1
|
Extracellular zinc regulates contextual fear memory formation in male rats through MMP-BDNF-TrkB pathway in dorsal hippocampus and basolateral amygdala. Behav Brain Res 2023; 439:114230. [PMID: 36442645 DOI: 10.1016/j.bbr.2022.114230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/26/2022]
Abstract
Large amount of zinc (100 µM even up to 300 µM) is released from the nerve terminals in response to high frequency neuronal stimulation in certain brain regions including hippocampus and amygdala. However, its precise pharmacological effect is poorly understood. Here, we investigated the role of extracellular zinc (endogenous zinc) and exogenous zinc in memory formation using contextual fear conditioning (CFC) model. Male Sprague Dawley rats were trained for fear conditioning followed by in vivo microdialysis for collection of microdialysate samples from CA1 and CA3 regions of hippocampus and basolateral amygdala (BLA). Extracellular zinc chelator CaEDTA, BDNF scavenger TrkB-Fc, exogenous 7,8-DHF and matrix metalloproteinases (MMP) inhibitor were infused into the CA1 and CA3 regions of hippocampus and BLA after CFC. Different doses of exogenous zinc hydroaspartate were administered intraperitoneally immediately after CFC. We found that CFC increased the level of extracellular zinc in the hippocampus and BLA. Infusing the CaEDTA, TrkB-Fc and MMP inhibitor into the CA1 and CA3 regions of hippocampus and BLA disrupted the fear memory formation. Furthermore, administration of TrKB agonist 7,8-DHF reversed the inhibitory effect of CaEDTA on fear memory formation, suggesting that extracellular zinc may regulate fear memory formation via the BDNF-TrKB pathway. We also found that high dose of exogenous zinc hydroaspartate supplementation increased extracellular zinc levels in brain and enhanced fear memory formation. Altogether, these findings indicate that extracellular zinc may participate in formation of contextual fear memory through MMP-BDNF-TrkB pathway in the hippocampus and BLA.
Collapse
|
2
|
Neely C, Barkey R, Hernandez C, Flinn J. Prophylactic zinc supplementation modulates hippocampal ionic zinc and partially remediates neurological recovery following repetitive mild head injury in mice. Behav Brain Res 2022; 430:113918. [DOI: 10.1016/j.bbr.2022.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/31/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
3
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev Neurosci 2021; 31:233-243. [PMID: 31747384 DOI: 10.1515/revneuro-2019-0052] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022]
Abstract
The disruption of homeostasis of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Wilson's, Creutzfeldt-Jakob, Parkinson's, and Alzheimer's diseases (AD), and traumatic brain injury (TBI). The last two pathological conditions of the brain are the most common; moreover, it is possible that TBI is a risk factor for the development of AD. Disruptions of Zn2+ and Cu2+ homeostasis play an important role in the mechanisms of pathogenesis of both TBI and AD. This review attempts to summarize and systematize the currently available research data on this issue. The neurocytotoxicity of Cu2+ and Zn2+, the synergism of the toxic effect of calcium and Zn2+ ions on the mitochondria of neurons, and the interaction of Zn2+ and Cu2+ with β-amyloid (Abeta) and tau protein are considered.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
4
|
Portbury SD, Hare DJ, Bishop DP, Finkelstein DI, Doble PA, Adlard PA. Trehalose elevates brain zinc levels following controlled cortical impact in a mouse model of traumatic brain injury. Metallomics 2019; 10:846-853. [PMID: 29872801 DOI: 10.1039/c8mt00068a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zinc (Zn) deficiency is a clinical consequence of brain injury that can result in neuropathological outcomes that are exacerbated with age. Here, we present laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging data showing modulation of brain Zn levels by the disaccharide trehalose in aged mice following a controlled cortical impact model of traumatic brain injury. In this proof-of-concept study, trehalose induced an increase in brain zinc levels, providing important preliminary data for larger studies using this simple carbohydrate as a modulator of this essential micronutrient in traumatic brain injury. Our results may have further implications for the treatment of a variety of neurodegenerative diseases and other disorders of the nervous system.
Collapse
Affiliation(s)
- Stuart D Portbury
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
5
|
Portbury SD, Hare DJ, Finkelstein DI, Adlard PA. Trehalose improves traumatic brain injury-induced cognitive impairment. PLoS One 2017; 12:e0183683. [PMID: 28837626 PMCID: PMC5570321 DOI: 10.1371/journal.pone.0183683] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain Injury (TBI) is a significant cause of death and long-term disability for which there are currently no effective pharmacological treatment options. In this study then, we utilized a mouse model of TBI to assess the therapeutic potential of the stable disaccharide trehalose, which is known to protect against oxidative stress, increase levels of chaperone molecules and enhance autophagy. Furthermore, trehalose has demonstrated neuroprotective properties in numerous animal models and has been proposed as a potential treatment for neurodegeneration. As TBI (and associated neurodegenerative disorders) is complicated by a sudden and dramatic change in brain metal concentrations, including iron (Fe) and zinc (Zn), the collective accumulation and translocation of which has been hypothesized to contribute to the pathogenesis of TBI, then we also sought to determine whether trehalose modulated the metal dyshomeostasis associated with TBI. In this study three-month-old C57Bl/6 wildtype mice received a controlled cortical impact TBI, and were subsequently treated for one month with trehalose. During this time animals were assessed on multiple behavioral tasks prior to tissue collection. Results showed an overall significant improvement in the Morris water maze, Y-maze and open field behavioral tests in trehalose-treated mice when compared to controls. These functional benefits occurred in the absence of any change in lesion volume or any significant modulation of biometals, as assessed by laser ablation inductively coupled plasma mass spectrometry. Western blot analysis, however, revealed an upregulation of synaptophysin, doublecortin and brain derived neurotrophic factor protein in trehalose treated mice in the contralateral cortex. These results indicate that trehalose may be efficacious in improving functional outcomes following TBI by a previously undescribed mechanism of action that has relevance to multiple disorders of the central nervous system.
Collapse
Affiliation(s)
- Stuart D. Portbury
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- University of Technology Sydney, Elemental Bio-imaging, Sydney, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
Portbury SD, Hare DJ, Sgambelloni CJ, Bishop DP, Finkelstein DI, Doble PA, Adlard PA. Age modulates the injury-induced metallomic profile in the brain. Metallomics 2017; 9:402-410. [DOI: 10.1039/c6mt00260a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Crèvecœur J, Kaminski RM, Rogister B, Foerch P, Vandenplas C, Neveux M, Mazzuferi M, Kroonen J, Poulet C, Martin D, Sadzot B, Rikir E, Klitgaard H, Moonen G, Deprez M. Expression pattern of synaptic vesicle protein 2 (SV2) isoforms in patients with temporal lobe epilepsy and hippocampal sclerosis. Neuropathol Appl Neurobiol 2014; 40:191-204. [DOI: 10.1111/nan.12054] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022]
Affiliation(s)
- J. Crèvecœur
- Laboratory of Neuropathology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
| | | | - B. Rogister
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Development; Stem Cells and Regenerative Medicine; University of Liege; Liege Belgium
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - P. Foerch
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | | | - M. Neveux
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - M. Mazzuferi
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - J. Kroonen
- Unit of Human Genetics; GIGA Research Center; University of Liege; Liege Belgium
| | - C. Poulet
- Unit of Human Genetics; GIGA Research Center; University of Liege; Liege Belgium
| | - D. Martin
- Department of Neurosurgery; CHU; University of Liege; Liege Belgium
| | - B. Sadzot
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - E. Rikir
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - H. Klitgaard
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - G. Moonen
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - M. Deprez
- Laboratory of Neuropathology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
| |
Collapse
|
8
|
Ion channels and zinc: mechanisms of neurotoxicity and neurodegeneration. J Toxicol 2012; 2012:785647. [PMID: 22645609 PMCID: PMC3356718 DOI: 10.1155/2012/785647] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/17/2012] [Indexed: 11/17/2022] Open
Abstract
Ionotropic glutamate receptors, such as NMDA, AMPA and kainate receptors, are ligand-gated ion channels that mediate much of the excitatory neurotransmission in the brain. Not only do these receptors bind glutamate, but they are also regulated by and facilitate the postsynaptic uptake of the trace metal zinc. This paper discusses the role of the excitotoxic influx and accumulation of zinc, the mechanisms responsible for its cytotoxicity, and a number of disorders of the central nervous system that have been linked to these neuronal ion channels and zinc toxicity including ischemic brain injury, traumatic brain injury, and epilepsy.
Collapse
|
9
|
Chorin E, Vinograd O, Fleidervish I, Gilad D, Herrmann S, Sekler I, Aizenman E, Hershfinkel M. Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci 2011; 31:12916-26. [PMID: 21900570 PMCID: PMC3227684 DOI: 10.1523/jneurosci.2205-11.2011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 12/15/2022] Open
Abstract
Vesicular Zn(2+) regulates postsynaptic neuronal excitability upon its corelease with glutamate. We previously demonstrated that synaptic Zn(2+) acts via a distinct metabotropic zinc-sensing receptor (mZnR) in neurons to trigger Ca(2+) responses in the hippocampus. Here, we show that physiological activation of mZnR signaling induces enhanced K(+)/Cl(-) cotransporter 2 (KCC2) activity and surface expression. As KCC2 is the major Cl(-) outward transporter in neurons, Zn(2+) also triggers a pronounced hyperpolarizing shift in the GABA(A) reversal potential. Mossy fiber stimulation-dependent upregulation of KCC2 activity is eliminated in slices from Zn(2+) transporter 3-deficient animals, which lack synaptic Zn(2+). Importantly, activity-dependent ZnR signaling and subsequent enhancement of KCC2 activity are also absent in slices from mice lacking the G-protein-coupled receptor GPR39, identifying this protein as the functional neuronal mZnR. Our work elucidates a fundamentally important role for synaptically released Zn(2+) acting as a neurotransmitter signal via activation of a mZnR to increase Cl(-) transport, thereby enhancing inhibitory tone in postsynaptic cells.
Collapse
MESH Headings
- Animals
- Blotting, Western
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/physiology
- Electrophysiological Phenomena
- Excitatory Postsynaptic Potentials/physiology
- Female
- Genotype
- In Vitro Techniques
- Male
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Mossy Fibers, Hippocampal/physiology
- Patch-Clamp Techniques
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, GABA-A/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- Symporters/biosynthesis
- Symporters/physiology
- Synapses/metabolism
- Synaptic Transmission/drug effects
- Up-Regulation/drug effects
- Zinc/metabolism
- Zinc/pharmacology
- K Cl- Cotransporters
Collapse
Affiliation(s)
| | | | - Ilya Fleidervish
- Physiology, Faculty of Health Sciences and The Zlotowski Center of Neuroscience, Ben-Gurion University, Beer-Sheva, 84015, Israel, and
| | | | - Sharon Herrmann
- Physiology, Faculty of Health Sciences and The Zlotowski Center of Neuroscience, Ben-Gurion University, Beer-Sheva, 84015, Israel, and
| | - Israel Sekler
- Physiology, Faculty of Health Sciences and The Zlotowski Center of Neuroscience, Ben-Gurion University, Beer-Sheva, 84015, Israel, and
| | - Elias Aizenman
- Departments of Morphology and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
10
|
Li Y, Hawkins BE, DeWitt DS, Prough DS, Maret W. The relationship between transient zinc ion fluctuations and redox signaling in the pathways of secondary cellular injury: relevance to traumatic brain injury. Brain Res 2010; 1330:131-41. [PMID: 20303343 PMCID: PMC2871330 DOI: 10.1016/j.brainres.2010.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/05/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
A major obstacle that hampers the design of drug therapy for traumatic brain injury is the incomplete understanding of the biochemical pathways that lead to secondary cellular injury and contribute to cell death. One such pathway involves reactive species that generate potentially cytotoxic zinc ion fluctuations as a major executor of neuronal, and possibly glial, cell death. Whether zinc ions released during traumatic brain injury are toxic or protective is controversial but can be approached by investigating the exact concentrations of free zinc ions, the thresholds of compromised zinc buffering capacity, and the mechanism of cellular homeostatic control of zinc. Rapidly stretch-injured rat pheochromocytoma (PC12) cells express cellular zinc ion fluctuations that depend on the production of nitric oxide. Chelation of cellular zinc ions after rapid stretch injury, however, increases cellular reactive oxygen species. In a rat model of traumatic brain injury, parasagittal fluid percussion, analysis of the metal load of metallothionein was used as an indicator of changes in cellular zinc ion concentrations. The combined results from the cellular and in vivo investigations caution against interpreting zinc ion fluctuations in the early phase (24h) after injury as a primarily cytotoxic event.
Collapse
Affiliation(s)
- Yuan Li
- Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | |
Collapse
|
11
|
Karol N, Brodski C, Bibi Y, Kaisman T, Forberg M, Hershfinkel M, Sekler I, Silverman WF. Zinc homeostatic proteins in the CNS are regulated by crosstalk between extracellular and intracellular zinc. J Cell Physiol 2010; 224:567-74. [DOI: 10.1002/jcp.22168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 2010; 5:e10131. [PMID: 20396380 PMCID: PMC2852423 DOI: 10.1371/journal.pone.0010131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Traumatic brain injury (TBI) is one of the leading causes of disability and death among young people. Although much is already known about secondary brain damage the full range of brain tissue responses to TBI remains to be elucidated. A population of neurons located in cerebral areas associated with higher cognitive functions harbours a vesicular zinc pool co-localized with glutamate. This zinc enriched pool of synaptic vesicles has been hypothesized to take part in the injurious signalling cascade that follows pathological conditions such as seizures, ischemia and traumatic brain injury. Pathological release of excess zinc ions from pre-synaptic vesicles has been suggested to mediate cell damage/death to postsynaptic neurons. Methodology/Principal Findings In order to substantiate the influence of vesicular zinc ions on TBI, we designed a study in which damage and zinc movements were analysed in several different ways. Twenty-four hours after TBI ZnT3-KO mice (mice without vesicular zinc) were compared to littermate Wild Type (WT) mice (mice with vesicular zinc) with regard to histopathology. Furthermore, in order to evaluate a possible neuro-protective dimension of chemical blocking of vesicular zinc, we treated lesioned mice with either DEDTC or selenite. Our study revealed that chemical blocking of vesicular zinc ions, either by chelation with DEDTC or accumulation in zinc-selenium nanocrystals, worsened the effects on the aftermath of TBI in the WT mice by increasing the number of necrotic and apoptotic cells within the first 24 hours after TBI, when compared to those of chemically untreated WT mice. Conclusion/Significance ZnT3-KO mice revealed more damage after TBI compared to WT controls. Following treatment with DEDTC or selenium an increase in the number of both dead and apoptotic cells were seen in the controls within the first 24 hours after TBI while the degree of damage in the ZnT3-KO mice remained largely unchanged. Further analyses revealed that the damage development in the two mouse strains was almost identical after either zinc chelation or zinc complexion therapy.
Collapse
|
13
|
Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 2009; 10:780-91. [PMID: 19826435 DOI: 10.1038/nrn2734] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past few years have witnessed dramatic progress on all frontiers of zinc neurobiology. The recent development of powerful tools, including zinc-sensitive fluorescent probes, selective chelators and genetically modified animal models, has brought a deeper understanding of the roles of this cation as a crucial intra- and intercellular signalling ion of the CNS, and hence of the neurophysiological importance of zinc-dependent pathways and the injurious effects of zinc dyshomeostasis. The development of some innovative therapeutic strategies is aimed at controlling and preventing the damaging effects of this cation in neurological conditions such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University G. dAnnunzio, Chieti, 66013, Italy.
| | | | | | | |
Collapse
|
14
|
Pedersen MØ, Jensen R, Pedersen DS, Skjolding AD, Hempel C, Maretty L, Penkowa M. Metallothionein-I+II in neuroprotection. Biofactors 2009; 35:315-25. [PMID: 19655389 DOI: 10.1002/biof.44] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallothionein (MT)-I+II synthesis is induced in the central nervous system (CNS) in response to practically any pathogen or disorder, where it is increased mainly in reactive glia. MT-I+II are involved in host defence reactions and neuroprotection during neuropathological conditions, in which MT-I+II decrease inflammation and secondary tissue damage (oxidative stress, neurodegeneration, and apoptosis) and promote post-injury repair and regeneration (angiogenesis, neurogenesis, neuronal sprouting and tissue remodelling). Intracellularly the molecular MT-I+II actions involve metal ion control and scavenging of reactive oxygen species (ROS) leading to cellular redox control. By regulating metal ions, MT-I+II can control metal-containing transcription factors, zinc-finger proteins and p53. However, the neuroprotective functions of MT-I+II also involve an extracellular component. MT-I+II protects the neurons by signal transduction through the low-density lipoprotein family of receptors on the cell surface involving lipoprotein receptor-1 (LRP1) and megalin (LRP2). In this review we discuss the newest data on cerebral MT-I+II functions following brain injury and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Mie Ø Pedersen
- Section of Neuroprotection, Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Despite zinc ions being redox inert in biologic systems, zinc-finger structures act as redox-sensitive molecular switches controlling several crucial cellular processes. Oxidative or nitrosative stress, via modification of zinc finger cysteine thiols, leads to a release of Zn(2+) from these structures, causing not only a loss of zinc-finger function but also an increase of cytoplasmic or nuclear free Zn(2+) that may, in turn, stimulate and interfere with cellular signaling cascades. A signaling cascade stimulated by exposure of cells to zinc ions or to stressful stimuli that are reported to cause an intracellular release of zinc ions involves phosphoinositide 3'-kinases and the Ser/Thr protein kinase Akt, resulting in an inactivation of transcriptional regulators of the FoxO family. Possible modes of action of zinc ions to stimulate this signaling cascade and consequences of stimulation are discussed. Moreover, we present an overview on human diseases or disorders characterized by an intracellular Zn(2+) dyshomeostasis.
Collapse
Affiliation(s)
- Klaus-D Kröncke
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
16
|
Pedersen MØ, Larsen A, Stoltenberg M, Penkowa M. Cell death in the injured brain: roles of metallothioneins. ACTA ACUST UNITED AC 2008; 44:1-27. [PMID: 19348909 DOI: 10.1016/j.proghi.2008.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality. This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients.
Collapse
Affiliation(s)
- Mie Ø Pedersen
- Section of Neuroprotection, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
17
|
Chi ZH, Wang X, Cai JQ, Stoltenberg M, Danscher G, Wang ZY. Zinc transporter 3 immunohistochemical tracing of sprouting mossy fibres. Neurochem Int 2008; 52:1305-9. [DOI: 10.1016/j.neuint.2008.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 12/16/2022]
|