1
|
Bains RS, Forrest H, Sillito RR, Armstrong JD, Stewart M, Nolan PM, Wells SE. Longitudinal home-cage automated assessment of climbing behavior shows sexual dimorphism and aging-related decrease in C57BL/6J healthy mice and allows early detection of motor impairment in the N171-82Q mouse model of Huntington's disease. Front Behav Neurosci 2023; 17:1148172. [PMID: 37035623 PMCID: PMC10073658 DOI: 10.3389/fnbeh.2023.1148172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Monitoring the activity of mice within their home cage is proving to be a powerful tool for revealing subtle and early-onset phenotypes in mouse models. Video-tracking, in particular, lends itself to automated machine-learning technologies that have the potential to improve the manual annotations carried out by humans. This type of recording and analysis is particularly powerful in objective phenotyping, monitoring behaviors with no experimenter intervention. Automated home-cage testing allows the recording of non-evoked voluntary behaviors, which do not require any contact with the animal or exposure to specialist equipment. By avoiding stress deriving from handling, this approach, on the one hand, increases the welfare of experimental animals and, on the other hand, increases the reliability of results excluding confounding effects of stress on behavior. In this study, we show that the monitoring of climbing on the wire cage lid of a standard individually ventilated cage (IVC) yields reproducible data reflecting complex phenotypes of individual mouse inbred strains and of a widely used model of neurodegeneration, the N171-82Q mouse model of Huntington's disease (HD). Measurements in the home-cage environment allowed for the collection of comprehensive motor activity data, which revealed sexual dimorphism, daily biphasic changes, and aging-related decrease in healthy C57BL/6J mice. Furthermore, home-cage recording of climbing allowed early detection of motor impairment in the N171-82Q HD mouse model. Integrating cage-floor activity with cage-lid activity (climbing) has the potential to greatly enhance the characterization of mouse strains, detecting early and subtle signs of disease and increasing reproducibility in preclinical studies.
Collapse
Affiliation(s)
- Rasneer S. Bains
- Mary Lyon Centre at Medical Research Council, Harwell, Oxfordshire, United Kingdom
| | - Hamish Forrest
- Mary Lyon Centre at Medical Research Council, Harwell, Oxfordshire, United Kingdom
| | | | - J. Douglas Armstrong
- Actual Analytics Ltd., Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle Stewart
- Mary Lyon Centre at Medical Research Council, Harwell, Oxfordshire, United Kingdom
| | - Patrick M. Nolan
- Medical Research Council, Harwell Science Campus, Oxford, United Kingdom
| | - Sara E. Wells
- Mary Lyon Centre at Medical Research Council, Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
2
|
Hobson L, Bains RS, Greenaway S, Wells S, Nolan PM. Phenotyping in Mice Using Continuous Home Cage Monitoring and Ultrasonic Vocalization Recordings. ACTA ACUST UNITED AC 2020; 10:e80. [PMID: 32813317 DOI: 10.1002/cpmo.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the last century, the study of mouse behavior has uncovered insights into brain molecular mechanisms while revealing potential causes of many neurological disorders. To this end, researchers have widely exploited the use of mutant strains, including those generated in mutagenesis screens and those produced using increasingly sophisticated genome engineering technologies. It is now relatively easy to access mouse models carrying alleles that faithfully recapitulate changes found in human patients or bearing variants of genes that provide data on those genes' functions. Concurrent with these developments has been an appreciation of the limitations of some current testing platforms, especially those monitoring complex behaviors. Out-of-cage observational testing is useful in describing overt persistent phenotypes but risks missing sporadic or intermittent events. Furthermore, measuring the progression of a phenotype, potentially over many months, can be difficult while relying on assays that may be susceptible to changes in the testing environment. In recent years, there has also been increasing awareness that measurement of behaviors in isolation can be limiting, given that mice attempt to hide behavioral cues of vulnerability. To overcome these limitations, laboratory animal science is capitalizing on progress in data capture and processing expertise. Moreover, as additional recording modes become commonplace, ultrasonic vocalization recording is an appealing focus, as mice use vocalizations in various social contexts. Using video and audio technologies, we record the voluntary, unprovoked behaviors and vocalizations of mice in social groups. Adoption of these approaches is undoubtedly set to increase, as they capture the round-the-clock behavior of mouse strains. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Continuous recording of home cage activity using the Home Cage Analyzer (HCA) system Support Protocol: Subcutaneous insertion of a radio frequency identification microchip in the inguinal area Basic Protocol 2: Continuous recording of mouse ultrasonic vocalizations in the home cage.
Collapse
Affiliation(s)
- Liane Hobson
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| | - Rasneer S Bains
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| | - Simon Greenaway
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| | - Sara Wells
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| | - Patrick M Nolan
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
3
|
Brown SDM, Holmes CC, Mallon AM, Meehan TF, Smedley D, Wells S. High-throughput mouse phenomics for characterizing mammalian gene function. Nat Rev Genet 2018; 19:357-370. [PMID: 29626206 PMCID: PMC6582361 DOI: 10.1038/s41576-018-0005-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We are entering a new era of mouse phenomics, driven by large-scale and economical generation of mouse mutants coupled with increasingly sophisticated and comprehensive phenotyping. These studies are generating large, multidimensional gene-phenotype data sets, which are shedding new light on the mammalian genome landscape and revealing many hitherto unknown features of mammalian gene function. Moreover, these phenome resources provide a wealth of disease models and can be integrated with human genomics data as a powerful approach for the interpretation of human genetic variation and its relationship to disease. In the future, the development of novel phenotyping platforms allied to improved computational approaches, including machine learning, for the analysis of phenotype data will continue to enhance our ability to develop a comprehensive and powerful model of mammalian gene-phenotype space.
Collapse
Affiliation(s)
| | - Chris C Holmes
- Nuffield Department of Medicine and Department of Statistics, University of Oxford, Oxford, UK.
| | | | - Terrence F Meehan
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | |
Collapse
|
4
|
Balzani E, Falappa M, Balci F, Tucci V. An approach to monitoring home-cage behavior in mice that facilitates data sharing. Nat Protoc 2018; 13:1331-1347. [PMID: 29773907 DOI: 10.1038/nprot.2018.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically modified mice are used as models for a variety of human behavioral conditions. However, behavioral phenotyping can be a major bottleneck in mouse genetics because many of the classic protocols are too long and/or are vulnerable to unaccountable sources of variance, leading to inconsistent results between centers. We developed a home-cage approach using a Chora feeder that is controlled by-and sends data to-software. In this approach, mice are tested in the standard cages in which they are held for husbandry, which removes confounding variables such as the stress induced by out-of-cage testing. This system increases the throughput of data gathering from individual animals and facilitates data mining by offering new opportunities for multimodal data comparisons. In this protocol, we use a simple work-for-food testing strategy as an example application, but the approach can be adapted for other experiments looking at, e.g., attention, decision-making or memory. The spontaneous behavioral activity of mice in performing the behavioral task can be monitored 24 h a day for several days, providing an integrated assessment of the circadian profiles of different behaviors. We developed a Python-based open-source analytical platform (Phenopy) that is accessible to scientists with no programming background and can be used to design and control such experiments, as well as to collect and share data. This approach is suitable for large-scale studies involving multiple laboratories.
Collapse
Affiliation(s)
- Edoardo Balzani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Matteo Falappa
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova, Italy
| | - Fuat Balci
- Department of Psychology, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Valter Tucci
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
5
|
Zheng H, Yu WM, Waclaw RR, Kontaridis MI, Neel BG, Qu CK. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner. Sci Signal 2018; 11:11/522/eaao1591. [PMID: 29559584 DOI: 10.1126/scisignal.aao1591] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Catalytically activating mutations in Ptpn11, which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations in Ptpn11 are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse. Targeted pan-neuronal knockin of a Ptpn11 allele encoding the active SHP2 E76K mutant resulted in hydrocephalus due to aberrant development of ependymal cells and their cilia. These pathogenic effects of the E76K mutation were suppressed by the additional mutation C459S, which abolished the catalytic activity of SHP2. Moreover, ependymal cells in NSML mice bearing the inactive SHP2 mutant Y279C were also unaffected. Mechanistically, the SHP2 E76K mutant induced developmental defects in ependymal cells by enhancing dephosphorylation and inhibition of the transcription activator STAT3. Whereas STAT3 activity was reduced in Ptpn11E76K/+ cells, the activities of the kinases ERK and AKT were enhanced, and neural cell-specific Stat3 knockout mice also manifested developmental defects in ependymal cells and cilia. These genetic and biochemical data demonstrate a catalytic-dependent role of SHP2 gain-of-function disease mutants in the pathogenesis of hydrocephalus.
Collapse
Affiliation(s)
- Hong Zheng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wen-Mei Yu
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ronald R Waclaw
- Divisions of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria I Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Cheng-Kui Qu
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc Natl Acad Sci U S A 2017; 114:E9308-E9317. [PMID: 29078390 DOI: 10.1073/pnas.1713625114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.
Collapse
|
7
|
Deficient Purposeful Use of Forepaws in Female Mice Modelling Rett Syndrome. Neural Plast 2015; 2015:326184. [PMID: 26185689 PMCID: PMC4491574 DOI: 10.1155/2015/326184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/21/2015] [Accepted: 05/24/2015] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases. Motor abnormalities represent a significant part of the spectrum of RTT symptoms. In the present study we investigated motor coordination and fine motor skill domains in MeCP2-308 female mice, a validated RTT model. This was complemented by the in vivo magnetic resonance spectroscopy (MRS) analysis of metabolic profile in behaviourally relevant brain areas. MeCP2-308 heterozygous female mice (Het, 10-12 months of age) were impaired in tasks validated for the assessment of purposeful and coordinated forepaw use (Morag test and Capellini handling task). A fine-grain analysis of spontaneous behaviour in the home-cage also revealed an abnormal handling pattern when interacting with the nesting material, reduced motivation to explore the environment, and increased time devoted to feeding in Het mice. The brain MRS evaluation highlighted decreased levels of bioenergetic metabolites in the striatal area in Het mice compared to controls. Present results confirm behavioural and brain alterations previously reported in MeCP2-308 males and identify novel endpoints on which the efficacy of innovative therapeutic strategies for RTT may be tested.
Collapse
|
8
|
Schiavo G, Greensmith L, Hafezparast M, Fisher EMC. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci 2013; 36:641-51. [PMID: 24035135 PMCID: PMC3824068 DOI: 10.1016/j.tins.2013.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
The cytoplasmic dynein complex is the main retrograde motor in all eukaryotic cells. This complex is built around a dimer of cytoplasmic dynein heavy chains (DYNC1H1). Mouse DYNC1H1 mutants have sensory defects, but motor defects have been controversial. Now human DYNC1H1 mutations with sensory, motor, and cognitive deficits are being found. The study of these mutations will give us new insight into DYNC1H1 function in the nervous system.
Cytoplasmic dynein is the main retrograde motor in all eukaryotic cells. This complex comprises different subunits assembled on a cytoplasmic dynein heavy chain 1 (DYNC1H1) dimer. Cytoplasmic dynein is particularly important for neurons because it carries essential signals and organelles from distal sites to the cell body. In the past decade, several mouse models have helped to dissect the numerous functions of DYNC1H1. Additionally, several DYNC1H1 mutations have recently been found in human patients that give rise to a broad spectrum of developmental and midlife-onset disorders. Here, we discuss the effects of mutations of mouse and human DYNC1H1 and how these studies are giving us new insight into the many critical roles DYNC1H1 plays in the nervous system.
Collapse
Affiliation(s)
- Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London, Queen Square, London WC1N 3BG, UK; Molecular NeuroPathobiology, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | | | | | |
Collapse
|
9
|
Acevedo-Arozena A, Kalmar B, Essa S, Ricketts T, Joyce P, Kent R, Rowe C, Parker A, Gray A, Hafezparast M, Thorpe JR, Greensmith L, Fisher EMC. A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis. Dis Model Mech 2011; 4:686-700. [PMID: 21540242 PMCID: PMC3180233 DOI: 10.1242/dmm.007237] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that results in the death of motor neurons in the brain and spinal cord. The disorder generally strikes in mid-life, relentlessly leading to paralysis and death, typically 3-5 years after diagnosis. No effective treatments are available. Up to 10% of ALS is familial, usually autosomal dominant. Several causative genes are known and, of these, mutant superoxide dismutase 1 (SOD1) is by far the most frequently found, accounting for up to 20% of familial ALS. A range of human mutant SOD1 transgenic mouse strains has been produced, and these largely successfully model the human disease. Of these, the most widely used is the SOD1 mouse, which expresses a human SOD1 transgene with a causative G93A mutation. This mouse model is excellent for many purposes but carries up to 25 copies of the transgene and produces a great excess of SOD1 protein, which might affect our interpretation of disease processes. A variant of this strain carries a deletion of the transgene array such that the copy number is dropped to eight to ten mutant SOD1 genes. This 'deleted' 'low-copy' mouse undergoes a slower course of disease, over many months. Here we have carried out a comprehensive analysis of phenotype, including nerve and muscle physiology and histology, to add to our knowledge of this 'deleted' strain and give baseline data for future studies. We find differences in phenotype that arise from genetic background and sex, and we quantify the loss of nerve and muscle function over time. The slowly progressive pathology observed in this mouse strain could provide us with a more appropriate model for studying early-stage pathological processes in ALS and aid the development of therapies for early-stage treatments.
Collapse
|
10
|
Marques JM, Olsson IAS. Performance of juvenile mice in a reach-to-grasp task. J Neurosci Methods 2010; 193:82-5. [DOI: 10.1016/j.jneumeth.2010.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/16/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
|
11
|
Tennant KA, Adkins DL, Donlan NA, Asay AL, Thomas N, Kleim JA, Jones TA. The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. ACTA ACUST UNITED AC 2010; 21:865-76. [PMID: 20739477 DOI: 10.1093/cercor/bhq159] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The organization of forelimb representation areas of the monkey, cat, and rat motor cortices has been studied in depth, but its characterization in the mouse lags far behind. We used intracortical microstimulation (ICMS) and cytoarchitectonics to characterize the general organization of the C57BL/6 mouse motor cortex, and the forelimb representation in more detail. We found that the forelimb region spans a large area of frontal cortex, bordered primarily by vibrissa, neck, shoulder, and hindlimb representations. It included a large caudal forelimb area, dominated by digit representation, and a small rostral forelimb area, containing elbow and wrist representations. When the entire motor cortex was mapped, the forelimb was found to be the largest movement representation, followed by head and hindlimb representations. The ICMS-defined motor cortex spanned cytoarchitecturally identified lateral agranular cortex (AGl) and also extended into medial agranular cortex. Forelimb and hindlimb representations extended into granular cortex in a region that also had cytoarchitectural characteristics of AGl, consistent with the primary motor-somatosensory overlap zone (OL) characterized in rats. Thus, the mouse motor cortex has homologies with the rat in having 2 forelimb representations and an OL but is distinct in the predominance of digit representations.
Collapse
Affiliation(s)
- Kelly A Tennant
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Huang C, Xia PY, Zhou H. Sustained expression of TDP-43 and FUS in motor neurons in rodent's lifetime. Int J Biol Sci 2010; 6:396-406. [PMID: 20616880 PMCID: PMC2899457 DOI: 10.7150/ijbs.6.396] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 07/03/2010] [Indexed: 12/12/2022] Open
Abstract
TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) are two highly conserved ribonucleoproteins. Pathogenic mutations of the TDP-43 or the FUS gene are all linked to amyotrophic lateral sclerosis (ALS) that is characterized by progressive degeneration of motor neurons. To better understand the correlation of ALS disease genes with the selectivity of chronic motor neuron degeneration, we examined the longitudinal expression of the TDP-43 and the FUS genes in C57BL6 mice and in Sprague-Dawley rats. TDP-43 and FUS were robustly and ubiquitously expressed in the postnatal mice and rats, but were markedly decreased in the adult rodents. In adulthood, TDP-43 and FUS proteins were even undetectable in peripheral organs including skeletal muscles, liver, and kidney, but were constantly expressed at substantial levels in the central nervous system. Motor neurons expressed the TDP-43 and the FUS genes at robust levels throughout rodent's lifetime. Moreover, TDP-43 and FUS were accumulated in the cytoplasm of motor neurons in aged animals. Our findings suggest that TDP-43 and FUS play an important role in development and that constant and robust expression of the genes in motor neurons may render the neurons vulnerable to pathogenic mutation of the TDP-43 or the FUS gene. To faithfully model the pathology of TDP-43- or FUS gene mutations in rodents, we must replicate the expression patterns of the TDP-43 and the FUS gene in animals.
Collapse
Affiliation(s)
- Cao Huang
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
13
|
ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2. PLoS One 2010; 5:e9137. [PMID: 20161761 PMCID: PMC2817753 DOI: 10.1371/journal.pone.0009137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/25/2010] [Indexed: 01/14/2023] Open
Abstract
Background Fibrillins 1 (FBN1) and 2 (FBN2) are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA) result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes. Methodology/Principal Findings As part of a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice. Conclusions These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.
Collapse
|
14
|
Brown SDM, Wurst W, Kühn R, Hancock JM. The functional annotation of mammalian genomes: the challenge of phenotyping. Annu Rev Genet 2009; 43:305-33. [PMID: 19689210 DOI: 10.1146/annurev-genet-102108-134143] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse is central to the goal of establishing a comprehensive functional annotation of the mammalian genome that will help elucidate various human disease genes and pathways. The mouse offers a unique combination of attributes, including an extensive genetic toolkit that underpins the creation and analysis of models of human disease. An international effort to generate mutations for every gene in the mouse genome is a first and essential step in this endeavor. However, the greater challenge will be the determination of the phenotype of every mutant. Large-scale phenotyping for genome-wide functional annotation presents numerous scientific, infrastructural, logistical, and informatics challenges. These include the use of standardized approaches to phenotyping procedures for the population of unified databases with comparable data sets. The ultimate goal is a comprehensive database of molecular interventions that allows us to create a framework for biological systems analysis in the mouse on which human biology and disease networks can be revealed.
Collapse
Affiliation(s)
- Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Achilli F, Bros-Facer V, Williams HP, Banks GT, AlQatari M, Chia R, Tucci V, Groves M, Nickols CD, Seburn KL, Kendall R, Cader MZ, Talbot K, van Minnen J, Burgess RW, Brandner S, Martin JE, Koltzenburg M, Greensmith L, Nolan PM, Fisher EMC. An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. Dis Model Mech 2009; 2:359-73. [PMID: 19470612 DOI: 10.1242/dmm.002527] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system in humans, described clinically as Charcot-Marie-Tooth type 2D or distal spinal muscular atrophy type V. Here, we characterise a new mouse mutant, Gars(C201R), with a point mutation that leads to a non-conservative substitution within GARS. Heterozygous mice with a C3H genetic background have loss of grip strength, decreased motor flexibility and disruption of fine motor control; this relatively mild phenotype is more severe on a C57BL/6 background. Homozygous mutants have a highly deleterious set of features, including movement difficulties and death before weaning. Heterozygous animals have a reduction in axon diameter in peripheral nerves, slowing of nerve conduction and an alteration in the recovery cycle of myelinated axons, as well as innervation defects. An assessment of GARS levels showed increased protein in 15-day-old mice compared with controls; however, this increase was not observed in 3-month-old animals, indicating that GARS function may be more crucial in younger animals. We found that enzyme activity was not reduced detectably in heterozygotes at any age, but was diminished greatly in homozygous mice compared with controls; thus, homozygous animals may suffer from a partial loss of function. The Gars(C201R) mutation described here is a contribution to our understanding of the mechanism by which mutations in tRNA synthetases, which are fundamentally important, ubiquitously expressed enzymes, cause axonopathy in specific sets of neurons.
Collapse
Affiliation(s)
- Francesca Achilli
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|