of Rouen, Rouen, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Adhami F, Yu D, Yin W, Schloemer A, Burns KA, Liao G, Degen JL, Chen J, Kuan CY. Deleterious effects of plasminogen activators in neonatal cerebral hypoxia-ischemia. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1704-16. [PMID: 18467699 DOI: 10.2353/ajpath.2008.070979] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immature brains of newborns often respond differently from the brains of adults when exposed to similar insults. Previous studies have indicated that although hypoxia-ischemia (HI) induces persistent thrombosis in adult brains, it only modestly impairs blood perfusion in newborn brains. Here, we used the Vannucci model of HI encephalopathy to study age-related responses to cerebral HI in rat pups. We found that HI triggered fibrin deposition and impaired blood perfusion in both neonatal and adult brains. However, these effects were only transient in neonatal brains (<4 hours) and were accompanied by acute induction of both tissue-type and urinary-type plasminogen activators (tPA and uPA), which was not observed in adult brains subjected to the same insult. Interestingly, activation of the plasminogen system persisted up to 24 hours in neonatal brains, long after the clearance of fibrin-rich thrombi. Furthermore, astrocytes and macrophages outside blood vessels expressed tPA after HI, suggesting the possibility of tPA/plasmin-mediated cytotoxicity. Consistent with this hypothesis, injection of alpha2-antiplasmin into cerebral ventricles markedly ameliorated HI-induced damage to neurofilaments and white matter oligodendrocytes, providing a dose-response reduction of brain injury after 7 days of recovery. Conversely, ventricular injection of tPA increased HI-induced brain damage. Together, these results suggest that tPA/plasmin induction, which may contribute to acute fibrinolysis, is a critical component of extravascular proteolytic damage in immature brains, representing a new therapeutic target for the treatment of HI encephalopathy.
Collapse
Affiliation(s)
- Faisal Adhami
- Division of Developmental Biology and Division of Neurology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A comparison of behavioural and histological outcomes of periventricular injection of ibotenic acid in neonatal rats at postnatal days 5 and 7. Brain Res 2008; 1201:187-95. [DOI: 10.1016/j.brainres.2008.01.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 11/22/2022]
|