1
|
Cromwell HC. Translating striatal activity from brain slice to whole animal neurophysiology: A guide for neuroscience research integrating diverse levels of analysis. J Neurosci Res 2019; 97:1528-1545. [PMID: 31257656 DOI: 10.1002/jnr.24480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
An important goal of this review is highlighting research in neuroscience as examples of multilevel functional and anatomical analyses addressing basic science issues and applying results to the understanding of diverse disorders. The research of Dr. Michael Levine, a leader in neuroscience, exemplifies this approach by uncovering fundamental properties of basal ganglia function and translating these findings to clinical applications. The review focuses on neurophysiological research connecting results from in vitro and in vivo recordings. A second goal is to utilize these research connections to produce novel, accurate descriptions for corticostriatal processing involved in varied, complex functions. Medium spiny neurons in striatum act as integrators combining input with baseline activity creating motivational "events." Basic research on corticostriatal synapses is described and links developed to issues with clinical relevance such as inhibitory gating, self-injurious behavior, and relative reward valuation. Work is highlighted on dopamine-glutamate interactions. Individual medium spiny neurons express both D1 and D2 receptors and encode information in a bivalent manner depending upon the mix of receptors involved. Current work on neurophysiology of reward processing has taken advantage of these basic approaches at the cellular and molecular levels. Future directions in studying physiology of reward processing and action sequencing could profit by incorporating the divergent ways dopamine modulates incoming neurochemical signals. Primary investigators leading research teams should mirror Mike Levine's efforts in "climbing the mountain" of scientific inquiry by performing analyses at different levels of inquiry, integrating the findings, and building comprehensive answers to problems unsolvable without this bold approach.
Collapse
Affiliation(s)
- Howard Casey Cromwell
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio
| |
Collapse
|
2
|
Wood J, Simon NW, Koerner FS, Kass RE, Moghaddam B. Networks of VTA Neurons Encode Real-Time Information about Uncertain Numbers of Actions Executed to Earn a Reward. Front Behav Neurosci 2017; 11:140. [PMID: 28848408 PMCID: PMC5550723 DOI: 10.3389/fnbeh.2017.00140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/14/2017] [Indexed: 12/03/2022] Open
Abstract
Multiple and unpredictable numbers of actions are often required to achieve a goal. In order to organize behavior and allocate effort so that optimal behavioral policies can be selected, it is necessary to continually monitor ongoing actions. Real-time processing of information related to actions and outcomes is typically assigned to the prefrontal cortex and basal ganglia, but also depends on midbrain regions, especially the ventral tegmental area (VTA). We were interested in how individual VTA neurons, as well as networks within the VTA, encode salient events when an unpredictable number of serial actions are required to obtain a reward. We recorded from ensembles of putative dopamine and non-dopamine neurons in the VTA as animals performed multiple cued trials in a recording session where, in each trial, serial actions were randomly rewarded. While averaging population activity did not reveal a response pattern, we observed that different neurons were selectively tuned to low, medium, or high numbered actions in a trial. This preferential tuning of putative dopamine and non-dopamine VTA neurons to different subsets of actions in a trial allowed information about binned action number to be decoded from the ensemble activity. At the network level, tuning curve similarity was positively associated with action-evoked noise correlations, suggesting that action number selectivity reflects functional connectivity within these networks. Analysis of phasic responses to cue and reward revealed that the requirement to execute multiple and uncertain numbers of actions weakens both cue-evoked responses and cue-reward response correlation. The functional connectivity and ensemble coding scheme that we observe here may allow VTA neurons to cooperatively provide a real-time account of ongoing behavior. These computations may be critical to cognitive and motivational functions that have long been associated with VTA dopamine neurons.
Collapse
Affiliation(s)
- Jesse Wood
- Department of Psychiatry, University of PittsburghPittsburgh, PA, United States
| | - Nicholas W Simon
- Department of Psychology, University of MemphisMemphis, TN, United States
| | - F Spencer Koerner
- Department of Statistics, Carnegie Mellon UniversityPittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of PittsburghPittsburgh, PA, United States
| | - Robert E Kass
- Department of Statistics, Carnegie Mellon UniversityPittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University and the University of PittsburghPittsburgh, PA, United States.,Machine Learning Department, Carnegie Mellon UniversityPittsburgh, PA, United States
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, Oregon Health and Sciences UniversityPortland, OR, United States
| |
Collapse
|
3
|
Huang H, Ya J, Wu Z, Wen C, Zheng S, Tian C, Ren H, Carlson S, Yu H, Chen F, Jianhong W. Dose-Dependent Changes in Auditory Sensory Gating in the Prefrontal Cortex of the Cynomolgus Monkey. Med Sci Monit 2016; 22:1752-60. [PMID: 27218151 PMCID: PMC4920095 DOI: 10.12659/msm.898938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Sensory gating, often described as the ability to filter out irrelevant information that is repeated in close temporal proximity, is essential for the selection, processing, and storage of more salient information. This study aimed to test the effect of sensory gating under anesthesia in the prefrontal cortex (PFC) of monkeys following injection of bromocriptine, haloperidol, and phencyclidine (PCP). MATERIAL AND METHODS We used an auditory evoked potential that can be elicited by sound to examine sensory gating during treatment with haloperidol, bromocriptine, and PCP in the PFC in the cynomolgus monkey. Scalp electrodes were located in the bilateral PFC and bilateral temporal, bilateral parietal, and occipital lobes. Administration of bromocriptine (0.313 mg/kg, 0.625 mg/kg, and 1.25 mg/kg), haloperidol (0.001 mg/kg, 0.01 mg/kg, and 0.05 mg/kg), and the N-methyl-D-aspartic acid receptor antagonist PCP (0.3 mg/kg) influenced sensory gating. RESULTS We demonstrated the following: (1) Administration of mid-dose bromocriptine disrupted sensory gating (N100) in the right temporal lobe, while neither low-dose nor high-dose bromocriptine impaired gating. (2) Low-dose haloperidol impaired gating in the right prefrontal cortex. Mid-dose haloperidol disrupted sensory gating in left occipital lobe. High-dose haloperidol had no obvious effect on sensory gating. (3) Gating was impaired by PCP in the left parietal lobe. CONCLUSIONS Our studies showed that information processing was regulated by the dopaminergic system, which might play an important role in the PFC. The dopaminergic system influenced sensory gating in a dose- and region-dependent pattern, which might modulate the different stages that receive further processing due to novel information.
Collapse
Affiliation(s)
- Hui Huang
- Second Department of Neurosurgery, First Affiliation Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jinrong Ya
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China (mainland)
| | - Zhe Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China (mainland)
| | - Chunmei Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China (mainland)
| | - Suyue Zheng
- Department of Neurosurgery, First Affiliation Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Chaoyang Tian
- , Hainan Jingang Biological Technology Co., Ltd., Haikou, Hainan, China (mainland)
| | - Hui Ren
- Department of Neurology, First Affiliation Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Synnöve Carlson
- Neuroscience Unit, Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Hualin Yu
- Second Department of Neurosurgery, First Affiliation Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Feng Chen
- Department of Radiology, People's Hospital of Hainan, Haikou, Hainan, China (mainland)
| | - Wang Jianhong
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China (mainland)
| |
Collapse
|
4
|
Comparing Pharmacological Modulation of Sensory Gating in Healthy Humans and Rats: The Effects of Reboxetine and Haloperidol. Neuropsychopharmacology 2016; 41:638-45. [PMID: 26129678 PMCID: PMC5130139 DOI: 10.1038/npp.2015.194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 11/09/2022]
Abstract
Sensory gating is the brain's ability to filter out irrelevant information before it reaches high levels of conscious processing. In the current study we aimed to investigate the involvement of the noradrenergic and dopaminergic neurotransmitter systems in sensory gating. Furthermore, we investigated cross-species reliability by comparing effects in both healthy humans and rats, while keeping all experimental conditions as similar as possible between the species. The design of the human experiment (n=21) was a double-blind, placebo-controlled, cross-over study where sensory gating was assessed following a dose of either reboxetine (8 mg), haloperidol (2 mg), their combination or placebo at four separate visits. Similarly in the animal experiment sensory gating was assessed in rats, (n=22) following a dose of reboxetine (2 mg/kg), haloperidol (0.08 mg/kg), their combination or placebo. The sensory gating paradigms in both experiments were identical. In humans, we found significantly reduced P50 suppression following separate administration of reboxetine or haloperidol, while their combined administration did not reach statistical significance compared with placebo. In the rats, we found a similar significant reduction of sensory gating (N40) following treatment with haloperidol and the combination of haloperidol and reboxetine, but not with separate reboxetine treatment, compared with placebo. Our study indicates that even when experimental conditions are kept as similar as possible, direct human to rat cross-species translation of pharmacological effects on sensory gating is challenging, which calls for more focussed research in this important translational area.
Collapse
|
5
|
Qi R, Li M, Ma Y, Chen N. State-dependent changes in auditory sensory gating in different cortical areas in rats. PLoS One 2015; 10:e0126684. [PMID: 25928147 PMCID: PMC4415925 DOI: 10.1371/journal.pone.0126684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
Sensory gating is a process in which the brain’s response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject’s behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP) can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM) sleep and Non-REM (NREM) sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.
Collapse
Affiliation(s)
- Renli Qi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - Minghong Li
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- Yunnan University of Traditional Chinese Medicine, Kunming, P. R. China
| | - Yuanye Ma
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, P.R. China
- * E-mail: (NC); (YM)
| | - Nanhui Chen
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, P.R. China
- * E-mail: (NC); (YM)
| |
Collapse
|
6
|
Cromwell HC, Atchley RM. Influence of emotional states on inhibitory gating: animals models to clinical neurophysiology. Behav Brain Res 2014; 276:67-75. [PMID: 24861710 DOI: 10.1016/j.bbr.2014.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
Integrating research efforts using a cross-domain approach could redefine traditional constructs used in behavioral and clinical neuroscience by demonstrating that behavior and mental processes arise not from functional isolation but from integration. Our research group has been examining the interface between cognitive and emotional processes by studying inhibitory gating. Inhibitory gating can be measured via changes in behavior or neural signal processing. Sensorimotor gating of the startle response is a well-used measure. To study how emotion and cognition interact during startle modulation in the animal model, we examined ultrasonic vocalization (USV) emissions during acoustic startle and prepulse inhibition. We found high rates of USV emission during the sensorimotor gating paradigm and revealed links between prepulse inhibition (PPI) and USV emission that could reflect emotional and cognitive influences. Measuring inhibitory gating as P50 event-related potential suppression has also revealed possible connections between emotional states and cognitive processes. We have examined the single unit responses during the traditional gating paradigm and found that acute and chronic stress can alter gating of neural signals in regions such as amygdala, striatum and medial prefrontal cortex. Our findings point to the need for more cross-domain research on how shifting states of emotion can impact basic mechanisms of information processing. Results could inform clinical work with the development of tools that depend upon cross-domain communication, and enable a better understanding and evaluation of psychological impairment.
Collapse
Affiliation(s)
- Howard C Cromwell
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior at Bowling Green State University, Bowling Green, OH 43403, United States.
| | - Rachel M Atchley
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior at Bowling Green State University, Bowling Green, OH 43403, United States
| |
Collapse
|
7
|
Dissanayake DW, Mason R, Marsden CA. Sensory gating, Cannabinoids and Schizophrenia. Neuropharmacology 2013; 67:66-77. [DOI: 10.1016/j.neuropharm.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/10/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
|
8
|
Boutros NN, Peters R. Internal gating and somatization disorders: proposing a yet un-described neural system. Med Hypotheses 2011; 78:174-8. [PMID: 22088921 DOI: 10.1016/j.mehy.2011.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/19/2011] [Indexed: 11/25/2022]
Abstract
Medically unexplained symptoms (MUS) are a major medical burden and our current understanding of the pathophysiological process leading to their development remains minimal. While research has strongly linked chronic stress to the development of MUS the exact mechanisms and the reason for the many variations in the resultant symptomatology remain unclear. In this paper we advance the hypothesis that an internal (visceral) sensory gating system must exist akin to the much better studied external sensory gating system. The hypothesis is based on the observations that under normal conditions sensations of internal organs do not reach consciousness (i.e., filtered or gated out on a subconscious or preattentive level). As visceral sensations are usually perceived only when there is a pathological process affecting the organ, then failure of this internal gating system leading to the sensations arriving to consciousness must be interpreted by the brain to indicate pathology in this organ. If the hypothesis proves to be true and such a system does exist, the implications are many and significant including developing methods for assessing the system and possibly correcting it.
Collapse
Affiliation(s)
- Nash N Boutros
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, College of Nursing, Detroit, MI 48207, United States.
| | | |
Collapse
|
9
|
Nobre M, Cabral A, Brandão M. GABAergic regulation of auditory sensory gating in low- and high-anxiety rats submitted to a fear conditioning procedure. Neuroscience 2010; 171:1152-63. [DOI: 10.1016/j.neuroscience.2010.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/20/2010] [Accepted: 10/03/2010] [Indexed: 01/22/2023]
|
10
|
Dissanayake DW, Zachariou M, Marsden CA, Mason R. Effects of phencyclidine on auditory gating in the rat hippocampus and the medial prefrontal cortex. Brain Res 2009; 1298:153-60. [DOI: 10.1016/j.brainres.2009.08.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
|
11
|
Anstrom KK, Miczek KA, Budygin EA. Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 2009; 161:3-12. [PMID: 19298844 DOI: 10.1016/j.neuroscience.2009.03.023] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/24/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
Abstract
While reward-dependent facilitation of phasic dopamine signaling is well documented at both the cell bodies and terminals, little is known regarding fast dopamine transmission under aversive conditions. Exposure to aggressive confrontation is extremely aversive and stressful for many species including rats. The present study used fast-scan cyclic voltammetry and multiunit recording to determine if aggressive encounters and subsequent social defeat affect burst firing of ventral tegmental area (VTA) dopamine neurons and accumbal dopamine transients in defeated rats. Significant increases in the frequency of transient dopamine release were observed during interactions with an aggressive rat but not with a familiar cage mate. In agreement with voltammetric results, significant increases in burst frequency were detected in the VTA dopamine firing patterns during an aggressive confrontation; however, the number of spikes per burst remained unchanged. We found that neurons with lower burst rates under home cage conditions did not switch from nonbursting to bursting types, while neurons with higher burst levels showed amplified increases in bursting. This study demonstrates for the first time that aggressive confrontations in defeated rats are associated with increases in phasic dopamine transmission in the mesolimbic pathway.
Collapse
Affiliation(s)
- K K Anstrom
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
12
|
Dissanayake DWN, Zachariou M, Marsden CA, Mason R. Auditory gating in rat hippocampus and medial prefrontal cortex: effect of the cannabinoid agonist WIN55,212-2. Neuropharmacology 2008; 55:1397-404. [PMID: 18809420 DOI: 10.1016/j.neuropharm.2008.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 06/25/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
Sensory gating can be assessed in rodents and humans using an auditory conditioning (C)-test (T) paradigm, with schizophrenic patients exhibiting a loss of gating. Dysregulation of the endocannabinoid system has been proposed to be involved in the pathogenesis of schizophrenia. We studied auditory gating and the effects of the cannabinoid agonist WIN55,212-22 on gating in CA3 and dentate gyrus (DG) of the hippocampus and medial prefrontal cortex (mPFC) in male Lister hooded rats using in vivo electrophysiology. The effects of a single dose of WIN55,212-2 on the N2 local field potential (LFP) test/conditioning amplitude ratios (T/C ratio) and response latencies were examined. In rats that demonstrated gating of N2, mPFC showed higher T/C ratios and shorter conditioning response latencies compared to DG and CA3. WIN55,212-2 disrupted auditory gating in all three areas with a significant increase in test amplitudes in the gating rats. A group of non-gating rats demonstrated higher test amplitudes and higher T/C ratios compared to gating rats. WIN55,212-2 had no effect on T/C ratios in the non-gating rats. The cannabinoid receptor (CB1) antagonist SR141716A prevented WIN55,212-2 induced disruption of gating. This study demonstrates gated auditory-evoked responses in CA3, DG and mPFC. The mPFC showed an early phase of gating which may later be modulated by CA3 and DG activity. Furthermore, cannabinoid receptor activation disrupted auditory gating in CA3, DG and mPFC, an effect which was prevented by CB1 receptor antagonism. The results further demonstrate the presence of a non-gating rat population which responded differently to cannabinoid agonists.
Collapse
Affiliation(s)
- Dilshani W N Dissanayake
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, Nottinghamshire NG7 2UH, UK.
| | | | | | | |
Collapse
|
13
|
Cromwell HC, Mears RP, Wan L, Boutros NN. Sensory gating: a translational effort from basic to clinical science. Clin EEG Neurosci 2008; 39:69-72. [PMID: 18450171 PMCID: PMC4127047 DOI: 10.1177/155005940803900209] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory gating (SG) is a prevalent physiological process important for information filtering in complex systems. SG is evaluated by presenting repetitious stimuli and measuring the degree of neural inhibition that occurs. SG has been found to be impaired in several psychiatric disorders. Recent animal and human research has made great progress in the study of SG, and in this review we provide an overview of recent research on SG using different methods. Animal research has uncovered findings that suggest (1) SG is displayed by single neurons and can be similar to SG observed from scalp recordings in humans, (2) SG is found in numerous brain structures located in sensory, motor and limbic subregions, (3) SG can be significantly influenced by state changes of the organism, and (4) SG has a diverse pharmacological profile accented by a strong influence from nicotine receptor activation. Human research has addressed similar issues using deep electrode recordings of brain structures. These experiments have revealed that (1) SG can be found in cortical regions surrounding hippocampus, (2) the order of neural processing places hippocampal involvement during a later stage of sensory processing than originally thought, and (3) multiple subtypes of gating exist that could be dependent on different brain circuits and more or less influenced by alterations in organismal state. Animal and human research both have limitations. We emphasize the need for integrative approaches to understand the process and combine information between basic and clinical fields so that a more complete picture of SG will emerge.
Collapse
Affiliation(s)
- Howard C Cromwell
- Department of Psychology, Bowling Green State University, Ohio 43403, USA.
| | | | | | | |
Collapse
|