1
|
Lan XY, Liang XS, Cao MX, Qin HM, Chu CY, Boltze J, Li S. NCAM mimetic peptide P2 synergizes with bone marrow mesenchymal stem cells in promoting functional recovery after stroke. J Cereb Blood Flow Metab 2024; 44:1128-1144. [PMID: 38230663 PMCID: PMC11179606 DOI: 10.1177/0271678x241226482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
The neural cell adhesion molecule (NCAM) promotes neural development and regeneration. Whether NCAM mimetic peptides could synergize with bone marrow mesenchymal stem cells (BMSCs) in stroke treatment deserves investigation. We found that the NCAM mimetic peptide P2 promoted BMSC proliferation, migration, and neurotrophic factor expression, protected neurons from oxygen-glucose deprivation through ERK and PI3K/AKT activation and anti-apoptotic mechanisms in vitro. Following middle cerebral artery occlusion (MCAO) in rats, P2 alone or in combination with BMSCs inhibited neuronal apoptosis and induced the phosphorylation of ERK and AKT. P2 combined with BMSCs enhanced neurotrophic factor expression and BMSC proliferation in the ischemic boundary zone. Moreover, combined P2 and BMSC therapy induced translocation of nuclear factor erythroid 2-related factor, upregulated heme oxygenase-1 expression, reduced infarct volume, and increased functional recovery as compared to monotreatments. Treatment with LY294002 (PI3K inhibitor) and PD98059 (ERK inhibitor) decreased the neuroprotective effects of combined P2 and BMSC therapy in MCAO rats. Collectively, P2 is neuroprotective while P2 and BMSCs work synergistically to improve functional outcomes after ischemic stroke, which may be attributed to mechanisms involving enhanced BMSC proliferation and neurotrophic factor release, anti-apoptosis, and PI3K/AKT and ERK pathways activation.
Collapse
Affiliation(s)
- Xiao-Yan Lan
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Xue-Song Liang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ming-Xuan Cao
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hua-Min Qin
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Cheng-Yan Chu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Di G, Kong X, Miao X, Zhang Y, Huang M, Gu Y, You W, Zhang J, Ke C. Proteomic analysis of trochophore and veliger larvae development in the small abalone Haliotis diversicolor. BMC Genomics 2017; 18:809. [PMID: 29058591 PMCID: PMC5651566 DOI: 10.1186/s12864-017-4203-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/08/2017] [Indexed: 12/19/2022] Open
Abstract
Background Haliotis diversicolor is commercially important species. The trochophore and veliger are distinct larval stages in gastropod development. Their development involves complex morphological and physiological changes. We studied protein changes during the embryonic development of H. diversicolor using two dimensional electrophoresis (2-DE) and label-free methods, tandem mass spectrometry (MS/ MS), and Mascot for protein identification. Results A total of 150 2-DE gel spots were identified. Protein spots showed upregulation of 15 proteins and downregulation of 28 proteins as H. diversicolor developed from trochophore to veliger larvae. Trochophore and veliger larvae were compared using a label-free quantitative proteomic approach. A total of 526 proteins were identified from both samples, and 104 proteins were differentially expressed (> 1.5 fold). Compared with trochophore larvae, veliger larvae had 55 proteins upregulated and 49 proteins downregulated. These differentially expressed proteins were involved in shell formation, energy metabolism, cellular and stress response processes, protein synthesis and folding, cell cycle, and cell fate determination. Compared with the 5 protein (fructose-bisphosphate aldolase, 14–3-3ε, profilin, actin-depolymerizing factor (ADF)/cofilin) and calreticulin) expression patterns, the mRNA expression exhibited similar patterns except gene of fructose-bisphosphate aldolase. Conclusion Our results provide insight into novel aspects of protein function in shell formation, torsion, and nervous system development, and muscle system differentiation in H. diversicolor larvae. “Quality control” proteins were identified to be involved in abalone larval development. Electronic supplementary material The online version of this article (10.1186/s12864-017-4203-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guilan Di
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.,State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xiulian Miao
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Yifang Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China
| | - Yuting Gu
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China.
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian Province, 361005, People's Republic of China.
| |
Collapse
|
3
|
Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function. Trends Neurosci 2017; 40:295-308. [PMID: 28359630 DOI: 10.1016/j.tins.2017.03.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/05/2023]
Abstract
Immunoglobulin superfamily adhesion molecules are among the most abundant proteins in vertebrate and invertebrate nervous systems. Prominent family members are the neural cell adhesion molecules NCAM and L1, which were the first to be shown to be essential not only in development but also in synaptic function and as key regulators of synapse formation, synaptic activity, plasticity, and synaptic vesicle recycling at distinct developmental and activity stages. In addition to interacting with each other, adhesion molecules interact with ion channels and cytokine and neurotransmitter receptors. Mutations in their genes are linked to neurological disorders associated with abnormal development and synaptic functioning. This review presents an overview of recent studies on these molecules and their crucial impact on neurological disorders.
Collapse
|
4
|
Sanz-García A, Knafo S, Pereda-Pérez I, Esteban JA, Venero C, Armario A. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity. Hippocampus 2016; 26:1179-88. [PMID: 27068341 DOI: 10.1002/hipo.22599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/18/2023]
Abstract
Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ancor Sanz-García
- Unitat De Fisiologia Animal (Facultat De Biociències), Universitat Autònoma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institut De Neurociències, Universitat Autonòma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Red De Trastornos Adictivos (RTA), Instituto De Salud Carlos III, Madrid, Spain
| | - Shira Knafo
- IkerBasque Research Professor, Biophysics Unit (Unidad De Biofísica CSIC-UPV/EHU), Leioa, Bizkaia, Spain
| | | | - José A Esteban
- Deparment of Molecular Neurobiology, Centro De Biología Molecular "Severo Ochoa," Consejo Superior De Investigaciones Científicas (CSIC)/Universidad Autónoma De Madrid, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional De Educación a Distancia, Juan Del Rosal 10, Madrid, 28040, Spain
| | - Antonio Armario
- Unitat De Fisiologia Animal (Facultat De Biociències), Universitat Autònoma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institut De Neurociències, Universitat Autonòma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Red De Trastornos Adictivos (RTA), Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem Res 2013; 38:1163-73. [PMID: 23494903 DOI: 10.1007/s11064-013-1007-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are complexes of transmembranal proteins critical for cell-cell interactions. Initially recognized as key players in the orchestration of developmental processes involving cell migration, cell survival, axon guidance, and synaptic targeting, they have been shown to retain these functions in the mature adult brain, in relation to plastic processes and cognitive abilities. NCAMs are able to interact among themselves (homophilic binding) as well as with other molecules (heterophilic binding). Furthermore, they are the sole molecule of the central nervous system undergoing polysialylation. Most interestingly polysialylated and non-polysialylated NCAMs display opposite properties. The precise contributions each of these characteristics brings in the regulations of synaptic and cellular plasticity in relation to cognitive processes in the adult brain are not yet fully understood. With the aim of deciphering the specific involvement of each interaction, recent developments led to the generation of NCAM mimetic peptides that recapitulate identified binding properties of NCAM. The present review focuses on the information such advances have provided in the understanding of NCAM contribution to cognitive function.
Collapse
|
6
|
Neuroprotective and memory enhancing properties of a dual agonist of the FGF receptor and NCAM. Neurobiol Dis 2012; 48:533-45. [PMID: 22842016 DOI: 10.1016/j.nbd.2012.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/31/2012] [Accepted: 07/17/2012] [Indexed: 12/20/2022] Open
Abstract
The fibroblast growth factor receptor (FGFR) plays a vital role in the development of the nervous system regulating a multitude of cellular processes. One of the interaction partners of the FGFR is the neural cell adhesion molecule (NCAM), which is known to play an important role in neuronal development, regeneration and synaptic plasticity. Thus, simultaneous activation of FGFR- and NCAM-mediated signaling pathways may be expected to affect processes underlying neurodegenerative diseases. We here report the identification of a peptide compound, Enreptin, capable of interacting with both FGFR and NCAM. We demonstrate that this dual specificity agonist induces phosphorylation of FGFR and differentiation and survival of primary neurons in vitro, and that these effects are inhibited by abrogation of both NCAM and FGFR signaling pathways. Furthermore, Enreptin crosses the blood-brain barrier after subcutaneous administration, enhances long-term memory in normal mice and ameliorates memory deficit in mice with induced brain inflammation. Moreover, Enreptin reduces cognitive impairment and neuronal death induced by Aβ25-35 in a rat model of Alzheimer's disease, and reduces the mortality rate and clinical signs of experimental autoimmune encephalomyelitis in rats. Thus, Enreptin is an attractive candidate for the treatment of neurological diseases.
Collapse
|
7
|
Kraev I, Henneberger C, Rossetti C, Conboy L, Kohler LB, Fantin M, Jennings A, Venero C, Popov V, Rusakov D, Stewart MG, Bock E, Berezin V, Sandi C. A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus. PLoS One 2011; 6:e23433. [PMID: 21887252 PMCID: PMC3160849 DOI: 10.1371/journal.pone.0023433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/17/2011] [Indexed: 01/10/2023] Open
Abstract
The key roles played by the neural cell adhesion molecule (NCAM) in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM—plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3—was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs.
Collapse
Affiliation(s)
- Igor Kraev
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
| | - Christian Henneberger
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Clara Rossetti
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Lisa Conboy
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Lene B. Kohler
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martina Fantin
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Alistair Jennings
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Cesar Venero
- Department of Psychobiology, UNED, Ciudad Universitaria, Madrid, Spain
| | - Victor Popov
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
| | - Dmitri Rusakov
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Michael G. Stewart
- Department of Life Sciences, The Open University, Milton Keynes, United Kingdom
- * E-mail: (CS); (MGS)
| | - Elisabeth Bock
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Berezin
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, EPFL, Lausanne, Switzerland
- * E-mail: (CS); (MGS)
| |
Collapse
|
8
|
Guiraudie-Capraz G, Chaillan FA, Truchet B, Franc JL, Mourre C, Roman FS. Increase in polysialyltransferase gene expression following LTP in adult rat dentate gyrus. Hippocampus 2010; 21:1180-9. [PMID: 20665595 DOI: 10.1002/hipo.20835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2010] [Indexed: 11/10/2022]
Abstract
Neural cell adhesion molecule (NCAM) is frequently associated with polysialic acid (PSA), and its function is highly dependent on this polysialylation. PSA-NCAM plays an important role in synaptic plasticity in the hippocampus. STX and PST are the enzymes responsible for NCAM polysialylation. We investigated whether unilateral long-term potentiation (LTP) induction in vivo, in adult rat dentate gyrus (DG), triggered NCAM polysialylation by STX and PST produced in the hippocampus. We found that levels of STX and PST mRNA increased strongly since the early stage of hippocampal LTP and remained high during the maintenance of DG-LTP for 4 h. This rapid increase in polysialyltransferase gene expression occurred in both the hippocampi, probably resulting from bilateral LTP induction by strong unilateral HFS. Thus, LTP triggers interhemispheric molecular changes in the hippocampal network. This study is the first to describe the effects of LTP induction and maintenance on polysialyl-transferases in vivo. Our findings suggest that hippocampal synaptic remodeling requires NCAM polysialylation.
Collapse
Affiliation(s)
- G Guiraudie-Capraz
- Laboratoire Neurobiologie des Processus Mnésiques, Marseille Cedex, France.
| | | | | | | | | | | |
Collapse
|
9
|
Køhler LB, Soroka V, Korshunova I, Berezin V, Bock E. A peptide derived from a trans-homophilic binding site in neural cell adhesion molecule induces neurite outgrowth and neuronal survival. J Neurosci Res 2010; 88:2165-76. [DOI: 10.1002/jnr.22380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
NCAM in long-term potentiation and learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:257-70. [PMID: 20017028 DOI: 10.1007/978-1-4419-1170-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Brennaman LH, Maness PF. NCAM in Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:299-317. [DOI: 10.1007/978-1-4419-1170-4_19] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
|
13
|
Conboy L, Bisaz R, Markram K, Sandi C. Role of NCAM in Emotion and Learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:271-96. [DOI: 10.1007/978-1-4419-1170-4_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|